CN1701339A - Portrait-photo recognition - Google Patents

Portrait-photo recognition Download PDF

Info

Publication number
CN1701339A
CN1701339A CNA038252570A CN03825257A CN1701339A CN 1701339 A CN1701339 A CN 1701339A CN A038252570 A CNA038252570 A CN A038252570A CN 03825257 A CN03825257 A CN 03825257A CN 1701339 A CN1701339 A CN 1701339A
Authority
CN
China
Prior art keywords
portrait
photo
calculate
lambda
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038252570A
Other languages
Chinese (zh)
Other versions
CN1327386C (en
Inventor
汤晓鸥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1701339A publication Critical patent/CN1701339A/en
Application granted granted Critical
Publication of CN1327386C publication Critical patent/CN1327386C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

本项发明提供了一种基于画像的新的照片检索系统。用这种新方法可大大缩小照片与画像之间的差异,使两者之间进行有效匹配。实验数据也证实了这一算法的有效性。

Figure 03825257

This invention provides a new photo retrieval system based on portraits. This new method can greatly reduce the differences between photos and portraits, allowing for effective matching between the two. Experimental data also confirmed the effectiveness of this algorithm.

Figure 03825257

Description

画像-照片识别portrait-photo identification

技术领域technical field

对于司法部门,从警察局的照片数据库里进行人脸照片的自动检索及识别极其重要。它能有效地帮助调查者确认嫌疑犯或缩小嫌疑犯的范围。但在大部分情况下,很难得到嫌疑犯的照片。最好的替代品是基于目击证人的描述绘出的疑犯的画像。For the judiciary, it is extremely important to automatically retrieve and identify face photos from the photo database of the police station. It can effectively help investigators identify suspects or narrow the scope of suspects. But in most cases, it is difficult to get photos of suspects. The best substitute is a portrait of the suspect based on eyewitness accounts.

本发明是关于利用特征脸的方法在照片数据库中寻找与画像相匹配的照片,或在画像数据库中寻找与照片相匹配的画像。The present invention relates to searching for a photo matching a portrait in a photo database, or looking for a portrait matching a photo in a portrait database by using the eigenface method.

背景技术Background technique

近些年,由于司法、视频监控、银行及安全系统等领域中应用需求的增加,自动人脸识别技术吸引了广泛关注。与其他技术(如指纹识别)相比,人脸识别的优点在于用户使用方便,而且成本低。操作者不需经过特殊训练机即可修正人脸识别系统的识别错误。In recent years, automatic face recognition technology has attracted widespread attention due to the increasing demand for applications in the fields of justice, video surveillance, banking and security systems. Compared with other technologies (such as fingerprint recognition), the advantages of face recognition are user-friendly and low cost. The operator can correct the recognition errors of the face recognition system without going through a special training machine.

人脸识别技术的一个重要应用是协助司法部门破案。例如,对警察局照片数据库中的照片进行自动检索可有助于快速缩小嫌疑犯的范围。然而在大部分的情况下,司法部门无法得到嫌疑犯的照片。最好的替代品是根据目击证人的描述绘出的疑犯画像。利用画像在数据库中查寻与之相对应的照片有很大的潜在应用价值,因为它不仅能帮助警员寻找嫌疑犯,而且可以帮助目击者与画家利用从数据库中找回的照片对画像进行修改。An important application of face recognition technology is to assist the judiciary to solve crimes. For example, an automated search of photos in a police department's photo database can help quickly narrow down a suspect. In most cases, however, law enforcement cannot obtain photos of suspects. The best substitute is a portrait of the suspect based on eyewitness accounts. Using portraits to find corresponding photos in the database has great potential application value, because it can not only help police officers find suspects, but also help witnesses and painters use photos retrieved from the database to modify portraits.

尽管对画像-照片检索系统有重要的应用需求,但此领域的研究却很少[1][2]。这可能是因为建立大规模的人脸画像的数据库非常困难。Although there is an important application need for portrait-photo retrieval systems, there is little research in this area [1][2]. This may be because it is very difficult to build a large-scale database of facial portraits.

有两个传统的方法被用于在数据库中进行照片与照片之间的匹配。对这两种方法的描述如下。There are two traditional methods used to do photo-to-photo matching in a database. A description of these two methods follows.

A.几何特征法A. Geometric feature method

几何特征法是最直接的方法。基于几何特征的人脸识别研究大都集中于提取人脸特征,如眼睛、嘴、下巴的相对位置及其他参数。尽管几何特征法很易理解,但它无法包含对人脸进行稳定识别的足够信息。特别是几何特征随着面部表情及比例的变化而改变。即使同一个人的不同照片几何特征变化也可能很大。最近的一篇文章对几何特征法及模板匹配法进行了比较,其结论倾向于模板匹配法[3]。The geometric feature method is the most direct method. Most face recognition researches based on geometric features focus on extracting face features, such as the relative positions of eyes, mouth, and chin, and other parameters. Although the geometric feature method is easy to understand, it cannot contain enough information for stable recognition of faces. In particular, geometric features change with facial expressions and proportions. Even the geometric features of different photos of the same person can vary greatly. A recent article compared the geometric feature method and the template matching method, and the conclusion tended to be the template matching method [3].

B.特征脸法B. Eigenface method

目前对人脸进行识别的最成功的方法之一可能是特征脸法[9]。FERET测试报告经过全面比较各种方法后将其列为最有效的方法之一[6]。类似的结论在Zhang et al[8]中也可见到。尽管特征脸法受照明,表情,及姿势影响,但这些因素对于标准身份照片的识别并不重要。Probably one of the most successful methods for face recognition currently is the eigenface method [9]. The FERET test report listed it as one of the most effective methods after a comprehensive comparison of various methods [6]. Similar conclusions can also be seen in Zhang et al[8]. Although eigenfaces are affected by lighting, expression, and pose, these factors are not important for standard identity photo recognition.

特征脸法用Karhunen-Loeve Transform(KLT)表征人脸及用于识别。一旦从人脸熟数据集协方差矩阵求得一组特征向量,也称特征脸,人脸图像就可以通过对特征脸的适当加权线性组合来重构。对于一个给定的图像,其在特征脸上的加权系数就构成了一组特征矢量。对于一个新的测试图像,它的加权系数可以通过投影这个图像到各个特征脸来计算出来。然后根据比较测试图像的加权系数特征矢量与数据库中各图像的加权系数特征矢量之间的距离来分类。The eigenface method uses Karhunen-Loeve Transform (KLT) to characterize the face and use it for recognition. Once a set of eigenvectors, also called eigenfaces, is obtained from the covariance matrix of the face recognition dataset, the face image can be reconstructed by an appropriately weighted linear combination of the eigenfaces. For a given image, its weighting coefficients on the eigenfaces constitute a set of feature vectors. For a new test image, its weighting coefficients can be calculated by projecting this image onto each eigenface. Then it is classified according to the distance between the weighted coefficient feature vector of the test image and the weighted coefficient feature vector of each image in the database.

尽管Karhunen-Loeve Transform在很多教材及论文中已被阐述,这里我们针对照片的识别再简单讨论一下,特别是。在计算Karhunen-LoeveTransform时,用列向量

Figure A0382525700121
表示一个样本人脸图像,其平均脸由公式 m → p = 1 M Σ i = 1 M Q → i 得出,其中M为照片集AP训练样本的数量。从每个图像中减去平均脸,得到 P → i = Q → i - m → p . 照片的训练集组成N×M的矩阵 A p = [ P → 1 , P → 2 , . . . , P → M ] , 其中N为图像中全部像素的数量。样本协方差矩阵被估计为Although Karhunen-Loeve Transform has been described in many textbooks and papers, here we briefly discuss the recognition of photos, especially. When calculating Karhunen-LoeveTransform, use column vector
Figure A0382525700121
Represents a sample face image whose average face is given by the formula m &Right Arrow; p = 1 m Σ i = 1 m Q &Right Arrow; i , where M is the number of training samples in the photo set AP . Subtract the mean face from each image to get P &Right Arrow; i = Q &Right Arrow; i - m &Right Arrow; p . The training set of photos constitutes an N×M matrix A p = [ P &Right Arrow; 1 , P &Right Arrow; 2 , . . . , P &Right Arrow; m ] , where N is the number of all pixels in the image. The sample covariance matrix is estimated as

          W=ApAp T            (1)W=A p A p T (1)

其中AP T是AP的转秩。where AP T is the trans-rank of AP .

考虑到照片图像数据量很大,根据目前允许的计算容量直接计算W的特征向量并不现实。通常使用主特征向量评估的方法。因为样本图像数量M相对较少,W的秩为M-1。所以首先计算一个较小矩阵AP TAP的特征向量,Considering the large amount of photo image data, it is not realistic to directly calculate the eigenvector of W according to the currently allowed computing capacity. Usually the method of principal eigenvector evaluation is used. Because the number of sample images M is relatively small, the rank of W is M−1. So first compute the eigenvectors of a smaller matrix A P T A P ,

                  (Ap TAp)Vp=VpΛp                (2)(A p T A p )V p =V p Λ p (2)

其中Vp为单位特征向量矩阵,Λp为对角化特征值矩阵。公式两边均乘以Ap,我们得到Where Vp is the unit eigenvector matrix, and Λ p is the diagonalized eigenvalue matrix. Multiplying both sides of the formula by Ap, we get

                   (ApAp T)ApVp=ApVpΛp           (3)(A p A p T )A p V p =A p V p Λ p (3)

因此协方差矩阵W的标准正交特征向量矩阵,或特征空间Up为Therefore the orthonormal eigenvector matrix of the covariance matrix W, or the eigenspace Up, is

Uu pp == AA pp VV pp ΛΛ pp -- 11 22 -- -- -- (( 44 ))

对于一张新的人脸照片 它的投影在特征向量空间中的系数形成矢量 b → p = U p T P → k , 其被用作特征矢量进行分类。For a new face photo The coefficients of its projection in the eigenvector space form the vector b &Right Arrow; p = u p T P &Right Arrow; k , It is used as a feature vector for classification.

然而,由于人脸照片与画像的巨大差异,直接把特征脸方法应用于基于画像的照片识别可能不会有很好的效果。一般来说,同一个人的照片与画像的不同要大于来自不同人的两张不同照片。However, due to the huge difference between face photos and portraits, directly applying eigenface methods to portrait-based photo recognition may not have good results. In general, a photo of the same person is more different than a portrait than two different photos from different people.

发明内容Contents of the invention

本发明的目的之一是提供一种方法或系统用于解决画像与照片之间进行更有效地匹配的问题。One of the objects of the present invention is to provide a method or system for solving the problem of more effective matching between portraits and photos.

本发明的另一个目的是解决一个或多个以前的方法提出的问题。至少,它能给公众多提供一个有用的选择。Another object of the present invention is to solve one or more of the problems presented by previous approaches. At the very least, it can provide the public with one more useful choice.

