CN1701339A - Portrait-photo recognition - Google Patents
Portrait-photo recognition Download PDFInfo
- Publication number
- CN1701339A CN1701339A CNA038252570A CN03825257A CN1701339A CN 1701339 A CN1701339 A CN 1701339A CN A038252570 A CNA038252570 A CN A038252570A CN 03825257 A CN03825257 A CN 03825257A CN 1701339 A CN1701339 A CN 1701339A
- Authority
- CN
- China
- Prior art keywords
- portrait
- photo
- calculate
- lambda
- pseudo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 113
- 239000011159 matrix material Substances 0.000 claims description 29
- 238000006243 chemical reaction Methods 0.000 claims description 23
- 239000013598 vector Substances 0.000 claims description 22
- 238000012549 training Methods 0.000 description 20
- 238000002474 experimental method Methods 0.000 description 12
- 230000001186 cumulative effect Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 5
- 210000000887 face Anatomy 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 241000282412 Homo Species 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 241000556720 Manga Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008921 facial expression Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
Abstract
本项发明提供了一种基于画像的新的照片检索系统。用这种新方法可大大缩小照片与画像之间的差异,使两者之间进行有效匹配。实验数据也证实了这一算法的有效性。
This invention provides a new photo retrieval system based on portraits. This new method can greatly reduce the differences between photos and portraits, allowing for effective matching between the two. Experimental data also confirmed the effectiveness of this algorithm.
Description
技术领域technical field
对于司法部门,从警察局的照片数据库里进行人脸照片的自动检索及识别极其重要。它能有效地帮助调查者确认嫌疑犯或缩小嫌疑犯的范围。但在大部分情况下,很难得到嫌疑犯的照片。最好的替代品是基于目击证人的描述绘出的疑犯的画像。For the judiciary, it is extremely important to automatically retrieve and identify face photos from the photo database of the police station. It can effectively help investigators identify suspects or narrow the scope of suspects. But in most cases, it is difficult to get photos of suspects. The best substitute is a portrait of the suspect based on eyewitness accounts.
本发明是关于利用特征脸的方法在照片数据库中寻找与画像相匹配的照片,或在画像数据库中寻找与照片相匹配的画像。The present invention relates to searching for a photo matching a portrait in a photo database, or looking for a portrait matching a photo in a portrait database by using the eigenface method.
背景技术Background technique
近些年,由于司法、视频监控、银行及安全系统等领域中应用需求的增加,自动人脸识别技术吸引了广泛关注。与其他技术(如指纹识别)相比,人脸识别的优点在于用户使用方便,而且成本低。操作者不需经过特殊训练机即可修正人脸识别系统的识别错误。In recent years, automatic face recognition technology has attracted widespread attention due to the increasing demand for applications in the fields of justice, video surveillance, banking and security systems. Compared with other technologies (such as fingerprint recognition), the advantages of face recognition are user-friendly and low cost. The operator can correct the recognition errors of the face recognition system without going through a special training machine.
人脸识别技术的一个重要应用是协助司法部门破案。例如,对警察局照片数据库中的照片进行自动检索可有助于快速缩小嫌疑犯的范围。然而在大部分的情况下,司法部门无法得到嫌疑犯的照片。最好的替代品是根据目击证人的描述绘出的疑犯画像。利用画像在数据库中查寻与之相对应的照片有很大的潜在应用价值,因为它不仅能帮助警员寻找嫌疑犯,而且可以帮助目击者与画家利用从数据库中找回的照片对画像进行修改。An important application of face recognition technology is to assist the judiciary to solve crimes. For example, an automated search of photos in a police department's photo database can help quickly narrow down a suspect. In most cases, however, law enforcement cannot obtain photos of suspects. The best substitute is a portrait of the suspect based on eyewitness accounts. Using portraits to find corresponding photos in the database has great potential application value, because it can not only help police officers find suspects, but also help witnesses and painters use photos retrieved from the database to modify portraits.
尽管对画像-照片检索系统有重要的应用需求,但此领域的研究却很少[1][2]。这可能是因为建立大规模的人脸画像的数据库非常困难。Although there is an important application need for portrait-photo retrieval systems, there is little research in this area [1][2]. This may be because it is very difficult to build a large-scale database of facial portraits.
有两个传统的方法被用于在数据库中进行照片与照片之间的匹配。对这两种方法的描述如下。There are two traditional methods used to do photo-to-photo matching in a database. A description of these two methods follows.
A.几何特征法A. Geometric feature method
几何特征法是最直接的方法。基于几何特征的人脸识别研究大都集中于提取人脸特征,如眼睛、嘴、下巴的相对位置及其他参数。尽管几何特征法很易理解,但它无法包含对人脸进行稳定识别的足够信息。特别是几何特征随着面部表情及比例的变化而改变。即使同一个人的不同照片几何特征变化也可能很大。最近的一篇文章对几何特征法及模板匹配法进行了比较,其结论倾向于模板匹配法[3]。The geometric feature method is the most direct method. Most face recognition researches based on geometric features focus on extracting face features, such as the relative positions of eyes, mouth, and chin, and other parameters. Although the geometric feature method is easy to understand, it cannot contain enough information for stable recognition of faces. In particular, geometric features change with facial expressions and proportions. Even the geometric features of different photos of the same person can vary greatly. A recent article compared the geometric feature method and the template matching method, and the conclusion tended to be the template matching method [3].
B.特征脸法B. Eigenface method
目前对人脸进行识别的最成功的方法之一可能是特征脸法[9]。FERET测试报告经过全面比较各种方法后将其列为最有效的方法之一[6]。类似的结论在Zhang et al[8]中也可见到。尽管特征脸法受照明,表情,及姿势影响,但这些因素对于标准身份照片的识别并不重要。Probably one of the most successful methods for face recognition currently is the eigenface method [9]. The FERET test report listed it as one of the most effective methods after a comprehensive comparison of various methods [6]. Similar conclusions can also be seen in Zhang et al[8]. Although eigenfaces are affected by lighting, expression, and pose, these factors are not important for standard identity photo recognition.
