CN1678059A - Single-frequency network signal fedback mean in digital TV ground broadcast transmission - Google Patents

Single-frequency network signal fedback mean in digital TV ground broadcast transmission Download PDF

Info

Publication number
CN1678059A
CN1678059A CN 200410029911 CN200410029911A CN1678059A CN 1678059 A CN1678059 A CN 1678059A CN 200410029911 CN200410029911 CN 200410029911 CN 200410029911 A CN200410029911 A CN 200410029911A CN 1678059 A CN1678059 A CN 1678059A
Authority
CN
China
Prior art keywords
signal
frequency network
transmitter
single frequency
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410029911
Other languages
Chinese (zh)
Other versions
CN100356787C (en
Inventor
张文军
孙军
归琳
张震宁
梁伟强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CNB2004100299113A priority Critical patent/CN100356787C/en
Publication of CN1678059A publication Critical patent/CN1678059A/en
Application granted granted Critical
Publication of CN100356787C publication Critical patent/CN100356787C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

The single frequency network comprises a master transmitter with main modulator and several slave transmitters with slave modulators. The mode for feeding TV program signal is as following: TV program code stream enters into the main modulator, passing through channel coding process and data framing process so as to form digital baseband signal; inserting reference information into the said digital baseband signal in equal interval, and dividing the formed signal into two routes in speed of n times of data rate. One route through optical fiber transport network is directly sent to slave modulators in slave transmitters. Based on distance and requirements, slave modulators delays received signal, inserts pilot frequency, carries OQAM modulation. After frequency conversion, signal is transmitted directly. Through proper processes, another route of signal is transmitted directly. Advantages are: reducing complexity for implementing and debugging modulator, lowering cost.