为实现上述目的,本发明提供了一种利用照片集Ap及对应的画像集As为照片Pk生成伪画像Sr的方法。Ap和As分别有M个样本Pi与Si,表达为Ap=[P1,P2,......,PM],及As=[S1,S2,......,SM],其中照片的特征空间Up从Ap计算得出。此方法包括以下步骤:To achieve the above object, the present invention provides a method for generating a pseudo-portrait Sr for a photo Pk by using a photo set Ap and a corresponding portrait set As. Ap and As have M samples Pi and Si respectively, expressed as Ap=[P1, P2,..., PM], and As=[S1, S2,..., SM], where The feature space Up of the photo is calculated from Ap. This method includes the following steps:

a)投影Pk到Up计算投影系数bp,得到Pk=Upbp;a) projection Pk to Up calculates projection coefficient bp, obtains Pk=Upbp;

b)利用As及bp生成Sr。b) Using As and bp to generate Sr.

本发明的另一方面是提供一种利用画像集As及对应的照片集Ap为画像Sk生成伪照片Pr的方法。As和Ap分别有M个样本Si与Pi,表达为As=[S1,S2,......,SM]及Ap=[P1,P2,......,PM],其中画像的特征空间Us从As计算得出。此方法包括以下步骤:Another aspect of the present invention is to provide a method for generating a fake photo Pr for a portrait Sk by using the portrait set As and the corresponding photo set Ap. As and Ap have M samples Si and Pi respectively, expressed as As=[S1, S2,...,SM] and Ap=[P1, P2,...,PM], where the image The feature space Us of is computed from As. This method includes the following steps:

a)投影Sk到Us计算出投影系数bs,得到Sk=Usbs;a) projection Sk to Us calculates the projection coefficient bs, and obtains Sk=Usbs;

b)利用Ap及bs生成Pr。b) Use Ap and bs to generate Pr.

本发明的另一方面是利用照片集Ap及对应的画像集As从照片图库中挑出与画像Sk最匹配的照片Pk,该照片图库中有大量的照片,每张照片用PGi标示,Ap和As二者分别有M个样本Pi与Si,表达为Ap=[P1,P2,......,PM]及As=[S1,S2,......,SM],其中照片特征空间Up及画像特征空间Us分别从Ap及As计算得出。此方法包括以下步骤:Another aspect of the present invention is to use the photo collection Ap and the corresponding portrait collection As to pick out the photo Pk that best matches the portrait Sk from the photo gallery. There are a large number of photos in the photo gallery, and each photo is marked with PGi. Ap and Both As have M samples Pi and Si respectively, expressed as Ap=[P1, P2,..., PM] and As=[S1, S2,..., SM], where the photo The feature space Up and the image feature space Us are calculated from Ap and As respectively. This method includes the following steps:

--为照片图库中的每张照片PGi生成伪画像Sr,通过-- Generate a pseudo portrait Sr for each photo PGi in the photo library, through

a)投影PGi到Up计算投影系数bp,得到PGi=Upbp;a) project PGi to Up to calculate the projection coefficient bp, and obtain PGi=Upbp;

b)利用As及bp生成Sr;b) Using As and bp to generate Sr;

--通过比较伪画像Sr与Sk来鉴别相应的最为匹配的伪画像Srk,其在照片图库中对应的照片即为与画像Sk最匹配的照片Pk。--By comparing the pseudo-portraits Sr and Sk to identify the corresponding most matching pseudo-portrait Srk, the corresponding photo in the photo gallery is the photo Pk that best matches the portrait Sk.

本发明的第四个方面是利用照片集Ap及对应的画像集As从照片图库中挑出与画像Sk最匹配的照片Pk,该照片图库中有大量的照片,每张照片用PGi表示,Ap和As分别有M个样本Pi与Si,表达为Ap=[P1,P2,......,PM]及As=[S1,S2,......,SM],照片的特征空间Up及画像的特征空间Us分别从Ap及As计算得出。此方法包括以下步骤:The fourth aspect of the present invention is to use the photo set Ap and the corresponding portrait set As to pick out the photo Pk that best matches the portrait Sk from the photo gallery. There are a large number of photos in the photo gallery, and each photo is represented by PGi, Ap and As respectively have M samples Pi and Si, expressed as Ap=[P1, P2,..., PM] and As=[S1, S2,..., SM], the characteristics of the photo The space Up and the feature space Us of the portrait are calculated from Ap and As, respectively. This method includes the following steps:

--为画像Sk生成一张伪照片Pr,通过--Generate a pseudo photo Pr for the portrait Sk, through

a)投影Sk到Us计算出投影系数bs,得到Sk=Usbs;a) projection Sk to Us calculates the projection coefficient bs, and obtains Sk=Usbs;

b)利用Ap及bs生成Pr;b) Use Ap and bs to generate Pr;

--通过与照片图库中的照片进行比较,找出与伪照片Pr最匹配的照片Pk。-- Find the photo Pk that best matches the fake photo Pr by comparing with the photos in the photo gallery.

本发明的第五个方面是利用照片集Ap及对应的画像集As从画像图库中选出与照片Pk最匹配的画像Sk,该画像图库中有大量的画像,每张画像用SGi表示,Ap和As分别有M个样本Pi与Si,表达为Ap=[P1,P2,......,PM]及As=[S1,S2,......,SM],照片的特征空间Up及画像的特征空间Us分别从Ap及As计算得出。此方法包括以下步骤:The fifth aspect of the present invention is to use the photo collection Ap and the corresponding portrait collection As to select the portrait Sk that best matches the photo Pk from the portrait library. There are a large number of portraits in the portrait gallery, and each portrait is represented by SGi, Ap and As respectively have M samples Pi and Si, expressed as Ap=[P1, P2,..., PM] and As=[S1, S2,..., SM], the characteristics of the photo The space Up and the feature space Us of the portrait are calculated from Ap and As, respectively. This method includes the following steps:

--为画像图库中的每张画像SGi生成伪照片Pr,通过--Generate a pseudo photo Pr for each portrait SGi in the portrait gallery, through

a)投影SGi到Us计算投影系数bs,得到SGi=Usbs;a) project SGi to Us to calculate the projection coefficient bs, and obtain SGi=Usbs;

b)利用Ap及bs生成Pr;b) Use Ap and bs to generate Pr;

--通过比较伪照片Pr与照片Pk来找到相应的最为匹配的伪照片Prk,其在画像图库中对应的画像即为与照片Pk最为匹配的画像Sk。--Find the corresponding best matching fake photo Prk by comparing the fake photo Pr with the photo Pk, and its corresponding portrait in the portrait library is the portrait Sk that best matches the photo Pk.

本发明的第六个方面是利用照片集Ap及对应的画像集As从画像图库中选出与照片Pk最匹配的画像Sk,该画像图库中有大量的画像,每张画像用SGi表示,Ap和As分别有M个样本Pi与Si,表达为Ap=[P1,P2,......,PM]及As=[S1,S2,......,SM],照片的特征空间Up及画像的特征空间Us分别从Ap及As计算得出。此方法包括以下步骤:The sixth aspect of the present invention is to use the photo collection Ap and the corresponding portrait collection As to select the portrait Sk that best matches the photo Pk from the portrait library. There are a large number of portraits in the portrait gallery, and each portrait is represented by SGi, and Ap and As respectively have M samples Pi and Si, expressed as Ap=[P1, P2,..., PM] and As=[S1, S2,..., SM], the characteristics of the photo The space Up and the feature space Us of the portrait are calculated from Ap and As, respectively. This method includes the following steps:

--为照片Pk生成一张伪画像Sr,通过--Generate a pseudo-portrait Sr for the photo Pk, through

a)投影Pk到Up计算投影系数bp,得到Pk=Upbp;a) projection Pk to Up calculates projection coefficient bp, obtains Pk=Upbp;

b)利用As及bp生成Sr;b) Using As and bp to generate Sr;

--通过与画像图库中的画像进行比较,找出与伪画像Sr最匹配的画像Sk。--By comparing with the portraits in the portrait library, find out the portrait Sk that best matches the fake portrait Sr.

此发明包括用计算机系统来实现上述任何一种算法。The invention includes a computer system implementing any of the above algorithms.

本发明的各种选择及变化将在后面部分中描述,以便使熟悉本领域的人可以理解。Various options and variations of the present invention will be described in the following sections so as to be understood by those skilled in the art.

下面结合附图和实施方式,对本发明的技术方案做进一步的详细描述。The technical solutions of the present invention will be further described in detail below in conjunction with the drawings and implementation methods.

附图说明Description of drawings

图1为本发明的人脸照片(上两行)及画像(下两行)实例。Fig. 1 is the face photo (upper two rows) and portrait (lower two rows) example of the present invention.

图2为本发明的照片转换为画像的算法。Fig. 2 is the algorithm for converting photos into portraits according to the present invention.

图3为本发明的照片到画像/画像到照片的转换实例。Fig. 3 is an example of conversion from photo to portrait/portrait to photo according to the present invention.

图4为本发明的不同的自动识别方法与人眼识别的累积匹配率的比较。FIG. 4 is a comparison of cumulative matching rates between different automatic recognition methods of the present invention and human eye recognition.

具体实施方式Detailed ways

下面将用较佳实施方式及其示意图来具体说明本发明的所采用的方法。The method adopted in the present invention will be described in detail below with preferred embodiments and schematic diagrams thereof.

尽管在上述内容中没有具体阐述,但熟悉本领域的技术人员应当知道画像及照片要用扫描仪或数码相机等输入设备进行有一定解像率的数字化处理,而且用于执行程序的计算机系统要有充分的运行能力及存储空间。Although not specifically described in the above content, those skilled in the art should know that portraits and photos need to be digitally processed with a certain resolution with input devices such as scanners or digital cameras, and the computer system used to execute programs requires There is sufficient operating capacity and storage space.

本发明需要一组照片训练集和相应的画像训练集,分别以Ap和As表示。每个Ap和As分别有M个Pi和Si样本,尽管M可以是比1大的任何值,但首选的M应≥80以提高精确性。每个Ap及As用于计算上述提及的相应的特征空间U。The present invention requires a group of photo training sets and corresponding portrait training sets, represented by Ap and As respectively. There are M samples of Pi and Si for each Ap and As, respectively, and although M can be any value greater than 1, the preferred M should be ≥ 80 to improve accuracy. Each of Ap and As is used to calculate the corresponding feature space U mentioned above.

对于每个训练照片图像

Figure A0382525700161
都有一个相应的画像 是一个样本画像减去平均画像
Figure A0382525700163
后的一个列向量。类似于照片训练集 A p = [ P → 1 , P → 2 , . . . , P → M ] , 我们有相应的图像训练集 A s = [ S → 1 , S → 2 , . . . , S → M ] . For each training photo image
Figure A0382525700161
has a corresponding image is a sample profile minus the average profile
Figure A0382525700163
followed by a column vector. similar to the photo training set A p = [ P &Right Arrow; 1 , P &Right Arrow; 2 , . . . , P &Right Arrow; m ] , We have the corresponding training set of images A the s = [ S &Right Arrow; 1 , S &Right Arrow; 2 , . . . , S &Right Arrow; m ] .