特征脸法用Karhunen-Loeve Transform(KLT)表征人脸及用于识别。一旦从人脸熟数据集协方差矩阵求得一组特征向量,也称特征脸,人脸图像就可以通过对特征脸的适当加权线性组合来重构。对于一个给定的图像,其在特征脸上的加权系数就构成了一组特征矢量。对于一个新的测试图像,它的加权系数可以通过投影这个图像到各个特征脸来计算出来。然后根据比较测试图像的加权系数特征矢量与数据库中各图像的加权系数特征矢量之间的距离来分类。The eigenface method uses Karhunen-Loeve Transform (KLT) to characterize the face and use it for recognition. Once a set of eigenvectors, also called eigenfaces, is obtained from the covariance matrix of the face recognition dataset, the face image can be reconstructed by an appropriately weighted linear combination of the eigenfaces. For a given image, its weighting coefficients on the eigenfaces constitute a set of feature vectors. For a new test image, its weighting coefficients can be calculated by projecting this image onto each eigenface. Then it is classified according to the distance between the weighted coefficient feature vector of the test image and the weighted coefficient feature vector of each image in the database.
尽管Karhunen-Loeve Transform在很多教材及论文中已被阐述,这里我们针对照片的识别再简单讨论一下,特别是。在计算Karhunen-LoeveTransform时,用列向量
表示一个样本人脸图像,其平均脸由公式
W=ApAp T (1)W=A p A p T (1)
其中AP T是AP的转秩。where AP T is the trans-rank of AP .
考虑到照片图像数据量很大,根据目前允许的计算容量直接计算W的特征向量并不现实。通常使用主特征向量评估的方法。因为样本图像数量M相对较少,W的秩为M-1。所以首先计算一个较小矩阵AP TAP的特征向量,Considering the large amount of photo image data, it is not realistic to directly calculate the eigenvector of W according to the currently allowed computing capacity. Usually the method of principal eigenvector evaluation is used. Because the number of sample images M is relatively small, the rank of W is M−1. So first compute the eigenvectors of a smaller matrix A P T A P ,
(Ap TAp)Vp=VpΛp (2)(A p T A p )V p =V p Λ p (2)
其中Vp为单位特征向量矩阵,Λp为对角化特征值矩阵。公式两边均乘以Ap,我们得到Where Vp is the unit eigenvector matrix, and Λ p is the diagonalized eigenvalue matrix. Multiplying both sides of the formula by Ap, we get
(ApAp T)ApVp=ApVpΛp (3)(A p A p T )A p V p =A p V p Λ p (3)
因此协方差矩阵W的标准正交特征向量矩阵,或特征空间Up为Therefore the orthonormal eigenvector matrix of the covariance matrix W, or the eigenspace Up, is
对于一张新的人脸照片
它的投影在特征向量空间中的系数形成矢量
然而,由于人脸照片与画像的巨大差异,直接把特征脸方法应用于基于画像的照片识别可能不会有很好的效果。一般来说,同一个人的照片与画像的不同要大于来自不同人的两张不同照片。However, due to the huge difference between face photos and portraits, directly applying eigenface methods to portrait-based photo recognition may not have good results. In general, a photo of the same person is more different than a portrait than two different photos from different people.
发明内容Contents of the invention
本发明的目的之一是提供一种方法或系统用于解决画像与照片之间进行更有效地匹配的问题。One of the objects of the present invention is to provide a method or system for solving the problem of more effective matching between portraits and photos.
本发明的另一个目的是解决一个或多个以前的方法提出的问题。至少,它能给公众多提供一个有用的选择。Another object of the present invention is to solve one or more of the problems presented by previous approaches. At the very least, it can provide the public with one more useful choice.
为实现上述目的,本发明提供了一种利用照片集Ap及对应的画像集As为照片Pk生成伪画像Sr的方法。Ap和As分别有M个样本Pi与Si,表达为Ap=[P1,P2,......,PM],及As=[S1,S2,......,SM],其中照片的特征空间Up从Ap计算得出。此方法包括以下步骤:To achieve the above object, the present invention provides a method for generating a pseudo-portrait Sr for a photo Pk by using a photo set Ap and a corresponding portrait set As. Ap and As have M samples Pi and Si respectively, expressed as Ap=[P1, P2,..., PM], and As=[S1, S2,..., SM], where The feature space Up of the photo is calculated from Ap. This method includes the following steps:
a)投影Pk到Up计算投影系数bp,得到Pk=Upbp;a) projection Pk to Up calculates projection coefficient bp, obtains Pk=Upbp;
b)利用As及bp生成Sr。b) Using As and bp to generate Sr.
本发明的另一方面是提供一种利用画像集As及对应的照片集Ap为画像Sk生成伪照片Pr的方法。As和Ap分别有M个样本Si与Pi,表达为As=[S1,S2,......,SM]及Ap=[P1,P2,......,PM],其中画像的特征空间Us从As计算得出。此方法包括以下步骤:Another aspect of the present invention is to provide a method for generating a fake photo Pr for a portrait Sk by using the portrait set As and the corresponding photo set Ap. As and Ap have M samples Si and Pi respectively, expressed as As=[S1, S2,...,SM] and Ap=[P1, P2,...,PM], where the image The feature space Us of is computed from As. This method includes the following steps:
a)投影Sk到Us计算出投影系数bs,得到Sk=Usbs;a) projection Sk to Us calculates the projection coefficient bs, and obtains Sk=Usbs;
b)利用Ap及bs生成Pr。b) Use Ap and bs to generate Pr.
本发明的另一方面是利用照片集Ap及对应的画像集As从照片图库中挑出与画像Sk最匹配的照片Pk,该照片图库中有大量的照片,每张照片用PGi标示,Ap和As二者分别有M个样本Pi与Si,表达为Ap=[P1,P2,......,PM]及As=[S1,S2,......,SM],其中照片特征空间Up及画像特征空间Us分别从Ap及As计算得出。此方法包括以下步骤:Another aspect of the present invention is to use the photo collection Ap and the corresponding portrait collection As to pick out the photo Pk that best matches the portrait Sk from the photo gallery. There are a large number of photos in the photo gallery, and each photo is marked with PGi. Ap and Both As have M samples Pi and Si respectively, expressed as Ap=[P1, P2,..., PM] and As=[S1, S2,..., SM], where the photo The feature space Up and the image feature space Us are calculated from Ap and As respectively. This method includes the following steps:
--为照片图库中的每张照片PGi生成伪画像Sr,通过-- Generate a pseudo portrait Sr for each photo PGi in the photo library, through
a)投影PGi到Up计算投影系数bp,得到PGi=Upbp;a) project PGi to Up to calculate the projection coefficient bp, and obtain PGi=Upbp;
b)利用As及bp生成Sr;b) Using As and bp to generate Sr;
--通过比较伪画像Sr与Sk来鉴别相应的最为匹配的伪画像Srk,其在照片图库中对应的照片即为与画像Sk最匹配的照片Pk。--By comparing the pseudo-portraits Sr and Sk to identify the corresponding most matching pseudo-portrait Srk, the corresponding photo in the photo gallery is the photo Pk that best matches the portrait Sk.
本发明的第四个方面是利用照片集Ap及对应的画像集As从照片图库中挑出与画像Sk最匹配的照片Pk,该照片图库中有大量的照片,每张照片用PGi表示,Ap和As分别有M个样本Pi与Si,表达为Ap=[P1,P2,......,PM]及As=[S1,S2,......,SM],照片的特征空间Up及画像的特征空间Us分别从Ap及As计算得出。此方法包括以下步骤:The fourth aspect of the present invention is to use the photo set Ap and the corresponding portrait set As to pick out the photo Pk that best matches the portrait Sk from the photo gallery. There are a large number of photos in the photo gallery, and each photo is represented by PGi, Ap and As respectively have M samples Pi and Si, expressed as Ap=[P1, P2,..., PM] and As=[S1, S2,..., SM], the characteristics of the photo The space Up and the feature space Us of the portrait are calculated from Ap and As, respectively. This method includes the following steps:
--为画像Sk生成一张伪照片Pr,通过--Generate a pseudo photo Pr for the portrait Sk, through
a)投影Sk到Us计算出投影系数bs,得到Sk=Usbs;a) projection Sk to Us calculates the projection coefficient bs, and obtains Sk=Usbs;
b)利用Ap及bs生成Pr;b) Use Ap and bs to generate Pr;
--通过与照片图库中的照片进行比较,找出与伪照片Pr最匹配的照片Pk。-- Find the photo Pk that best matches the fake photo Pr by comparing with the photos in the photo gallery.
本发明的第五个方面是利用照片集Ap及对应的画像集As从画像图库中选出与照片Pk最匹配的画像Sk,该画像图库中有大量的画像,每张画像用SGi表示,Ap和As分别有M个样本Pi与Si,表达为Ap=[P1,P2,......,PM]及As=[S1,S2,......,SM],照片的特征空间Up及画像的特征空间Us分别从Ap及As计算得出。此方法包括以下步骤:The fifth aspect of the present invention is to use the photo collection Ap and the corresponding portrait collection As to select the portrait Sk that best matches the photo Pk from the portrait library. There are a large number of portraits in the portrait gallery, and each portrait is represented by SGi, Ap and As respectively have M samples Pi and Si, expressed as Ap=[P1, P2,..., PM] and As=[S1, S2,..., SM], the characteristics of the photo The space Up and the feature space Us of the portrait are calculated from Ap and As, respectively. This method includes the following steps:
--为画像图库中的每张画像SGi生成伪照片Pr,通过--Generate a pseudo photo Pr for each portrait SGi in the portrait gallery, through
a)投影SGi到Us计算投影系数bs,得到SGi=Usbs;a) project SGi to Us to calculate the projection coefficient bs, and obtain SGi=Usbs;
b)利用Ap及bs生成Pr;b) Use Ap and bs to generate Pr;
--通过比较伪照片Pr与照片Pk来找到相应的最为匹配的伪照片Prk,其在画像图库中对应的画像即为与照片Pk最为匹配的画像Sk。--Find the corresponding best matching fake photo Prk by comparing the fake photo Pr with the photo Pk, and its corresponding portrait in the portrait library is the portrait Sk that best matches the photo Pk.
本发明的第六个方面是利用照片集Ap及对应的画像集As从画像图库中选出与照片Pk最匹配的画像Sk,该画像图库中有大量的画像,每张画像用SGi表示,Ap和As分别有M个样本Pi与Si,表达为Ap=[P1,P2,......,PM]及As=[S1,S2,......,SM],照片的特征空间Up及画像的特征空间Us分别从Ap及As计算得出。此方法包括以下步骤:The sixth aspect of the present invention is to use the photo collection Ap and the corresponding portrait collection As to select the portrait Sk that best matches the photo Pk from the portrait library. There are a large number of portraits in the portrait gallery, and each portrait is represented by SGi, and Ap and As respectively have M samples Pi and Si, expressed as Ap=[P1, P2,..., PM] and As=[S1, S2,..., SM], the characteristics of the photo The space Up and the feature space Us of the portrait are calculated from Ap and As, respectively. This method includes the following steps:
--为照片Pk生成一张伪画像Sr,通过--Generate a pseudo-portrait Sr for the photo Pk, through
a)投影Pk到Up计算投影系数bp,得到Pk=Upbp;a) projection Pk to Up calculates projection coefficient bp, obtains Pk=Upbp;
b)利用As及bp生成Sr;b) Using As and bp to generate Sr;
--通过与画像图库中的画像进行比较,找出与伪画像Sr最匹配的画像Sk。--By comparing with the portraits in the portrait library, find out the portrait Sk that best matches the fake portrait Sr.