照片-画像/画像-照片的转换及识别Photo-Portrait/Portrait-Photo Conversion and Recognition

1.照片转换为画像1. Convert photos to portraits

如上所述,用传统的特征脸法,一个人脸图像可由特征脸通过公式 P → r = U p b → p - - - ( 5 ) 重构,As mentioned above, using the traditional eigenface method, a face image can be composed of eigenfaces by the formula P &Right Arrow; r = u p b &Right Arrow; p - - - ( 5 ) refactoring,

其中Up为照片特征空间,

Figure A0382525700167
为Pr在照片特征空间的投影系数,同样,一幅画像可通过公式 S r = U s b → s 重构,其中Us为画像特征空间,
Figure A0382525700172
为Sr在画像特征空间的投影系数。但很难将两个对应的照片与画像特征空间的投影系数相关联,从而大大降低了照片-画像,画像-照片的识别能力。Where Up is the photo feature space,
Figure A0382525700167
is the projection coefficient of Pr in the photo feature space, similarly, a portrait can be obtained by the formula S r = u the s b &Right Arrow; the s Reconstruction, where Us is the image feature space,
Figure A0382525700172
is the projection coefficient of Sr in the image feature space. But it is difficult to associate two corresponding photos with the projection coefficients of the portrait feature space, which greatly reduces the photo-portrait, portrait-photo recognition ability.

为了解决这个问题,本发明发现既然有公式 U p = A p V p Λ p - 1 2 , 那么重构的照片就可以表达为In order to solve this problem, the present invention finds that since there is a formula u p = A p V p Λ p - 1 2 , Then the reconstructed photo can be expressed as

PP →&Right Arrow; rr == AA pp VV pp ΛΛ pp -- 11 22 bb →&Right Arrow; pp == AA pp cc →&Right Arrow; pp -- -- -- (( 66 ))

其中 c → p = V p Λ p - 1 2 b → p = [ c p 1 , c p 2 , · · · , c p M ] T , 是M维的列向量。因此,公式(6)可被总结为in c &Right Arrow; p = V p Λ p - 1 2 b &Right Arrow; p = [ c p 1 , c p 2 , · · · , c p m ] T , is an M-dimensional column vector. Therefore, formula (6) can be summarized as

PP →&Right Arrow; rr == AA pp cc →&Right Arrow; pp == ΣΣ ii == 11 Mm cc pp ii PP →&Right Arrow; ii -- -- -- (( 77 ))

这表明重构的照片实际上是用M个训练样本图像的最佳线性组合得到的具有最小平均方差的原图像的最佳近似值,在 中的系数描述每个样本图像贡献的比重,由这种方法生成的重构照片显示在图3标有“重构照片”的列中。This shows that the reconstructed photo is actually the best approximation of the original image with the minimum mean variance obtained by the best linear combination of M training sample images, in The coefficients in describe the proportion of the contribution of each sample image, and the reconstructed photos generated by this method are shown in the column labeled "Reconstructed photos" in Fig. 3.

把公式(7)中的每个样本照片图像 代换为对应的画像 如图2所示,我们得到公式,Take each sample photo image in formula (7) replaced by the corresponding image As shown in Figure 2, we get the formula,

SS →&Right Arrow; rr == ΣΣ ii == 11 Mm cc pp ii SS →&Right Arrow; ii == AA sthe s cc →&Right Arrow; pp == AA sthe s VV pp ΛΛ pp -- 11 22 bb →&Right Arrow; pp -- -- -- (( 88 ))

因为照片与画像的结构类似,所以重构的画像

Figure A03825257001711
应与真的画像相似。如果一个照片样本 对它重构的人脸照片贡献很多,那么它对应的样本画像Si就会对重构画像贡献很多。举个极端的例子,对一个特殊的样本照片
Figure A03825257001713
它对重构照片
Figure A03825257001714
有一个单位权重为cpk=1,其他所有样本照片的权重为零,即这个重构照片与这个样本照片 完全一样,那么它的重构画像 只需简单的用它的对应画像
Figure A03825257001717
取代即可重构。通过这样的代换,一个照片图像即可以转换为伪画像。Because photos have a similar structure to portraits, the reconstructed portraits
Figure A03825257001711
Should be similar to the real portrait. If a photo sample Contribute a lot to its reconstructed face photo, then its corresponding sample portrait Si will contribute a lot to the reconstructed portrait. As an extreme example, for a particular sample photo
Figure A03825257001713
It is useful for reconstructing photos
Figure A03825257001714
There is a unit weight c pk = 1, and the weights of all other sample photos are zero, that is, this reconstructed photo and this sample photo exactly the same, then its reconstructed portrait Just simply use its corresponding portrait
Figure A03825257001717
Replace to refactor. Through such substitution, a photographic image can be transformed into a pseudo-portrait.

简而言之,照片转换为画像可以通过以下几个步骤进行:In short, converting a photo into a portrait can be done through the following steps:

1.首先计算Ap TAp的特征向量Vp和ΛP,以便计算照片的训练集特征向量矩阵Up1. First calculate the eigenvectors V p and Λ P of A p T A p in order to calculate the training set eigenvector matrix U p of photos;

2.通过投影 到特征空间Up中,计算其特征脸的加权向量

Figure A0382525700182
此外,cp通过计算 c → P = V P Λ P - 1 / 2 b → P 得到;2. By projection In the feature space U p , calculate the weighted vector of its eigenface
Figure A0382525700182
Furthermore, c p is calculated by c &Right Arrow; P = V P Λ P - 1 / 2 b &Right Arrow; P get;

3.利用As和cp重构画像Sr。如果cp已通过计算得到,则伪画像Sr可以通过运算公式 S r = A S c → P = A S V P Λ P - 1 / 2 b → P 得出;3. Using As and c p to reconstruct the portrait Sr. If c p has been calculated, the pseudo-portrait Sr can be calculated by the formula S r = A S c &Right Arrow; P = A S V P Λ P - 1 / 2 b &Right Arrow; P inferred;

前面曾经提到,运算开始前,要从原照片Q中减去从照片训练集中生成的平均照片图像

Figure A0382525700185
对于画像训练集,要减去平均画像 这样就需要下面的步骤:As mentioned earlier, before the operation starts, the average photo image generated from the photo training set should be subtracted from the original photo Q
Figure A0382525700185
For the portrait training set, subtract the average portrait This requires the following steps:

4.从输入的照片图像 中减去平均照片

Figure A0382525700188
得到 P → k = Q → k - m → p ; 4. From the input photo image Subtract the average photo
Figure A0382525700188
get P &Right Arrow; k = Q &Right Arrow; k - m &Right Arrow; p ;

5.最后,把平均画像

Figure A03825257001810
加回以得到最终可见的重构画像 T → r = S → r + m → s . 5. Finally, put the average portrait
Figure A03825257001810
Add back to get the final visible reconstructed portrait T &Right Arrow; r = S &Right Arrow; r + m &Right Arrow; the s .

图3显示真正画像与重构画像的比较实例。可显见二者的相似性。Figure 3 shows a comparison example of real and reconstructed portraits. The similarities between the two can be seen.

尽管上述的讨论主要为照片向画像的转换,但很明显,相反的转换可用同样的方法做到。例如,一个伪照片可以通过公式 P → r = A P c → S = A P V S Λ S - 1 / 2 b → S 得到。Although the above discussion has focused on the conversion of photographs to portraits, it is clear that the reverse conversion can be done in the same way. For example, a fake photo can be obtained by the formula P &Right Arrow; r = A P c &Right Arrow; S = A P V S Λ S - 1 / 2 b &Right Arrow; S get.

画像识别portrait recognition

在经过由照片向画像的转换后,从大量的照片中识别画像就变得容易了。After the conversion from photos to portraits, it becomes easy to identify portraits from a large number of photos.

其具体算法总结如下:The specific algorithm is summarized as follows:

1.通过前面描述的由照片到画像的转换算法,用Up为照片图库中的每张照片

Figure A03825257001813
算出对映的伪画像
Figure A03825257001814
其中Up是从Ap算出的。这里照片图库与照片训练集Ap不一定要一样。当然,如一样可提高算法精度;1. Through the conversion algorithm from photos to portraits described above, use U p for each photo in the photo gallery
Figure A03825257001813
Calculate the pseudo-portrait of the antipodes
Figure A03825257001814
where U p is calculated from Ap. Here, the photo library and the photo training set Ap do not have to be the same. Of course, such as the same can improve the accuracy of the algorithm;

2.比较查询画像

Figure A03825257001815
与伪画像
Figure A03825257001816
用以识别最匹配的伪画像 进而找到照片图库中与 最匹配的照片;2. Compare query portraits
Figure A03825257001815
with pseudo-portraits
Figure A03825257001816
to identify the best matching pseudo-portraits and find the photo library with best matching photo;

伪画像与查询画像的比较可以用传统的特征脸法或其他适合的方法实现,例如,弹性图匹配法[4][7];The comparison of pseudo-portraits and query profiles can be achieved by traditional eigenface method or other suitable methods, for example, elastic graph matching method [4][7];

下面以一种传统的人脸比较方法为例进行说明,可以用画像训练样本先计算出特征向量。然后将查询画像 和从照片集里生成的伪画像 投影到画像特征向量上。投影系数被用作最后分类的特征矢量。具体的比较算法总结如下:In the following, a traditional face comparison method is used as an example to illustrate, and the feature vector can be calculated first by using the portrait training samples. Then query the image and pseudo-portraits generated from the photo collection Projected onto the image feature vector. The projection coefficients are used as the feature vectors for the final classification. The specific comparison algorithm is summarized as follows:

1.通过投影查询画像

Figure A0382525700193
到画像特征空间Us来计算查询画像 的加权向量 b → s = U s T S → k . 1. Query portrait through projection
Figure A0382525700193
To the image feature space U s to calculate the query image weighted vector of b &Right Arrow; the s = u the s T S &Right Arrow; k .

2.计算

Figure A0382525700196
和每个
Figure A0382525700197
之间的距离,
Figure A0382525700198
是从照片图库中每张照片生成的伪画像算出,画像被识别为两个矢量间有最小距离的人脸。2. Calculate
Figure A0382525700196
and each
Figure A0382525700197
the distance between,
Figure A0382525700198
is calculated from a pseudo-portrait generated for each photo in the photo library, and the portrait is recognized as a face with the smallest distance between two vectors.

在上述算法中,基于照片特征空间Up,图库中的照片先被转换成伪画像

Figure A0382525700199
然后在画像特征空间Us中进行识别。我们也可以反过来,基于画像特征空间把每个查询画像
Figure A03825257001910
转换为伪照片
Figure A03825257001911
然后通过特征脸法或任何其他适当的方法用照片特征空间进行识别。In the above algorithm, based on the photo feature space Up, the photos in the gallery are first converted into pseudo-portraits
Figure A0382525700199
Then the recognition is performed in the image feature space Us. We can also do the reverse, based on the portrait feature space to make each query portrait
Figure A03825257001910
convert to fake photo
Figure A03825257001911
The photo feature space is then used for recognition by eigenface method or any other suitable method.

对于两种方法,我们用了两组重构系数

Figure A03825257001913
其中 代表用照片训练集重构照片的权重, 表示用画像训练集重构的画像的权重。实际上,要比较一个照片和画像,我们也可用它们对应的重构系数
Figure A03825257001916
直接作为特征矢量来进行识别。For both methods, we used two sets of reconstruction coefficients and
Figure A03825257001913
in Represents the weights for reconstructing photos from the photo training set, Indicates the weight of the portrait reconstructed from the portrait training set. In fact, to compare a photo and a portrait, we can also use their corresponding reconstruction coefficients
Figure A03825257001916
and directly as a feature vector for identification.

正如以前所陈述的,对于一个输入的照片,它在照片训练集中的重构系数矢量为 c → p = V p Λ p - 1 2 b → p , 其中

Figure A03825257001919
是照片在照片特征空间中的投射加权矢量。类似地,对于一个输入的画像,它在画像训练集中的重构系数矢量为 c → s = V s Λ s - 1 2 b → s , 其中
Figure A03825257001921
是画像特征空间中的输入画像的投影加权矢量。如果我们用
Figure A03825257001922
Figure A03825257001923
直接比较照片与画像,它识别距离被定义为As stated before, for an input photo, its reconstruction coefficient vector in the photo training set is c &Right Arrow; p = V p Λ p - 1 2 b &Right Arrow; p , in
Figure A03825257001919
is the projection weight vector of the photo in the photo feature space. Similarly, for an input portrait, its reconstruction coefficient vector in the portrait training set is c &Right Arrow; the s = V the s Λ the s - 1 2 b &Right Arrow; the s , in
Figure A03825257001921
is the projection weight vector of the input image in the image feature space. If we use
Figure A03825257001922
and
Figure A03825257001923
To directly compare photos with portraits, it recognizes that the distance is defined as

dd 11 == || || cc →&Right Arrow; pp -- cc →&Right Arrow; sthe s || || -- -- -- (( 99 ))

如果我们先为一个照片生成一个伪画像,再计算它们在画像特征空间的距离,这种距离则为 d 2 = | | b → r - b → s | | , 其中 是被投射到画像特征空间的伪画像的加权矢量,

Figure A0382525700201
是投射到画像特征空间的真正画像的加权矢量。因为 b → r = U s T S → r , U s = A s V s Λ s - 1 2 , S → r = A s c → p , 我们计算
Figure A0382525700205
为,If we first generate a pseudo-portrait for a photo, and then calculate their distance in the portrait feature space, this distance is d 2 = | | b &Right Arrow; r - b &Right Arrow; the s | | , in is the weighted vector of the pseudo-portrait projected into the portrait feature space,
Figure A0382525700201
is the weighted vector of the true portrait projected into the portrait feature space. because b &Right Arrow; r = u the s T S &Right Arrow; r , u the s = A the s V the s Λ the s - 1 2 , S &Right Arrow; r = A the s c &Right Arrow; p , we calculate
Figure A0382525700205
for,

bb →&Right Arrow; rr == ΛΛ sthe s -- 11 22 VV sthe s TT AA sthe s TT AA sthe s cc →&Right Arrow; pp -- -- -- (( 1010 ))

如果 V s T ( A s T A s ) V s = Λ s , 我们得到,if V the s T ( A the s T A the s ) V the s = Λ the s , we got,

bb →&Right Arrow; rr == ΛΛ sthe s 11 22 VV sthe s TT cc →&Right Arrow; pp -- -- -- (( 1111 ))

我们用公式 c → s = V s Λ s - 1 2 b → s 得到 b → s = Λ s 1 2 V s T c → s . 最后,距离d2为,We use the formula c &Right Arrow; the s = V the s Λ the s - 1 2 b &Right Arrow; the s get b &Right Arrow; the s = Λ the s 1 2 V the s T c &Right Arrow; the s . Finally, the distance d2 is,

dd 22 == || || bb →&Right Arrow; rr -- bb →&Right Arrow; sthe s || || == || || ΛΛ sthe s 11 // 22 VV sthe s TT cc →&Right Arrow; pp -- ΛΛ sthe s 11 // 22 VV sthe s TT cc →&Right Arrow; sthe s || || == || || ΛΛ sthe s 11 // 22 VV sthe s TT (( cc →&Right Arrow; pp -- cc →&Right Arrow; sthe s )) || || -- -- -- (( 1212 ))

相反,如果我们先为一个画像生成一个伪照片,再计算它在照片特征空间的距离,这样的距离d3可由下式计算On the contrary, if we first generate a fake photo for a portrait, and then calculate its distance in the photo feature space, such a distance d 3 can be calculated by the following formula

dd 33 == || || ΛΛ PP 11 // 22 VV PP TT (( cc →&Right Arrow; PP -- cc →&Right Arrow; sthe s )) || || -- -- -- (( 1313 ))

在三种情况下识别的距离是不同的,它们的性能将在后面的试验中给予比较。The recognition distances are different in the three cases, and their performances will be compared in later experiments.

对于那些熟悉本技术的人来说,本方法可用来从一个画像集中挑选与照片PK匹配的画像。这里,我们还有其他两种选择:For those familiar with the art, this method can be used to select portraits from a set of portraits that match the photo PK. Here, we have two other options:

a.把画像集中的全部画像转换成伪照片,然后与照片Pk比较。通过比较bp和br来完成比较,其中bp=Pk在Up中的投影系数,br=每个生成的伪照片在U谱中的投影系数,距离公式现在可重写为 d 4 = | | Λ P 1 / 2 V P T ( c P - c S ) | | ; a. Convert all the portraits in the portrait collection into pseudo-photos, and then compare with the photo P k . The comparison is done by comparing b p and b r , where b p = the projection coefficient of P k in Up, b r = the projection coefficient of each generated pseudophoto in U spectrum, the distance formula can now be rewritten as d 4 = | | Λ P 1 / 2 V P T ( c P - c S ) | | ;

b.把照片Pk转换成伪画像Sk,然后与全部画像图库中的画像比较。通过比较bs和br来完成比较,其中bs=在画像图库中每个画像在Us中的投影系数,br=伪画像Sk在Us中的投影系数。距离公式现在可写为 d 5 = | | Λ S 1 / 2 V S T ( c S - c p ) | | . b. Convert the photo P k into a fake portrait S k , and then compare it with the portraits in the all portrait library. The comparison is done by comparing b s and b r , where b s = projection coefficient of each portrait in Us in the portrait library, b r = projection coefficient of pseudo-portrait S k in Us. The distance formula can now be written as d 5 = | | Λ S 1 / 2 V S T ( c S - c p ) | | .

验证verify

为了证明新算法的有效性,我们做一组实验与传统的几何特征法及特征脸法比较。我们建立一个有188对照片及对应画像的数据库,它们分别来自于188个不同的人,其中88对照片-画像被用作训练数据,另外100对照片-画像用于试验。In order to prove the effectiveness of the new algorithm, we do a set of experiments to compare it with the traditional geometric feature method and eigenface method. We build a database with 188 pairs of photos and corresponding portraits, which come from 188 different people, of which 88 pairs of photo-portraits are used as training data, and the other 100 pairs of photo-portraits are used for experiments.

本实验采用FERET中的识别协议[6]。用于实验的照片图库集由100张人脸照片组成。查询集由100张人脸画像组成。累积匹配率用来评估运算结果。它检测“正确答案在前n个匹配”中的百分比,n被称为rank。This experiment adopts the recognition protocol in FERET [6]. The photo gallery set used for experiments consists of 100 face photos. The query set consists of 100 face portraits. The cumulative matching rate is used to evaluate the operation results. It detects the percentage of "correct answers in the first n matches", n is called rank.

A.与传统方法的比较A. Comparison with traditional methods

表1显示了用三种方法得出的前十个积累匹配率。Table 1 shows the top ten cumulative matching rates obtained with the three methods.

                                 表1.三种方法的积累匹配率   Rank   1   2   3   4   5   6   7   8   9   10   几何法   30   37   45   48   53   59   62   66   67   70   特征脸法   31   43   48   55   61   63   65   65   67   67   画像转换法   71   78   81   84   88   90   94   94   95   96 Table 1. Cumulative matching rates of the three methods Rank 1 2 3 4 5 6 7 8 9 10 Geometry 30 37 45 48 53 59 62 66 67 70 Eigenface method 31 43 48 55 61 63 65 65 67 67 Image Transformation 71 78 81 84 88 90 94 94 95 96

几何法及特征脸法的实验结果不理想。在第一匹配率中仅有30%的精确性。第十累积匹配率为70%。因为照片与画像的巨大差异可以预期到特征脸法很差的实验结果。从几何特征法的实验结果我们可以得出照片与画像相似并不仅仅由于人脸的几何相似性。同漫画一样,画像通常夸大人脸器官的尺寸。如果某人的鼻子大于平均尺寸,那么漫画会画出大于平均尺寸的鼻子。相反,如果某人的鼻子小于正常尺寸,他的鼻子就会被进一步缩小,从而达到夸张效果。The experimental results of the geometric method and the eigenface method are not satisfactory. There is only 30% accuracy in the first match rate. The tenth cumulative match rate is 70%. Poor experimental results for eigenface methods can be expected due to the large discrepancy between photos and portraits. From the experimental results of the geometric feature method, we can conclude that the similarity between photos and portraits is not only due to the geometric similarity of faces. Like caricatures, portraits often exaggerate the size of facial organs. If someone has a larger-than-average nose, the manga will draw a larger-than-average nose. Conversely, if someone's nose is smaller than normal, their nose is further reduced for an exaggerated effect.

特征画像转换法大大地提高了识别精确度,第十累积匹配率达到96%。第一累积匹配率精确度也超过了其他两种方法的两倍。清楚地显示了新方法的优越性。此结果也依赖于画像的质量,画像出于同一个高水平画家之手可提高精确度。如图1所示,不是所有的画像与照片都很相似,图1的第一行画像与他们的对应照片很相像,但第二行就有很大差别了。此结果的重要性在于显示了新方法大大优于传统人脸识别方法。The feature image conversion method greatly improves the recognition accuracy, and the tenth cumulative matching rate reaches 96%. The accuracy of the first cumulative matching rate is also more than twice that of the other two methods. The superiority of the new method is clearly shown. The result is also dependent on the quality of the portrait, the accuracy of which is enhanced when the portrait is in the same hand as a highly skilled artist. As shown in Figure 1, not all portraits are very similar to photos. The first row of portraits in Figure 1 is very similar to their corresponding photos, but the second row is very different. The significance of this result is that it shows that the new method greatly outperforms traditional face recognition methods.

B.三种距离测量的比较B. Comparison of Three Distance Measures

这部分,我们用一组实验比较以前描述的三个距离测量d1,d2,d3。这里采用与上面相同的数据集。实验结果见表2。In this section, we use a set of experiments to compare the three previously described distance measures d1, d2, d3. The same dataset as above is used here. The experimental results are shown in Table 2.