此发明包括用计算机系统来实现上述任何一种算法。The invention includes a computer system implementing any of the above algorithms.
本发明的各种选择及变化将在后面部分中描述,以便使熟悉本领域的人可以理解。Various options and variations of the present invention will be described in the following sections so as to be understood by those skilled in the art.
下面结合附图和实施方式,对本发明的技术方案做进一步的详细描述。The technical solutions of the present invention will be further described in detail below in conjunction with the drawings and implementation methods.
附图说明Description of drawings
图1为本发明的人脸照片(上两行)及画像(下两行)实例。Fig. 1 is the face photo (upper two rows) and portrait (lower two rows) example of the present invention.
图2为本发明的照片转换为画像的算法。Fig. 2 is the algorithm for converting photos into portraits according to the present invention.
图3为本发明的照片到画像/画像到照片的转换实例。Fig. 3 is an example of conversion from photo to portrait/portrait to photo according to the present invention.
图4为本发明的不同的自动识别方法与人眼识别的累积匹配率的比较。FIG. 4 is a comparison of cumulative matching rates between different automatic recognition methods of the present invention and human eye recognition.
具体实施方式Detailed ways
下面将用较佳实施方式及其示意图来具体说明本发明的所采用的方法。The method adopted in the present invention will be described in detail below with preferred embodiments and schematic diagrams thereof.
尽管在上述内容中没有具体阐述,但熟悉本领域的技术人员应当知道画像及照片要用扫描仪或数码相机等输入设备进行有一定解像率的数字化处理,而且用于执行程序的计算机系统要有充分的运行能力及存储空间。Although not specifically described in the above content, those skilled in the art should know that portraits and photos need to be digitally processed with a certain resolution with input devices such as scanners or digital cameras, and the computer system used to execute programs requires There is sufficient operating capacity and storage space.
本发明需要一组照片训练集和相应的画像训练集,分别以Ap和As表示。每个Ap和As分别有M个Pi和Si样本,尽管M可以是比1大的任何值,但首选的M应≥80以提高精确性。每个Ap及As用于计算上述提及的相应的特征空间U。The present invention requires a group of photo training sets and corresponding portrait training sets, represented by Ap and As respectively. There are M samples of Pi and Si for each Ap and As, respectively, and although M can be any value greater than 1, the preferred M should be ≥ 80 to improve accuracy. Each of Ap and As is used to calculate the corresponding feature space U mentioned above.
对于每个训练照片图像
都有一个相应的画像
是一个样本画像减去平均画像
后的一个列向量。类似于照片训练集
照片-画像/画像-照片的转换及识别Photo-Portrait/Portrait-Photo Conversion and Recognition
1.照片转换为画像1. Convert photos to portraits
如上所述,用传统的特征脸法,一个人脸图像可由特征脸通过公式
其中Up为照片特征空间,
为Pr在照片特征空间的投影系数,同样,一幅画像可通过公式
为了解决这个问题,本发明发现既然有公式
其中
这表明重构的照片实际上是用M个训练样本图像的最佳线性组合得到的具有最小平均方差的原图像的最佳近似值,在 中的系数描述每个样本图像贡献的比重,由这种方法生成的重构照片显示在图3标有“重构照片”的列中。This shows that the reconstructed photo is actually the best approximation of the original image with the minimum mean variance obtained by the best linear combination of M training sample images, in The coefficients in describe the proportion of the contribution of each sample image, and the reconstructed photos generated by this method are shown in the column labeled "Reconstructed photos" in Fig. 3.
把公式(7)中的每个样本照片图像 代换为对应的画像 如图2所示,我们得到公式,Take each sample photo image in formula (7) replaced by the corresponding image As shown in Figure 2, we get the formula,
因为照片与画像的结构类似,所以重构的画像 应与真的画像相似。如果一个照片样本 对它重构的人脸照片贡献很多,那么它对应的样本画像Si就会对重构画像贡献很多。举个极端的例子,对一个特殊的样本照片 它对重构照片 有一个单位权重为cpk=1,其他所有样本照片的权重为零,即这个重构照片与这个样本照片 完全一样,那么它的重构画像 只需简单的用它的对应画像 取代即可重构。通过这样的代换,一个照片图像即可以转换为伪画像。Because photos have a similar structure to portraits, the reconstructed portraits Should be similar to the real portrait. If a photo sample Contribute a lot to its reconstructed face photo, then its corresponding sample portrait Si will contribute a lot to the reconstructed portrait. As an extreme example, for a particular sample photo It is useful for reconstructing photos There is a unit weight c pk = 1, and the weights of all other sample photos are zero, that is, this reconstructed photo and this sample photo exactly the same, then its reconstructed portrait Just simply use its corresponding portrait Replace to refactor. Through such substitution, a photographic image can be transformed into a pseudo-portrait.