                            表2.用三种不同距离得出的累积匹配率   rank   1   2   3   4   5   6   7   8   9   10   d1   20   49   59   65   69   73   75   76   81   82   d2   71   78   81   84   88   90   94   94   95   96   d3   57   70   77   79   83   84   85   86   87   88 Table 2. Cumulative matching rates obtained with three different distances rank 1 2 3 4 5 6 7 8 9 10 d 1 20 49 59 65 69 73 75 76 81 82 d 2 71 78 81 84 88 90 94 94 95 96 d 3 57 70 77 79 83 84 85 86 87 88

从试验结果我们看到,在三种距离中 d 1 = | | c → p - c → s | | 效果最差。这并不奇怪,因为

Figure A0382525700222
分别代表了投影到以训练照片和画像为基准的非正交空间的系数,所以不能正确地反应人脸图像间的距离。d2和d3是从正交特征空间算出的距离,所以给出了更好的结果。一个有趣的结果是,d2始终好于d3。这看上去好像画像特征空间比照片特征空间能更好地表现不同人脸的差异。这可能是因为画家在作画中倾向于扑捉和强调人脸明显的特征而使其更易被区分。上述试验看上去证实了这点,因为 被映射到画像特征空间比被映射到照片特征空间有更好的识别结果。From the experimental results, we can see that among the three distances d 1 = | | c &Right Arrow; p - c &Right Arrow; the s | | The worst. This is not surprising, because
Figure A0382525700222
and Represent the coefficients projected to the non-orthogonal space based on the training photos and portraits, so they cannot correctly reflect the distance between face images. d 2 and d 3 are distances computed from orthogonal feature spaces, so give better results. An interesting result is that d2 is consistently better than d3. It seems that the portrait feature space can better represent the differences between different faces than the photo feature space. This may be because the painter tends to capture and emphasize the obvious features of the human face in the painting, making it easier to distinguish. The above experiments seem to confirm this, because Being mapped to the image feature space has better recognition results than being mapped to the photo feature space.

d2有较好的结果可以有另一种解释。为了计算d2照片要被转换为伪画像,而计算d3,画像必须被转换为伪照片。一般来说,压缩信息要比放大信息更稳定。因为照片含有比画像更丰富的信息,所以转换照片到画像更容易。举个极端的例子,假设画像仅包含人脸特征的简单轮廓,很容易从人脸照片画出该轮廓,但很难从简单的线条中重构出照片。因此,对d2的计算,得出更好的结果是因为照片能更稳定地转换为画像。The better result for d 2 could have another explanation. To calculate d 2 the photo is converted into a pseudo-portrait, and to calculate d 3 the portrait has to be converted into a pseudo-photo. In general, compressing information is more stable than amplifying it. Because photos contain richer information than portraits, converting photos to portraits is easier. As an extreme example, suppose a portrait contains only a simple outline of facial features, which is easy to draw from a photo of a face, but difficult to reconstruct a photo from simple lines. Therefore, the calculation of d2 gives better results because the photo can be converted into a portrait more stably.

C.与人肉眼识别的比较C. Comparison with human naked eye recognition

下面用两个实验来比较本发明的新方法和人眼对画像的识别能力。这种比较很重要,因为在公安司法中,通常是通过将嫌疑犯的画像在大众媒体中广泛散播。以期望人们看到画像后能辨认出真人。如果能证实计算机的自动识别能力与人眼识别画像能力相匹敌,我们就可以用计算机用画像在大型照片数据库中进行系统的大面积检索。Compare the new method of the present invention and the human eye's recognition ability to portraits with two experiments below. This comparison is important because in public security justice, the portrait of the suspect is usually widely disseminated in the mass media. It is expected that people will recognize the real person after seeing the portrait. If it can be proved that the computer's automatic recognition ability is comparable to the human eye's ability to recognize portraits, we can use computers to search large-scale systematically with portraits in large photo databases.

在第一个实验中,将一张画像给一个被测试者看一段时间,然后在开始看照片前拿走画像。被测试者尽量记住画像,在没有画像的情况下,在照片数据库中搜索。被测试人可以从全部照片中选出10张与画像相似的照片。然后根据与画像的相似度排列选出的照片。此方法接近现实情况,因为人们只是在电视或报纸上短暂地看到嫌疑犯的画像,然后必须根据记忆在现实生活中找到与画像相似的人。In the first experiment, a subject was shown a portrait for a period of time and then removed before starting to look at the photograph. The test subjects tried to remember the portrait, and searched the photo database when there was no portrait. The subject can select 10 photos similar to the portrait from all the photos. The selected photos are then ranked according to their similarity to the portrait. This method is close to real-life situations, because people only briefly see the portrait of the suspect on TV or in the newspaper, and then must find people similar to the portrait in real life based on memory.

第二个实验,我们允许被测试者在搜索照片图库时看画像,这个结果是作为与自动识别系统比较的基准。两个试验的结果列在图4中。第一个实验的人眼识别结果比计算机的识别结果低得多。这不仅因为照片与画像的不同,也是由于很难精确地记住画像而导致记忆的失真。实际上,人们很容易区分熟悉的人脸,比如亲属或著名的公众人物,但却不容易区分陌生人。不把画像和照片放在一起,人们很难识别二者。In the second experiment, we allowed the subjects to look at the portraits while searching the photo library, and this result was used as a benchmark for comparison with the automatic recognition system. The results of the two experiments are presented in Figure 4. The human eye recognition results of the first experiment were much lower than the computer recognition results. This is not only because of the difference between a photograph and a portrait, but also because it is difficult to remember the portrait accurately, which leads to the distortion of memory. In fact, people can easily distinguish familiar faces, such as relatives or famous public figures, but not strangers. Without putting the portrait and the photograph together, it is difficult for people to recognize the two.

当受测试者在检索数据库时允许对照画像,其精确率上升到73%,与计算机的识别率差不多。然而人类的识别能力不会因rank的增加而增加,而计算机的第十累积匹配率增加到96%。这表明计算机对于画像识别能力至少与人类差不多。因此,我们现在可以像用照片一样用画像在大的数据库中进行自动搜索。在无法得到照片的情况下将这一方法应用于司法部门非常重要。When the test subjects were allowed to compare the portraits when searching the database, the accuracy rate rose to 73%, which is about the same as the recognition rate of the computer. However, the recognition ability of humans does not increase due to the increase of rank, while the computer's tenth cumulative matching rate increases to 96%. This suggests that computers are at least as good at recognizing images as humans. As a result, we can now automate searches in large databases with portraits, just as we do with photos. It is important to apply this method to the judiciary where photographs are not available.

本发明利用照片-画像/画像-照片转换,提出一个新的人脸画像识别算法。照片转换成画像在照片与画像的自动匹配中更加有效。除了提高了识别速度和效率,新方法的识别能力甚至好于人的肉眼。The invention utilizes photo-portrait/portrait-photo conversion to propose a new human face portrait recognition algorithm. The conversion of photos into portraits is more effective in the automatic matching of photos and portraits. In addition to improving the recognition speed and efficiency, the recognition ability of the new method is even better than the human naked eye.

尽管上述讨论只集中在人脸照片-画像/画像-照片识别,但对于熟悉本技术的人很易发现本发明也可也用于其它种类的识别,比如建筑或其他物体。尽管它的主要应用在法律部门,用在其他领域也是可能的。Although the above discussion only focuses on face photo-portrait/portrait-photo recognition, those skilled in the art will easily find that the present invention can also be used for other types of recognition, such as buildings or other objects. Although its main application is in the legal sector, other fields are possible.

在画像识别中利用头发的信息,有时可以提高识别率,但由于头发易变,很多情况下不宜利用。是否利用头发的信息,可由实际情况决定。Using hair information in portrait recognition can sometimes improve the recognition rate, but it is not suitable to use it in many cases because hair is volatile. Whether to use hair information can be determined by the actual situation.

本发明的用途已经通过实例被具体地阐述。很明显,熟练的技术人员可能会对目前的发明做出修整及改编。但应该指出,这些修整及改编也属于本发明的范围内,属于在随后提到的权利要求中。而且本发明的用途不应只被本文解释的实例或图例所限制。The use of the present invention has been specifically illustrated by examples. Obviously, modifications and adaptations to the present invention may be made by those skilled in the art. However, it should be pointed out that these modifications and adaptations also belong to the scope of the present invention, and belong to the claims mentioned later. Also, the use of the present invention should not be limited only by the examples or illustrations explained herein.

Claims (42)

1.一种画像-照片转换方法,该方法是利用一照片集Ap和其对应的画像集As为照片Pk生成一个伪画像Sr,其特征在于:Ap和As分别有M个Pi和Si样本,即Ap=[P1,P2,......,PM],As=[S1,S2,......,SM],照片的特征空间Up由Ap算出,此方法的步骤包括:1. A portrait-photo conversion method, the method is to utilize a photo collection A p and its corresponding portrait collection A s to generate a false portrait S r for the photo P k , characterized in that: A p and A s have M P i and S i samples, that is, A p = [P 1 , P 2 , ..., P M ], A s = [S 1 , S 2 , ..., S M ] , the feature space U p of the photo is calculated by A p , the steps of this method include: a)投影Pk到Up中计算投影系数bp,得到Pk=Upbpa) Projecting P k to U p to calculate the projection coefficient b p to obtain P k = U p b p ; b)利用As和bp生成Sr.b) Use A s and b p to generate S r . 2.如权利要求1中的所述的画像-照片转换方法,其中,进一步包括以下步骤:2. portrait-photo conversion method as described in claim 1, wherein, further comprise the following steps: a)计算 c P = V P Λ P - 1 / 2 b P = [ c P 1 , c P 2 , . . . , c P M ] T , a) calculate c P = V P Λ P - 1 / 2 b P = [ c P 1 , c P 2 , . . . , c P m ] T , 其中CPi=每个照片Pi对图像重构的加权系数,用 P k = A P c P = Σ i = 1 M c P i P i , 重构Pk;:Wherein C Pi = the weighting coefficient of each photo P i to image reconstruction, using P k = A P c P = Σ i = 1 m c P i P i , reconstruct P k ;: Vp=Ap TAp的单位特征向量矩阵;V p = unit eigenvector matrix of A p T A p ; ΛP=Ap TAp的特征值矩阵;Λ P =Eigenvalue matrix of A p T A p ; b)通过公式 S r = A S V P Λ P - 1 / 2 b P = A S c P = Σ i - 1 M c P i S i 得到Srb) via the formula S r = A S V P Λ P - 1 / 2 b P = A S c P = Σ i - 1 m c P i S i Get S r . 3.如权利要求1中的所述的画像-照片转换方法,其中,M≥80。3. The portrait-to-photo conversion method as claimed in claim 1, wherein M≥80. 4.如权利要求1中的所述的画像-照片转换方法,其中,所有画像As由同一个画家准备。4. The portrait-photo conversion method as claimed in claim 1, wherein all the portraits A s are prepared by the same artist. 5.如权利要求1中的所述的画像-照片转换方法,其中,5. portrait-photo conversion method as described in claim 1, wherein, Pi=Qi-mp,其中Qi=Pi的原始照片, P i =Q i -m p , where Q i =P i 's original photo, Si=Ti-ms,其中Ti=Si的原始画像, S i =T i -m s , where T i =the original image of S i , 6.如权利要求5中的所述的画像-照片转换方法,其中,还包括可视的伪画像Tr的生成步骤:Tr=Sr+ms.6. The portrait-photo conversion method as claimed in claim 5, further comprising a step of generating a visible false portrait T r : T r =S r +m s . 7.一种画像-照片转换方法,该方法是利用一个画像集As和对应的照片集Ap为画像Sk生成一个伪照片Pr,的方法,其特征在于:As和Ap分别有M个Si和Pi样本,即As=[S1,S2,......,SM]和Ap=[P1,P2,......,PM],其中画像特征空间Us从As算出,此方法包括以下步骤:7. A portrait-photo conversion method, the method is to utilize a portrait set A s and a corresponding photo set A p to generate a pseudo photo P r for the portrait S k , characterized in that: A s and A p are respectively There are M samples of S i and P i , that is, A s = [S 1 , S 2 , ..., S M ] and A p = [P 1 , P 2 , ..., P M ], wherein the image feature space U s is calculated from A s , this method includes the following steps: a)投影Sk到Us中计算投影系数bs,Sk=Usbsa) Projecting S k to U s to calculate the projection coefficient b s , S k = U s b s ; b)利用Ap和bs生成Prb) Use A p and b s to generate P r . 8.如权利要求7所述的画像-照片转换方法,其中,该方法包括如下步骤:8. portrait-photo conversion method as claimed in claim 7, wherein, the method comprises the steps: a)计算 c S = V S Λ S - 1 / 2 b S = [ c S 1 , c S 2 , . . . , c S M ] T , csi=每个照片Si重构Sk的加权系数,用 S k = A S c S = Σ i = 1 M c S i S i 重构Sk a) calculate c S = V S Λ S - 1 / 2 b S = [ c S 1 , c S 2 , . . . , c S m ] T , c si = the weighting coefficient of reconstructing S k for each photo S i , using S k = A S c S = Σ i = 1 m c S i S i Reconstruct S k Vs=As TAs的单位特征向量矩阵V s = Unit eigenvector matrix of A s T A s Λs=As TAs的特征值矩阵;Λ s = the eigenvalue matrix of A s T A s ; b)通过公式 P r = A P V S Λ S - 1 / 2 b S = A P c S = Σ i = 1 M c S i P i 生成Prb) via the formula P r = A P V S Λ S - 1 / 2 b S = A P c S = Σ i = 1 m c S i P i Generate P r . 9.如权利要求7所述的画像-照片转换方法,其中,M≥80。9. The portrait-to-photo conversion method according to claim 7, wherein M≥80. 10.如权利要求7所述的画像-照片转换方法,其中,所有画像As由同一个画家准备。10. The portrait-photo conversion method as claimed in claim 7, wherein all portraits A s are prepared by the same artist. 11.如权利要求7所述的画像-照片转换方法,其中,11. portrait-photo conversion method as claimed in claim 7, wherein, Pi=Qi-mp,其中Qi=Pi的原始照片, P i =Q i -m p , where Q i =P i 's original photo, Si=Ti-ms,其中Ti=Si的原始画像, S i =T i -m s , where T i =the original image of S i , 12.如权利要求11所述的画像-照片转换方法,其中,该方法还包括可视的伪照片Qr的生成步骤:Qr=Pr+mp12. The portrait-photo conversion method according to claim 11, wherein the method further comprises the step of generating a visible pseudo photo Q r : Q r =P r + mp . 13.一种画像-照片识别方法,该方法是利用照片集Ap和对应的画像集As在一个照片图库中找到与画像Sk最匹配的照片Pk,其特征在于:此照片图库中的每个照片用PGi表示,Ap和As分别有M个Pi和Si样本,即Ap=[P1,P2,......,PM]和As=[S1,S2,......,SM],照片特征空间Up和画像特征空间Us分别从Ap和As算出,此方法包括以下步骤:13. A portrait-photo identification method, the method is to use the photo set A p and the corresponding portrait set A s to find the photo P k that best matches the portrait S k in a photo gallery, characterized in that: in this photo gallery Each photo of is denoted by P Gi , A p and A s have M samples of P i and S i respectively, that is, A p = [P 1 , P 2 ,..., PM ] and A s = [S 1 , S 2 ,..., S M ], photo feature space U p and portrait feature space U s are calculated from A p and A s respectively, this method includes the following steps: --为照片图库中的每个照片PGi生成一个伪画像Sr,通过--Generate a pseudo-portrait S r for each photo P Gi in the photo library, through a)投影PGi到Up中计算投影系数bp,PGi=Upbpa) Projecting P Gi to U p to calculate projection coefficient b p , P Gi = U p b p ; b)利用As和bp生成Srb) generate S r using As and b p ; --通过比较伪画像Sr与Sk来识别对应的最匹配的伪画像SrK,其在照片图库中所对应的照片即为所要找的Pk--By comparing the pseudo-portraits S r and S k to identify the corresponding best-matching pseudo-portrait S rK , the corresponding photo in the photo library is the desired P k . 14.如权利要求13所述的画像-照片识别方法,其中,M≥80。14. The portrait-photograph identification method according to claim 13, wherein M≥80. 15.如权利要求13所述的画像-照片识别方法,其中,所有画像As由同一个画家准备。15. The portrait-photograph identification method as claimed in claim 13, wherein all portraits A s are prepared by the same painter. 16.如权利要求13所述的画像-照片识别方法,其中,Pi=Qi-mp,其中Qi=Pi的原始照片,
Figure A038252570004C1
Si=Ti-ms,其中Ti=Si的原始画像,
Figure A038252570004C2
16. The portrait-photo identification method as claimed in claim 13, wherein, P i =Q i -mp , wherein Q i =the original photo of P i ,
Figure A038252570004C1
S i =T i -m s , where T i =the original image of S i ,
Figure A038252570004C2
P G i = Q G i - m p , 其中 Q G i = P G 的原始照片。 P G i = Q G i - m p , in Q G i = P G of the original photo.
17.如权利要求13所述的画像-照片识别方法,其中,识别最匹配的伪画像SrK是通过:17. portrait-photograph recognition method as claimed in claim 13, wherein, the pseudo-portrait SrK of identifying best match is by: --对于每个伪画像Sr,投影Sr到Us以计算对应的投影系数br-- For each pseudo-portrait S r , project S r to U s to calculate the corresponding projection coefficient b r , Sr=UsbrS r =U s b r ; --投影Sk到Us以计算对应的投影系数bS,Sk=UsbS--Project S k to U s to calculate the corresponding projection coefficient b S , S k = U s b S ; --找到伪画像SrK,使其投影系数br和bs有最小差异,则SrK在照片图库中所对应的照片即为与Sk最匹配的照片Pk--Find the pseudo-portrait S rK so that the projection coefficients b r and b s have the smallest difference, then the photo corresponding to S rK in the photo library is the photo P k that best matches S k . 18.如权利要求13所述的画像-照片识别方法,其中,其中的伪画像Sr是由照片图库中的每个照片PGi生成的,包括以下步骤:18. portrait-photograph identification method as claimed in claim 13, wherein, false portrait S r wherein is generated by each photo P Gi in photo gallery, comprises the following steps: a)计算 c P = V P Λ P - 1 / 2 b P = [ c P 1 , c P 2 , . . . , c P M ] T , c P i = 为重建PGi在照片集Ap中每个照片Pi的加权系数, P G i = A P c P = Σ i = 1 M c P i P i , 其中a) calculate c P = V P Λ P - 1 / 2 b P = [ c P 1 , c P 2 , . . . , c P m ] T , c P i = To reconstruct the weighting coefficient of each photo P i of P Gi in the photo set A p , P G i = A P c P = Σ i = 1 m c P i P i , in Vp=Ap TAp的单位特征向量矩阵V p = Unit eigenvector matrix of A p T A p ΛP=Ap TAp的特征值矩阵;Λ P =Eigenvalue matrix of A p T A p ; b)由 S r = A S V P Λ P - 1 / 2 b P = A S c P = Σ i = 1 M c P i S i 得到Srb) by S r = A S V P Λ P - 1 / 2 b P = A S c P = Σ i = 1 m c P i S i Get S r . 19.如权利要求18所述的画像-照片识别方法,其中,识别最匹配的伪画像SrK的方法是:19. portrait-photograph identification method as claimed in claim 18, wherein, the method for identifying the most matching false portrait S rK is: --投影Sk到Us中,计算投影系数bS,Sk=USbS--Project S k into U s , calculate projection coefficient b S , S k = U S b S ; --计算 c S = V s Λ S - 1 / 2 b S = [ c S 1 , c S 2 , . . . , c S M ] T , c S i = 为重建Sk每个画像Si在画像集As的加权系数, S k = A S c S = Σ i = 1 M c S i S i , --calculate c S = V the s Λ S - 1 / 2 b S = [ c S 1 , c S 2 , . . . , c S m ] T , c S i = To reconstruct the weighting coefficient of each portrait S i of S k in the portrait set A s , S k = A S c S = Σ i = 1 m c S i S i , Vs=As TAs的单位特征向量矩阵V s = Unit eigenvector matrix of A s T A s Λs=As TAs的特征值矩阵;Λ s = the eigenvalue matrix of A s T A s ; --找到与Sk有最小d2值的伪画像SrK,以此识别最匹配的Pk,通过公式--Find the false portrait S rK with the smallest d 2 value with S k to identify the best matching P k , through the formula dd 22 == || || ΛΛ SS 11 // 22 // VV SS TT (( cc PP -- cc SS )) || || .. 20.一种画像-照片识别方法,该方法是利用照片集Ap和与其对应的画像集As,在一个照片图库中找到与画像Sk最匹配的照片Pk,其特征在于:图库中的每个照片用PGi标记,Ap和As分别有M个Pi和Si样本,即Ap=[P1,P2,......,PM]和As=[S1,S2,......,SM],照片特征空间Up和画像特征空间Us分别由Ap和As算出,步骤如下:20. A portrait-photo identification method, the method is to use the photo set A p and the corresponding portrait set A s to find the photo P k that best matches the portrait S k in a photo gallery, characterized in that: Each photo of is labeled with P Gi , A p and A s have M samples of P i and S i respectively, that is, A p = [P 1 , P 2 ,..., PM ] and A s = [S 1 , S 2 ,..., S M ], photo feature space U p and portrait feature space U s are calculated from A p and A s respectively, the steps are as follows: --为Sk生成一个伪照片,通过--Generate a pseudo-photo for S k by a)投影Sk到Us中,计算投影系数bs,Sk=Usbsa) Project S k into U s , calculate the projection coefficient b s , S k = U s b s , b)利用Ap和bs生成Prb) Utilize A p and b s to generate P r ; --通过把伪照片Pr与照片图库中的照片比较,识别最匹配的Pk- Identify the best match P k by comparing the fake photo P r with the photos in the photo library. 21.如权利要求20中所述的画像-照片识别方法,其中,M≥80。21. The portrait-photograph recognition method as claimed in claim 20, wherein M≥80. 22.如权利要求20中所述的画像-照片识别方法,其中,所有画像As由同一个画家准备。22. The portrait-photograph identification method as claimed in claim 20, wherein all portraits A s are prepared by the same painter. 23.如权利要求20中所述的画像-照片识别方法,其中,Pi=Qi-mp,其中Qi=Pi的原始照片,
Figure A038252570005C6
Si=Ti-ms,其中Ti=Si的原始画像,
23. The portrait-photo identification method as claimed in claim 20, wherein, P i =Q i -mp , wherein Q i =the original photo of P i ,
Figure A038252570005C6
S i =T i -m s , where T i =the original image of S i ,
P G i = - Q G i - m p ,其中 Q G i = P G I 的原始照片。 P G i = - Q G i - m p ,in Q G i = P G I of the original photo.