简而言之,照片转换为画像可以通过以下几个步骤进行:In short, converting a photo into a portrait can be done through the following steps:
1.首先计算Ap TAp的特征向量Vp和ΛP,以便计算照片的训练集特征向量矩阵Up;1. First calculate the eigenvectors V p and Λ P of A p T A p in order to calculate the training set eigenvector matrix U p of photos;
2.通过投影
到特征空间Up中,计算其特征脸的加权向量
此外,cp通过计算
3.利用As和cp重构画像Sr。如果cp已通过计算得到,则伪画像Sr可以通过运算公式
前面曾经提到,运算开始前,要从原照片Q中减去从照片训练集中生成的平均照片图像 对于画像训练集,要减去平均画像 这样就需要下面的步骤:As mentioned earlier, before the operation starts, the average photo image generated from the photo training set should be subtracted from the original photo Q For the portrait training set, subtract the average portrait This requires the following steps:
4.从输入的照片图像
中减去平均照片
得到
5.最后,把平均画像
加回以得到最终可见的重构画像
图3显示真正画像与重构画像的比较实例。可显见二者的相似性。Figure 3 shows a comparison example of real and reconstructed portraits. The similarities between the two can be seen.
尽管上述的讨论主要为照片向画像的转换,但很明显,相反的转换可用同样的方法做到。例如,一个伪照片可以通过公式
画像识别portrait recognition
在经过由照片向画像的转换后,从大量的照片中识别画像就变得容易了。After the conversion from photos to portraits, it becomes easy to identify portraits from a large number of photos.
其具体算法总结如下:The specific algorithm is summarized as follows:
1.通过前面描述的由照片到画像的转换算法,用Up为照片图库中的每张照片 算出对映的伪画像 其中Up是从Ap算出的。这里照片图库与照片训练集Ap不一定要一样。当然,如一样可提高算法精度;1. Through the conversion algorithm from photos to portraits described above, use U p for each photo in the photo gallery Calculate the pseudo-portrait of the antipodes where U p is calculated from Ap. Here, the photo library and the photo training set Ap do not have to be the same. Of course, such as the same can improve the accuracy of the algorithm;
2.比较查询画像 与伪画像 用以识别最匹配的伪画像 进而找到照片图库中与 最匹配的照片;2. Compare query portraits with pseudo-portraits to identify the best matching pseudo-portraits and find the photo library with best matching photo;
伪画像与查询画像的比较可以用传统的特征脸法或其他适合的方法实现,例如,弹性图匹配法[4][7];The comparison of pseudo-portraits and query profiles can be achieved by traditional eigenface method or other suitable methods, for example, elastic graph matching method [4][7];
下面以一种传统的人脸比较方法为例进行说明,可以用画像训练样本先计算出特征向量。然后将查询画像 和从照片集里生成的伪画像 投影到画像特征向量上。投影系数被用作最后分类的特征矢量。具体的比较算法总结如下:In the following, a traditional face comparison method is used as an example to illustrate, and the feature vector can be calculated first by using the portrait training samples. Then query the image and pseudo-portraits generated from the photo collection Projected onto the image feature vector. The projection coefficients are used as the feature vectors for the final classification. The specific comparison algorithm is summarized as follows:
1.通过投影查询画像
到画像特征空间Us来计算查询画像
的加权向量
2.计算 和每个 之间的距离, 是从照片图库中每张照片生成的伪画像算出,画像被识别为两个矢量间有最小距离的人脸。2. Calculate and each the distance between, is calculated from a pseudo-portrait generated for each photo in the photo library, and the portrait is recognized as a face with the smallest distance between two vectors.
在上述算法中,基于照片特征空间Up,图库中的照片先被转换成伪画像然后在画像特征空间Us中进行识别。我们也可以反过来,基于画像特征空间把每个查询画像 转换为伪照片 然后通过特征脸法或任何其他适当的方法用照片特征空间进行识别。In the above algorithm, based on the photo feature space Up, the photos in the gallery are first converted into pseudo-portraits Then the recognition is performed in the image feature space Us. We can also do the reverse, based on the portrait feature space to make each query portrait convert to fake photo The photo feature space is then used for recognition by eigenface method or any other suitable method.
对于两种方法,我们用了两组重构系数 和 其中 代表用照片训练集重构照片的权重, 表示用画像训练集重构的画像的权重。实际上,要比较一个照片和画像,我们也可用它们对应的重构系数 和 直接作为特征矢量来进行识别。For both methods, we used two sets of reconstruction coefficients and in Represents the weights for reconstructing photos from the photo training set, Indicates the weight of the portrait reconstructed from the portrait training set. In fact, to compare a photo and a portrait, we can also use their corresponding reconstruction coefficients and directly as a feature vector for identification.
正如以前所陈述的,对于一个输入的照片,它在照片训练集中的重构系数矢量为
如果我们先为一个照片生成一个伪画像,再计算它们在画像特征空间的距离,这种距离则为
如果
我们用公式
相反,如果我们先为一个画像生成一个伪照片,再计算它在照片特征空间的距离,这样的距离d3可由下式计算On the contrary, if we first generate a fake photo for a portrait, and then calculate its distance in the photo feature space, such a distance d 3 can be calculated by the following formula
在三种情况下识别的距离是不同的,它们的性能将在后面的试验中给予比较。The recognition distances are different in the three cases, and their performances will be compared in later experiments.
对于那些熟悉本技术的人来说,本方法可用来从一个画像集中挑选与照片PK匹配的画像。这里,我们还有其他两种选择:For those familiar with the art, this method can be used to select portraits from a set of portraits that match the photo PK. Here, we have two other options:
a.把画像集中的全部画像转换成伪照片,然后与照片Pk比较。通过比较bp和br来完成比较,其中bp=Pk在Up中的投影系数,br=每个生成的伪照片在U谱中的投影系数,距离公式现在可重写为
b.把照片Pk转换成伪画像Sk,然后与全部画像图库中的画像比较。通过比较bs和br来完成比较,其中bs=在画像图库中每个画像在Us中的投影系数,br=伪画像Sk在Us中的投影系数。距离公式现在可写为
验证verify
为了证明新算法的有效性,我们做一组实验与传统的几何特征法及特征脸法比较。我们建立一个有188对照片及对应画像的数据库,它们分别来自于188个不同的人,其中88对照片-画像被用作训练数据,另外100对照片-画像用于试验。In order to prove the effectiveness of the new algorithm, we do a set of experiments to compare it with the traditional geometric feature method and eigenface method. We build a database with 188 pairs of photos and corresponding portraits, which come from 188 different people, of which 88 pairs of photo-portraits are used as training data, and the other 100 pairs of photo-portraits are used for experiments.
本实验采用FERET中的识别协议[6]。用于实验的照片图库集由100张人脸照片组成。查询集由100张人脸画像组成。累积匹配率用来评估运算结果。它检测“正确答案在前n个匹配”中的百分比,n被称为rank。This experiment adopts the recognition protocol in FERET [6]. The photo gallery set used for experiments consists of 100 face photos. The query set consists of 100 face portraits. The cumulative matching rate is used to evaluate the operation results. It detects the percentage of "correct answers in the first n matches", n is called rank.
A.与传统方法的比较A. Comparison with traditional methods
表1显示了用三种方法得出的前十个积累匹配率。Table 1 shows the top ten cumulative matching rates obtained with the three methods.
表1.三种方法的积累匹配率
几何法及特征脸法的实验结果不理想。在第一匹配率中仅有30%的精确性。第十累积匹配率为70%。因为照片与画像的巨大差异可以预期到特征脸法很差的实验结果。从几何特征法的实验结果我们可以得出照片与画像相似并不仅仅由于人脸的几何相似性。同漫画一样,画像通常夸大人脸器官的尺寸。如果某人的鼻子大于平均尺寸,那么漫画会画出大于平均尺寸的鼻子。相反,如果某人的鼻子小于正常尺寸,他的鼻子就会被进一步缩小,从而达到夸张效果。The experimental results of the geometric method and the eigenface method are not satisfactory. There is only 30% accuracy in the first match rate. The tenth cumulative match rate is 70%. Poor experimental results for eigenface methods can be expected due to the large discrepancy between photos and portraits. From the experimental results of the geometric feature method, we can conclude that the similarity between photos and portraits is not only due to the geometric similarity of faces. Like caricatures, portraits often exaggerate the size of facial organs. If someone has a larger-than-average nose, the manga will draw a larger-than-average nose. Conversely, if someone's nose is smaller than normal, their nose is further reduced for an exaggerated effect.
特征画像转换法大大地提高了识别精确度,第十累积匹配率达到96%。第一累积匹配率精确度也超过了其他两种方法的两倍。清楚地显示了新方法的优越性。此结果也依赖于画像的质量,画像出于同一个高水平画家之手可提高精确度。如图1所示,不是所有的画像与照片都很相似,图1的第一行画像与他们的对应照片很相像,但第二行就有很大差别了。此结果的重要性在于显示了新方法大大优于传统人脸识别方法。The feature image conversion method greatly improves the recognition accuracy, and the tenth cumulative matching rate reaches 96%. The accuracy of the first cumulative matching rate is also more than twice that of the other two methods. The superiority of the new method is clearly shown. The result is also dependent on the quality of the portrait, the accuracy of which is enhanced when the portrait is in the same hand as a highly skilled artist. As shown in Figure 1, not all portraits are very similar to photos. The first row of portraits in Figure 1 is very similar to their corresponding photos, but the second row is very different. The significance of this result is that it shows that the new method greatly outperforms traditional face recognition methods.
B.三种距离测量的比较B. Comparison of Three Distance Measures
这部分,我们用一组实验比较以前描述的三个距离测量d1,d2,d3。这里采用与上面相同的数据集。实验结果见表2。In this section, we use a set of experiments to compare the three previously described distance measures d1, d2, d3. The same dataset as above is used here. The experimental results are shown in Table 2.
表2.用三种不同距离得出的累积匹配率
从试验结果我们看到,在三种距离中
d2有较好的结果可以有另一种解释。为了计算d2照片要被转换为伪画像,而计算d3,画像必须被转换为伪照片。一般来说,压缩信息要比放大信息更稳定。因为照片含有比画像更丰富的信息,所以转换照片到画像更容易。举个极端的例子,假设画像仅包含人脸特征的简单轮廓,很容易从人脸照片画出该轮廓,但很难从简单的线条中重构出照片。因此,对d2的计算,得出更好的结果是因为照片能更稳定地转换为画像。The better result for d 2 could have another explanation. To calculate d 2 the photo is converted into a pseudo-portrait, and to calculate d 3 the portrait has to be converted into a pseudo-photo. In general, compressing information is more stable than amplifying it. Because photos contain richer information than portraits, converting photos to portraits is easier. As an extreme example, suppose a portrait contains only a simple outline of facial features, which is easy to draw from a photo of a face, but difficult to reconstruct a photo from simple lines. Therefore, the calculation of d2 gives better results because the photo can be converted into a portrait more stably.
C.与人肉眼识别的比较C. Comparison with human naked eye recognition
下面用两个实验来比较本发明的新方法和人眼对画像的识别能力。这种比较很重要,因为在公安司法中,通常是通过将嫌疑犯的画像在大众媒体中广泛散播。以期望人们看到画像后能辨认出真人。如果能证实计算机的自动识别能力与人眼识别画像能力相匹敌,我们就可以用计算机用画像在大型照片数据库中进行系统的大面积检索。Compare the new method of the present invention and the human eye's recognition ability to portraits with two experiments below. This comparison is important because in public security justice, the portrait of the suspect is usually widely disseminated in the mass media. It is expected that people will recognize the real person after seeing the portrait. If it can be proved that the computer's automatic recognition ability is comparable to the human eye's ability to recognize portraits, we can use computers to search large-scale systematically with portraits in large photo databases.