24.如权利要求20中所述的画像-照片识别方法,其中,识别最匹配的照片Pk通过:24. The portrait-photograph identification method as claimed in claim 20, wherein, identifying the most matching photo Pk by: a)对照片集图中的每个照片PGi,投影PGi到Up中,计算对应的投影系数bp,使 P G i = U p b p ; a) For each photo P Gi in the photo collection, project P Gi into U p , and calculate the corresponding projection coefficient b p , so that P G i = u p b p ; b)投影伪照片Pr到Up中,计算对应的投影系数br,使Pr=Upbrb) Projecting the fake photo P r into U p , and calculating the corresponding projection coefficient b r , so that P r = U p b r ; c)最匹配的Pk即其系数bp和br有最小的差异。c) The best matching P k has the smallest difference between its coefficients b p and b r . 25.如权利要求24中所述的画像-照片识别方法,其中该方法进一步包括以下步骤:25. portrait-photograph identification method as claimed in claim 24, wherein the method further comprises the following steps: a)计算 c S = V S Λ S - 1 / 2 b r = [ c S 1 , c S 2 , . . . , c S M ] T , c S i = 每个画像Si在画像集As的加权系数,来重构Pr P r = A P c s = Σ i = 1 M c S i P i ; a) calculate c S = V S Λ S - 1 / 2 b r = [ c S 1 , c S 2 , . . . , c S m ] T , c S i = The weighting coefficient of each portrait S i in the portrait set A s to reconstruct P r , P r = A P c the s = Σ i = 1 m c S i P i ; Vs=As TAs的单位特征向量矩阵V s = Unit eigenvector matrix of A s T A s Λs=As TAs的特征值矩阵Λ s =Eigenvalue matrix of A s T A s b)为每个在照片图库中的照片PGi,计算 c P = V P Λ P - 1 / 2 b P = [ c P 1 , c P 2 , . . . , c P M ] T c P i = 每个照片Pi在照片集Ap中的加权矢量,来重构PGi P G i = A P c P = Σ i = 1 M c P i P i , b) For each photo P Gi in the photo library, calculate c P = V P Λ P - 1 / 2 b P = [ c P 1 , c P 2 , . . . , c P m ] T c P i = The weighted vector of each photo P i in the photo set A p to reconstruct P Gi , P G i = A P c P = Σ i = 1 m c P i P i , Vp=Ap TAp的单位特征向量矩阵V p = Unit eigenvector matrix of A p T A p ΛP=Ap TAp的特征值矩阵Λ P =The eigenvalue matrix of A p T A p --用最小的d3值识别最匹配的Pk,通过公式--Use the smallest d 3 value to identify the best matching P k , through the formula dd 33 == || || ΛΛ PP -- 11 // 22 VV PP TT (( cc PP -- cc sthe s )) || || .. 26.一种画像-照片识别方法,该方法是利用照片集Ap和与其对应的画像集As在一个画像图库中找到与照片Pk最匹配的画像Sk,图库中的每个画像用SGi标记,Ap和As分别有M个样本Pi和Si,即Ap=[P1,P2,......,PM]和As=[S1,S2,......,SM]。照片特征空间Up和画像特征空间Us分别由Ap和As算出,步骤如下:26. A portrait-photo recognition method, the method is to use the photo set A p and the corresponding portrait set A s to find the portrait S k that best matches the photo P k in a portrait gallery, and each portrait in the gallery is used S Gi mark, A p and A s have M samples P i and S i respectively, that is, A p = [P 1 , P 2 ,..., PM ] and A s = [S 1 , S 2 ,...,S M ]. Photo feature space U p and portrait feature space U s are calculated from A p and A s respectively, the steps are as follows: --为画像图库中为每个画像SGi生成一个伪照片Pr,通过--Generate a pseudo photo P r for each portrait S Gi in the portrait library, through a)投影SGi到Us中,计算投影系数bs,SGi=Usbsa) Project S Gi into U s , and calculate the projection coefficient b s , S Gi = U s b s ; b)利用Ap和bs生成Prb) Utilize A p and b s to generate P r ; --通过比较伪照片Pr与Pk来识别对应的最匹配的伪照片PrK,其在画像图库中所对应的画像即为所要找的Sk--By comparing the fake photos P r and P k to identify the corresponding most matching fake photo P rK , the corresponding portrait in the portrait library is the desired S k . 27.如权利要求26中所述的画像-照片识别方法,其中,M≥80。27. The portrait-photograph recognition method as claimed in claim 26, wherein M≥80. 28.如权利要求26中所述的画像-照片识别方法,其中,所有画像As由同一个画家准备。28. The portrait-photograph identification method as claimed in claim 26, wherein all portraits A s are prepared by the same artist. 29.如权利要求26中所述的画像-照片识别方法,其中29. The portrait-photograph recognition method as claimed in claim 26, wherein Pi=Qi-mp,其中Qi=Pi的原始照片,
Figure A038252570007C1
P i =Q i -m p , where Q i =P i 's original photo,
Figure A038252570007C1
Si=Ti-ms,其中Ti=Si的原始画像, S i =T i -m s , where T i =the original image of S i , S G i = T G i - m s ,其中 T G i = S G i 的原始照片。 S G i = T G i - m the s ,in T G i = S G i of the original photo.
30.如权利要求26中所述的画像-照片识别方法,其中,识别最匹配的伪照片PrK通过:30. The portrait-photograph recognition method as claimed in claim 26, wherein, identifying the most matching pseudo-photograph PrK by: --对于每个伪照片Pr,投影Pr到Up中,计算对应的投影系数br,使Pr=Upbr-- For each fake photo P r , project P r into U p , and calculate the corresponding projection coefficient b r , so that P r = U p b r ; --投影Pk到Up中,计算对应的投影系数bp,使Pk=Upbp--Project P k into U p , and calculate the corresponding projection coefficient b p , so that P k = U p b p ; --找到伪照片PrK,使其投影系数br和bp有最小差异,则PrK在画像图库中所对应的画像即为与Sk--Find the fake photo P rK so that the projection coefficients b r and b p have the smallest difference, then the corresponding portrait of P rK in the portrait library is S k . 31.如权利要求26中所述的画像-照片识别方法,其中,从画像库中为每个画像SGi生成伪照片Pr包括以下步骤:31. The portrait-photograph recognition method as claimed in claim 26, wherein generating a pseudo-photograph Pr for each portrait SGi from the portrait storehouse comprises the following steps: a)计算 c S = V S Λ S - 1 / 2 b S = [ c S 1 , c S 2 , . . . , c S M ] T , c S i = 每个画像Si在画像集As的加权系数,来重构SGi S G i = A S c S = Σ i = 1 M c S i S i , a) calculate c S = V S Λ S - 1 / 2 b S = [ c S 1 , c S 2 , . . . , c S m ] T , c S i = The weighting coefficient of each portrait S i in the portrait set A s to reconstruct S Gi , S G i = A S c S = Σ i = 1 m c S i S i , Vs=As TAs的单位特征向量矩阵V s = Unit eigenvector matrix of A s T A s Λs=As TAs的特征值矩阵Λ s =Eigenvalue matrix of A s T A s b)通过 P r = A P V S Λ S - 1 / 2 b S = A P c S = Σ i = 1 M c S i P i 生成伪照片Prb) pass P r = A P V S Λ S - 1 / 2 b S = A P c S = Σ i = 1 m c S i P i A pseudo photo P r is generated. 32.如权利要求31中所述的画像一照片识别方法,其中,识别最匹配的伪照片Prk,通过:32. The portrait-photograph recognition method as claimed in claim 31 , wherein, to identify the most matching pseudo-photograph P rk , by: --投影Pk到Up计算投影系数bp,Pk=UpbP--Project P k to U p to calculate projection coefficient b p , P k = U p b P ; --计算 c P = V P Λ P - 1 / 2 b P = [ c P 1 , c P 2 , . . . , c P M ] T , c P i = 每个照片Pi在画像集Λp的加权系数, P k = A P c P = Σ i = 1 M c P i P i --calculate c P = V P Λ P - 1 / 2 b P = [ c P 1 , c P 2 , . . . , c P m ] T , c P i = The weighting coefficient of each photo P i in the portrait set Λp, P k = A P c P = Σ i = 1 m c P i P i Vp=Ap TAp的单位特征向量矩阵V p = Unit eigenvector matrix of A p T A p ΛP=Ap TAp的特征值矩阵;Λ P =Eigenvalue matrix of A p T A p ; --用有最小dk值的伪画像Pr识别最匹配的Sk,通过公式--Identify the most matching S k with the pseudo-portrait P r with the smallest d k value, through the formula dd 44 == || || ΛΛ PP 11 // 22 VV PP TT (( cc PP -- cc SS )) || || .. 33.一种画像一照片识别方法,该方法是利用照片集Ap和与其对应的画像集As在一个画像图库中找到与照片Pk最匹配的画像Sr,图库中的每个画像用SGi标记,Ap和As分别有M个Pi和Si样本,即Ap=[P1,P2,......,PM]和As=[S1,S2,......,SM],照片特征空间Up和画像特征空间Us分别由Ap和As算出,步骤如下:33. A portrait-photo recognition method, the method is to use the photo set A p and the corresponding portrait set A s to find the portrait S r that matches the photo P k most in a portrait gallery, and each portrait in the gallery is used S Gi marks, A p and A s have M samples of P i and S i respectively, that is, A p = [P 1 , P 2 ,..., PM ] and A s = [S 1 , S 2 ,..., S M ], the photo feature space U p and the portrait feature space U s are calculated from A p and A s respectively, and the steps are as follows: --为Pk生成一个伪画像Sr,通过--Generate a pseudo-portrait S r for P k , by a)投影Pk到Up中,计算投影系数bp,使得Pk=Upbp,,a) Project P k into U p , and calculate the projection coefficient b p , so that P k = U p b p ,, b)利用As和bp生成Srb) generate S r using As and b p ; --通过把伪画像Sr与的画像图库中画像比较,识别最匹配的Sk--Identify the best matching S k by comparing the fake portrait S r with the portraits in the portrait gallery. 34.如权利要求33中所述的画像一照片识别方法,其中,M≥80。34. The portrait-photograph recognition method as claimed in claim 33, wherein M≥80. 35.如权利要求33中所述的画像一照片识别方法,其中,所有画像As,由同一个画家准备。35. The portrait-photograph recognition method as claimed in claim 33, wherein all the portraits A s are prepared by the same artist. 36.如权利要求33中所述的画像一照片识别方法,其中,36. The portrait-photograph recognition method as claimed in claim 33, wherein, Pi=Qi-mp,其中Qi=Pi的原始照片,
Figure A038252570008C6
P i =Q i -m p , where Q i =P i 's original photo,
Figure A038252570008C6
Si=Ti-ms,其中Ti=Si的原始画像,
Figure A038252570008C7
S i =T i -m s , where T i =the original image of S i ,
Figure A038252570008C7
S G i = T G i - m s ,其中 T G i = S G i 的原始画像。 S G i = T G i - m the s ,in T G i = S G i original portrait.
37.如权利要求33中所述的画像-照片识别方法,其中识别最匹配的画像Sk通过:37. The portrait-photograph recognition method as claimed in claim 33, wherein the most matching portrait Sk is identified by: --对每个画像SGi,投影SGi到Us中,计算对应的投影系数bs,使-- For each portrait S Gi , project S Gi into U s , and calculate the corresponding projection coefficient b s , so that SS GG ii == Uu sthe s bb sthe s ;; --投影伪画像Sr到Us中,计算对应的投影系数br,使Sr=Usbr--Project the false image S r into U s , and calculate the corresponding projection coefficient b r , so that S r = U s b r ; --最匹配的Sk即是有最小系数bs和br差异的画像。--The most matching S k is the profile with the smallest difference between b s and b r . 38.如权利要求37中所述的画像-照片识别方法,其中,该方法进一步包括以下步骤:38. portrait-photograph identification method as claimed in claim 37, wherein, the method further comprises the following steps: a)计算 c P = V P Λ P - 1 / 2 b P = [ c P 1 , c P 2 , . . . , c P M ] T , c P I = 每个照片Pi在照片集Ap的加权系数,来重构Sr S r = A S c P = Σ i = 1 M c P i S i , a) calculate c P = V P Λ P - 1 / 2 b P = [ c P 1 , c P 2 , . . . , c P m ] T , c P I = The weighting coefficient of each photo P i in the photo set A p to reconstruct S r , S r = A S c P = Σ i = 1 m c P i S i , Vp=Ap TAp的单位特征向量矩阵V p = Unit eigenvector matrix of A p T A p ΛP=Ap TAp的特征值矩阵;Λ P =Eigenvalue matrix of A p T A p ; b)对每个在画像图库中的SGi,计算 c S = V S Λ S - 1 / 2 b S = [ c S 1 , c S 2 , . . . , c S M ] T , c S i = 每个画像Si在画像集As的加权系数,重构SGi S G i = A S c S = Σ i = 1 M c S i S i b) For each S Gi in the image library, calculate c S = V S Λ S - 1 / 2 b S = [ c S 1 , c S 2 , . . . , c S m ] T , c S i = The weighting coefficient of each portrait S i in the portrait set A s , reconstruct S Gi , S G i = A S c S = Σ i = 1 m c S i S i Vs=As TAs的单位特征向量矩阵V s = Unit eigenvector matrix of A s T A s Λs=As TAs的特征值矩阵;Λ s = the eigenvalue matrix of A s T A s ; --用有最小d5值识别最匹配的Sk,通过公式--Identify the most matching S k with the smallest d 5 value, through the formula dd 55 == || || ΛΛ SS 11 // 22 VV SS TT (( cc SS -- cc PP )) || || .. 39.一种画像-照片转换系统,该系统是利用一个照片集Ap和与其对应的画像集As为照片Pk生成一个伪画像Sr_,照片集Ap和画像集As分别有M个Pi和Ai样本,即Ap=[P1,P2,......,PM]和As=[S1,S2,......,SM],照片特征空间Up是从Ap算出,利用权利要求1中阐述的算法。39. A portrait-photo conversion system, which uses a photo set A p and its corresponding portrait set A s to generate a pseudo portrait S r_ for a photo P k , and the photo set A p and the portrait set A s have M P i and A i samples, namely A p = [P 1 , P 2 , ..., PM ] and A s = [S 1 , S 2 , ..., SM ] , the photo feature space U p is calculated from A p using the algorithm set forth in claim 1 . 40.一种画像-照片转换计算机系统,该系统是利用一个画像集As和其对应的照片集Ap为画像Sk生成一个伪照片Pr,Ap和As分别有M个Pi和Si样本,即As=[S1,S2,......,SM]和Ap=[P1,P2,......,PM],画像特征空间Us是从As算出,利用权利要求7中阐述的算法。40. A portrait-photo conversion computer system, the system uses a portrait set A s and its corresponding photo set A p to generate a pseudo-photo P r for a portrait S k , A p and A s have M Pi respectively and S i samples, that is, A s = [S 1 , S 2 , ..., S M ] and A p = [P 1 , P 2 , ..., PM ], the image features The space U s is calculated from A s using the algorithm set forth in claim 7 . 41.一种画像-照片识别计算机系统,该系统是利用照片集Ap和与其对应的画像集As在一个照片图库中为画像Sk找最匹配的照片Pk,照片图库中有大量的照片,每个照片用PGi标记,Ap和As分别有M个Pi和Si样本,即Ap=[P1,P2,......,PM]和As=[S1,S2,......,SM],照片特征空间Up和画像特征空间Us分别从Ap和As算出,利用权利要求13和20中阐述的算法。41. A portrait-photo recognition computer system, the system is to use the photo set A p and the corresponding portrait set A s to find the best matching photo P k for the portrait S k in a photo gallery, and there are a large number of photos in the photo gallery Photos, each photo is marked with P Gi , A p and A s have M samples of P i and S i respectively, that is, A p = [P 1 , P 2 ,..., PM ] and A s =[S 1 , S 2 , . . . , S M ], the photo feature space U p and the portrait feature space U s are calculated from A p and A s respectively, using the algorithm set forth in claims 13 and 20. 42.一种画像-照片识别计算机系统,该系统是利用照片集Ap和与其对应的画像集As在一个画像图库中为照片Pk找最匹配的画像Sk,画像图库中有大量的画像,每个画像用SGi标记,Ap和As分别有M个Pi和Si样本,即Ap=[P1,P2,......,PM]和As=[S1,S2,......,SM],照片特征空间Up和画像特征空间Us分别从Ap和As算出,利用权利要求26和33中阐述的算法。42. A computer system for portrait-photo recognition. The system uses the photo set A p and the corresponding portrait set A s to find the most matching portrait S k for the photo P k in a portrait gallery. There are a large number of portraits in the portrait gallery Each portrait is marked with S Gi , A p and A s have M samples of P i and S i respectively, that is, A p = [P 1 , P 2 ,..., PM ] and A s =[S 1 , S 2 , . . . , S M ], the photo feature space U p and the portrait feature space U s are calculated from A p and A s respectively, using the algorithm set forth in claims 26 and 33.
CNB038252570A 2002-09-19 2003-09-19 Portrait-photo recognition Expired - Lifetime CN1327386C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
HK02106852A HK1052831A2 (en) 2002-09-19 2002-09-19 Sketch-photo recognition
HK02106852.2 2002-09-19