在第一个实验中,将一张画像给一个被测试者看一段时间,然后在开始看照片前拿走画像。被测试者尽量记住画像,在没有画像的情况下,在照片数据库中搜索。被测试人可以从全部照片中选出10张与画像相似的照片。然后根据与画像的相似度排列选出的照片。此方法接近现实情况,因为人们只是在电视或报纸上短暂地看到嫌疑犯的画像,然后必须根据记忆在现实生活中找到与画像相似的人。In the first experiment, a subject was shown a portrait for a period of time and then removed before starting to look at the photograph. The test subjects tried to remember the portrait, and searched the photo database when there was no portrait. The subject can select 10 photos similar to the portrait from all the photos. The selected photos are then ranked according to their similarity to the portrait. This method is close to real-life situations, because people only briefly see the portrait of the suspect on TV or in the newspaper, and then must find people similar to the portrait in real life based on memory.
第二个实验,我们允许被测试者在搜索照片图库时看画像,这个结果是作为与自动识别系统比较的基准。两个试验的结果列在图4中。第一个实验的人眼识别结果比计算机的识别结果低得多。这不仅因为照片与画像的不同,也是由于很难精确地记住画像而导致记忆的失真。实际上,人们很容易区分熟悉的人脸,比如亲属或著名的公众人物,但却不容易区分陌生人。不把画像和照片放在一起,人们很难识别二者。In the second experiment, we allowed the subjects to look at the portraits while searching the photo library, and this result was used as a benchmark for comparison with the automatic recognition system. The results of the two experiments are presented in Figure 4. The human eye recognition results of the first experiment were much lower than the computer recognition results. This is not only because of the difference between a photograph and a portrait, but also because it is difficult to remember the portrait accurately, which leads to the distortion of memory. In fact, people can easily distinguish familiar faces, such as relatives or famous public figures, but not strangers. Without putting the portrait and the photograph together, it is difficult for people to recognize the two.
当受测试者在检索数据库时允许对照画像,其精确率上升到73%,与计算机的识别率差不多。然而人类的识别能力不会因rank的增加而增加,而计算机的第十累积匹配率增加到96%。这表明计算机对于画像识别能力至少与人类差不多。因此,我们现在可以像用照片一样用画像在大的数据库中进行自动搜索。在无法得到照片的情况下将这一方法应用于司法部门非常重要。When the test subjects were allowed to compare the portraits when searching the database, the accuracy rate rose to 73%, which is about the same as the recognition rate of the computer. However, the recognition ability of humans does not increase due to the increase of rank, while the computer's tenth cumulative matching rate increases to 96%. This suggests that computers are at least as good at recognizing images as humans. As a result, we can now automate searches in large databases with portraits, just as we do with photos. It is important to apply this method to the judiciary where photographs are not available.
本发明利用照片-画像/画像-照片转换,提出一个新的人脸画像识别算法。照片转换成画像在照片与画像的自动匹配中更加有效。除了提高了识别速度和效率,新方法的识别能力甚至好于人的肉眼。The invention utilizes photo-portrait/portrait-photo conversion to propose a new human face portrait recognition algorithm. The conversion of photos into portraits is more effective in the automatic matching of photos and portraits. In addition to improving the recognition speed and efficiency, the recognition ability of the new method is even better than the human naked eye.
尽管上述讨论只集中在人脸照片-画像/画像-照片识别,但对于熟悉本技术的人很易发现本发明也可也用于其它种类的识别,比如建筑或其他物体。尽管它的主要应用在法律部门,用在其他领域也是可能的。Although the above discussion only focuses on face photo-portrait/portrait-photo recognition, those skilled in the art will easily find that the present invention can also be used for other types of recognition, such as buildings or other objects. Although its main application is in the legal sector, other fields are possible.
在画像识别中利用头发的信息,有时可以提高识别率,但由于头发易变,很多情况下不宜利用。是否利用头发的信息,可由实际情况决定。Using hair information in portrait recognition can sometimes improve the recognition rate, but it is not suitable to use it in many cases because hair is volatile. Whether to use hair information can be determined by the actual situation.
本发明的用途已经通过实例被具体地阐述。很明显,熟练的技术人员可能会对目前的发明做出修整及改编。但应该指出,这些修整及改编也属于本发明的范围内,属于在随后提到的权利要求中。而且本发明的用途不应只被本文解释的实例或图例所限制。The use of the present invention has been specifically illustrated by examples. Obviously, modifications and adaptations to the present invention may be made by those skilled in the art. However, it should be pointed out that these modifications and adaptations also belong to the scope of the present invention, and belong to the claims mentioned later. Also, the use of the present invention should not be limited only by the examples or illustrations explained herein.
Claims (42)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HK02106852A HK1052831A2 (en) | 2002-09-19 | 2002-09-19 | Sketch-photo recognition |
HK02106852.2 | 2002-09-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1701339A true CN1701339A (en) | 2005-11-23 |
CN1327386C CN1327386C (en) | 2007-07-18 |
Family
ID=30130369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB038252570A Expired - Lifetime CN1327386C (en) | 2002-09-19 | 2003-09-19 | Portrait-photo recognition |
Country Status (4)
Country | Link |
---|---|
CN (1) | CN1327386C (en) |
AU (1) | AU2003271508A1 (en) |
HK (1) | HK1052831A2 (en) |
WO (1) | WO2004027692A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101159064B (en) * | 2007-11-29 | 2010-09-01 | 腾讯科技(深圳)有限公司 | Image generation system and method for generating image |
WO2015143580A1 (en) * | 2014-03-28 | 2015-10-01 | Huawei Technologies Co., Ltd | Method and system for verifying facial data |
WO2016026064A1 (en) * | 2014-08-20 | 2016-02-25 | Xiaoou Tang | A method and a system for estimating facial landmarks for face image |
CN106412590A (en) * | 2016-11-21 | 2017-02-15 | 西安电子科技大学 | Image processing method and device |
CN112368708A (en) * | 2018-07-02 | 2021-02-12 | 斯托瓦斯医学研究所 | Facial image recognition using pseudo-images |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103034849B (en) * | 2012-12-19 | 2016-01-13 | 香港应用科技研究院有限公司 | Perceptual Bias Level Estimation for Hand-Drawn Sketches in Sketch-to-Photo Matching |
US10866984B2 (en) | 2015-08-03 | 2020-12-15 | Orand S.A. | Sketch-based image searching system using cell-orientation histograms and outline extraction based on medium-level features |
CN108805951B (en) * | 2018-05-30 | 2022-07-19 | 重庆辉烨物联科技有限公司 | Projection image processing method, device, terminal and storage medium |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5835616A (en) * | 1994-02-18 | 1998-11-10 | University Of Central Florida | Face detection using templates |
WO1996029674A1 (en) * | 1995-03-20 | 1996-09-26 | Lau Technologies | Systems and methods for identifying images |
AU762625B2 (en) * | 1998-12-02 | 2003-07-03 | Victoria University Of Manchester, The | Face sub-space determination |
-
2002
- 2002-09-19 HK HK02106852A patent/HK1052831A2/en not_active IP Right Cessation
-
2003
- 2003-09-19 CN CNB038252570A patent/CN1327386C/en not_active Expired - Lifetime
- 2003-09-19 WO PCT/CN2003/000797 patent/WO2004027692A1/en active Application Filing
- 2003-09-19 AU AU2003271508A patent/AU2003271508A1/en not_active Abandoned
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101159064B (en) * | 2007-11-29 | 2010-09-01 | 腾讯科技(深圳)有限公司 | Image generation system and method for generating image |
WO2015143580A1 (en) * | 2014-03-28 | 2015-10-01 | Huawei Technologies Co., Ltd | Method and system for verifying facial data |
CN106663184A (en) * | 2014-03-28 | 2017-05-10 | 华为技术有限公司 | Method and system for verifying facial data |
US10339177B2 (en) | 2014-03-28 | 2019-07-02 | Huawei Technologies Co., Ltd. | Method and a system for verifying facial data |
WO2016026064A1 (en) * | 2014-08-20 | 2016-02-25 | Xiaoou Tang | A method and a system for estimating facial landmarks for face image |
CN107004136A (en) * | 2014-08-20 | 2017-08-01 | 北京市商汤科技开发有限公司 | For the method and system for the face key point for estimating facial image |
CN107004136B (en) * | 2014-08-20 | 2018-04-17 | 北京市商汤科技开发有限公司 | Method and system for the face key point for estimating facial image |
CN106412590A (en) * | 2016-11-21 | 2017-02-15 | 西安电子科技大学 | Image processing method and device |
CN106412590B (en) * | 2016-11-21 | 2019-05-14 | 西安电子科技大学 | A kind of image processing method and device |
CN112368708A (en) * | 2018-07-02 | 2021-02-12 | 斯托瓦斯医学研究所 | Facial image recognition using pseudo-images |
CN112368708B (en) * | 2018-07-02 | 2024-04-30 | 斯托瓦斯医学研究所 | Facial image recognition using pseudo-images |
Also Published As
Publication number | Publication date |
---|---|
HK1052831A2 (en) | 2003-09-05 |
WO2004027692A1 (en) | 2004-04-01 |
AU2003271508A1 (en) | 2004-04-08 |
CN1327386C (en) | 2007-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100342399C (en) | Method and apparatus for extracting feature vector used for face recognition and retrieval | |
CN1278280C (en) | Method and device for detecting image copy of contents | |
US9449432B2 (en) | System and method for identifying faces in unconstrained media | |
CN1302437C (en) | Face recognition using kernel fisherfaces | |
CN1311388C (en) | Method and apparatus for representing a group of images | |
US10146796B2 (en) | Method and apparatus for photograph classification and storage | |
WO2015197029A1 (en) | Human face similarity recognition method and system | |
CN1194320C (en) | Illumination- and View-Invariant Face Rendering Method Using Primary and Quadratic Eigenfeatures | |
CN1700241A (en) | Face description, recognition method and device | |
CN1975759A (en) | Human face identifying method based on structural principal element analysis | |
CN1625741A (en) | An electronic filing system searchable by a handwritten search query | |
WO2017080196A1 (en) | Video classification method and device based on human face image | |
Zhang et al. | Cross-compatible embedding and semantic consistent feature construction for sketch re-identification | |
TW201145181A (en) | System and method for example-based face hallucination | |
CN109918539A (en) | A method for mutual retrieval of audio and video based on user click behavior | |
Rasli et al. | Comparative analysis of content based image retrieval techniques using color histogram: a case study of GLCM and K-means clustering | |
CN1479910A (en) | Signal processing method and equipment | |
CN102750526A (en) | Identity verification and recognition method based on face image | |
CN101048801A (en) | Normal information estimator, registration image group forming device, image collator and normal information estimating method | |
CN1701339A (en) | Portrait-photo recognition | |
WO2020019457A1 (en) | User instruction matching method and apparatus, computer device, and storage medium | |
CN110490133A (en) | A method of children's photo being generated by parent's photo based on confrontation network is generated | |
CN1801180A (en) | Identity recognition method based on eyebrow recognition | |
CN1172260C (en) | Cross-authentication method based on fingerprint and voiceprint | |
CN1866270A (en) | Video-Based Facial Recognition Methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20070718 |