Publications (2)

Publication Number Publication Date
CN1701339A true CN1701339A (en) 2005-11-23
CN1327386C CN1327386C (en) 2007-07-18

Family

ID=30130369

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038252570A Expired - Lifetime CN1327386C (en) 2002-09-19 2003-09-19 Portrait-photo recognition

Country Status (4)

Country Link
CN (1) CN1327386C (en)
AU (1) AU2003271508A1 (en)
HK (1) HK1052831A2 (en)
WO (1) WO2004027692A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159064B (en) * 2007-11-29 2010-09-01 腾讯科技(深圳)有限公司 Image generation system and method for generating image
WO2015143580A1 (en) * 2014-03-28 2015-10-01 Huawei Technologies Co., Ltd Method and system for verifying facial data
WO2016026064A1 (en) * 2014-08-20 2016-02-25 Xiaoou Tang A method and a system for estimating facial landmarks for face image
CN106412590A (en) * 2016-11-21 2017-02-15 西安电子科技大学 Image processing method and device
CN112368708A (en) * 2018-07-02 2021-02-12 斯托瓦斯医学研究所 Facial image recognition using pseudo-images

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103034849B (en) * 2012-12-19 2016-01-13 香港应用科技研究院有限公司 Perceptual Bias Level Estimation for Hand-Drawn Sketches in Sketch-to-Photo Matching
US10866984B2 (en) 2015-08-03 2020-12-15 Orand S.A. Sketch-based image searching system using cell-orientation histograms and outline extraction based on medium-level features
CN108805951B (en) * 2018-05-30 2022-07-19 重庆辉烨物联科技有限公司 Projection image processing method, device, terminal and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835616A (en) * 1994-02-18 1998-11-10 University Of Central Florida Face detection using templates
WO1996029674A1 (en) * 1995-03-20 1996-09-26 Lau Technologies Systems and methods for identifying images
AU762625B2 (en) * 1998-12-02 2003-07-03 Victoria University Of Manchester, The Face sub-space determination

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159064B (en) * 2007-11-29 2010-09-01 腾讯科技(深圳)有限公司 Image generation system and method for generating image
WO2015143580A1 (en) * 2014-03-28 2015-10-01 Huawei Technologies Co., Ltd Method and system for verifying facial data
CN106663184A (en) * 2014-03-28 2017-05-10 华为技术有限公司 Method and system for verifying facial data
US10339177B2 (en) 2014-03-28 2019-07-02 Huawei Technologies Co., Ltd. Method and a system for verifying facial data
WO2016026064A1 (en) * 2014-08-20 2016-02-25 Xiaoou Tang A method and a system for estimating facial landmarks for face image
CN107004136A (en) * 2014-08-20 2017-08-01 北京市商汤科技开发有限公司 For the method and system for the face key point for estimating facial image
CN107004136B (en) * 2014-08-20 2018-04-17 北京市商汤科技开发有限公司 Method and system for the face key point for estimating facial image
CN106412590A (en) * 2016-11-21 2017-02-15 西安电子科技大学 Image processing method and device
CN106412590B (en) * 2016-11-21 2019-05-14 西安电子科技大学 A kind of image processing method and device
CN112368708A (en) * 2018-07-02 2021-02-12 斯托瓦斯医学研究所 Facial image recognition using pseudo-images
CN112368708B (en) * 2018-07-02 2024-04-30 斯托瓦斯医学研究所 Facial image recognition using pseudo-images

Also Published As

Publication number Publication date
HK1052831A2 (en) 2003-09-05
WO2004027692A1 (en) 2004-04-01
AU2003271508A1 (en) 2004-04-08
CN1327386C (en) 2007-07-18

Similar Documents

Publication Publication Date Title
CN100342399C (en) Method and apparatus for extracting feature vector used for face recognition and retrieval
CN1278280C (en) Method and device for detecting image copy of contents
US9449432B2 (en) System and method for identifying faces in unconstrained media
CN1302437C (en) Face recognition using kernel fisherfaces
CN1311388C (en) Method and apparatus for representing a group of images
US10146796B2 (en) Method and apparatus for photograph classification and storage
WO2015197029A1 (en) Human face similarity recognition method and system
CN1194320C (en) Illumination- and View-Invariant Face Rendering Method Using Primary and Quadratic Eigenfeatures
CN1700241A (en) Face description, recognition method and device
CN1975759A (en) Human face identifying method based on structural principal element analysis
CN1625741A (en) An electronic filing system searchable by a handwritten search query
WO2017080196A1 (en) Video classification method and device based on human face image
Zhang et al. Cross-compatible embedding and semantic consistent feature construction for sketch re-identification
TW201145181A (en) System and method for example-based face hallucination
CN109918539A (en) A method for mutual retrieval of audio and video based on user click behavior
Rasli et al. Comparative analysis of content based image retrieval techniques using color histogram: a case study of GLCM and K-means clustering
CN1479910A (en) Signal processing method and equipment
CN102750526A (en) Identity verification and recognition method based on face image
CN101048801A (en) Normal information estimator, registration image group forming device, image collator and normal information estimating method
CN1701339A (en) Portrait-photo recognition
WO2020019457A1 (en) User instruction matching method and apparatus, computer device, and storage medium
CN110490133A (en) A method of children's photo being generated by parent's photo based on confrontation network is generated
CN1801180A (en) Identity recognition method based on eyebrow recognition
CN1172260C (en) Cross-authentication method based on fingerprint and voiceprint
CN1866270A (en) Video-Based Facial Recognition Methods

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070718