Description

The signal feed mode of single frequency network in the Digital Television Terrestrial Broadcasting transmission
Technical field
The invention belongs to digital signal transmission field, the signal feed mode of single frequency network in particularly a kind of DTB Digital Terrestrial Broadcasting transmission.
Background technology
The approach that Digital Television is expanded the coverage area, three kinds of selectable modes are arranged at present: difference commentaries on classics mode (Distributetranslator), with frequency pass-through mode (On Channel Repeater OCR) and single frequency network mode (SingleFrequency Network SFN) of greatest concern.
It is the mode of having used conventional analog television signals to expand the coverage area of prolonging that difference is changeed, and is about to be forwarded on another channel promptly so-called transposer station again after program on the channel receives.It is because can't tackle co-channel interference that simulated television adopts difference commentaries on classics mode, therefore bans use of co-channelly in the region of suitable scope, and the channel of having to forward to other gets on.The major defect of difference commentaries on classics mode is that it will waste valuable frequency resource greatly.
About with the frequency pass-through mode, in the simulated television system, can not adopt with transmitting (OCR) mode frequently.The threshold of visibility of the noise/interference of simulated television is about 50 decibels, can introduce serious ghost image and adopt with transmitting frequently on screen, and can't watch.The appearance of digital television techniques has improved anti-complicated multipath interference capability greatly than the simulated television technology, has improved spectrum efficiency, and is convenient to computer more and handles and control.The ability that tackles co-channel interference greatly strengthens.For digital television system, this threshold value generally is lower than 20 decibels.This has 30 decibels advantage compared with the simulated television system, thereby can consider with the frequency pass-through mode.Because very easily cause the transmitter self-excitation with transmitting frequently, and system oscillation, therefore generally can only be used for the benefit point (Gap Filler) that signal covers, promptly a covering is mended in the shadow region that signal is covered.For realizing that successfully the collection point of aerial signal must a little have enough isolation with respect to transmitting again of amplification, to avoid the vibration of system with transmitting frequently.The isolation of physics and the shape of antenna directivity can satisfy this requirement.In actual applications, select suitable geographical position, signal is received, with directional antenna the shadow region is covered again through after certain processing then with directional antenna.
About single frequency network technical approach (SFN), it is only the best practice that digital television techniques is expanded the coverage area.So-called single frequency network i.e. in certain geographic area (economize in the city, perhaps or even a country), and several transmitters are the same wireless signal of emission on same frequency range simultaneously, to realize the reliable covering to this zone.The multiple spot emission is exactly complicated, abominable multipath concerning receiver.There is the ghost image problem in the simulated television system, therefore can only adopt and extremely consume frequency spectrum resource and the complicated multiple frequency network, MFN networking mode (MFN) of frequency spectrum planning, comes signal is isolated on frequency, avoids the area of coverage overlapping.Because the powerful antijamming capability and the support of digital processing ability easily, single frequency network is exactly the very favorable mode that covers that enlarges concerning digital television system, allow that the area of coverage is overlapping will to improve the cliff effect at original covering edge greatly, expand the coverage area.
Digital Television Terrestrial Broadcasting (DTTB--Digital Television Terrestrial Broadcast) mainly contains 3 existing standards at present in the world, i.e. Ou Zhou DVB-T (Digital Video Broadcast--Terrestrial), the ATSC of the U.S. (AdvancedTelevision Systems Committee), and the ISDB-T (International Standard DigitalBroadcast-Terrestrial) of Japan.After after a while preparation, test and adjustment, various countries mainly are that Digital Television Terrestrial Broadcasting has been carried out in big city and surrounding area respectively in some areas.Wherein used the DVB-T standard that also is based on basically of single frequency network.The single frequency network test well afoot of ATSC and ISDB-T.
Single frequency network based on the DVB-T standard, owing to adopted COFDM (Code Orthogonal Frequency DivisionMultiplexing, Coded Orthogonal Frequency Division Multiplexing (COFDM)) technology, itself makes system very high to synchronous requirement for the sensitiveness of frequency departure.At first be the Frequency Synchronization requirement, need a public reference oscillator to drive all cascade generators in each transmitter.Be the time synchronized requirement then, promptly each transmitter must send same signal (symbol/bit) while (ideal).In the DVB-T system, above-mentioned between the transmitter is to realize by single frequency adapter (SFN Adapter) synchronously.By obtaining reference frequency and pps pulse per second signal (1pps) from global position system GPS (Global Positioning System) satellite, the on-site single frequency adapter of program source is at MPEG-2 (Moving Picture Experts Group, motion picture expert group) TS (Transport Stream, the transmission bitstream) adds the MIP bag that comprises time tag in the code stream, by distributed network (DN) program stream is sent to each cell site then, DN can pass through terrestrial links (as optical fiber, microwave etc.) or satellite link is realized.The single-frequency network synchronization system of each cell site from the MIP of code stream bag extraction time label, the local pps pulse per second signal of receiving of contrast, the time-delay adjustment that code stream is added, then code stream being sent into modulator encodes, mapping, modulation etc. transmitted a common time, to realize time synchronized.As Fig. 1.But each launch point deadline is synchronous, is the work of a more complicated, in the site test of the DVB-T in Shanghai single frequency network, has embodied the unsettled result of system works that the synchronous debugging complexity is brought.
The SFN network of a COFDM all needs higher transmitting power for each transmitter among the SFN, and/or more transmitting site.And transmitter must be a frequency lock, and will utilize the external GPS system to provide information that system timing information is adjusted to the SFN performance that obtains the best, and debugging is complicated and extremely unreliable.In the test of the DVB-T in Hong Kong single frequency network, just must face many mountains, area, Hong Kong situation, the GPS timing signal is easily disturbed by natural conditions (thunder, lightning), and can't obtain.Whole mono-frequency network system just can't be worked.
The problem that is faced in view of above-mentioned DVB-T framework single frequency network, we are based on OQAM (Offset QuadratureAmplitude Modulation, quadrature amplitude modulation) ADTB-T of single-carrier modulated technology (Advanced Digital TelevisionBroadcasting-Terrestrial, advanced digital television terrestrial broadcasting system) on the system, C/N (carrier-to-noise ratio) thresholding that has not only made full use of single-carrier technology during the framework single frequency network is lower, has obtained the effect (test report all over the world by the ATSC that is all single-carrier system is verified) that low transmitting power reaches equal covering; And adopt internal system information simply to obtain the synchronous of each transmitter, and avoided jeopardizing the security reliability of system on the one hand with external information, also make the debugging complexity greatly reduce on the other hand.Finally, for the radio and TV operator, reduce transmitting power, reduce and build the tower number, minimizing debugging complexity etc. all is to reduce capital input, saves the measure of human cost.
Summary of the invention
The technical issues that need to address of the present invention, be in order in Digital Television Terrestrial Broadcasting, to enlarge its coverage, introduce serious ghost image at existing poor commentaries on classics mode and with the existing waste frequency resource of frequency pass-through mode and on screen, many defectives such as can't watch, and propose to be overcome with the single frequency network technical scheme, the object of the present invention is to provide the single frequency network signal feed mode in the Digital Television Terrestrial Broadcasting transmission, it is based on the single frequency network feed mode of the ADTB-T system of OQAM modulation technique, be based on digital baseband signal, produce the digital baseband signal of ADTB-T data frame structure by the master transmitter in the single frequency network, and equally spaced insert reference information, be sent to from transmitter with the speed of n haplotype data rate.After receiving above-mentioned data from transmitter, do not rely on external information (comprising satellite GPS), carry out Frequency Synchronization and time synchronized, according to distance between principal and subordinate's transmitter and on-the-spot covering requirement, the system works clock that utilization recovers from data flow postpones the data of each transmitter, covers requirement to satisfy.Data after the delay are being inserted pilot tone in modulator, the OQAM modulation is launched after the up-conversion.The programme signal source of described generation MPEG-2 TS form only has in master transmitter, does not have from transmitter.Described each master and slave modulator postpones before the OQAM modulation carrying out, with the signal time consistency that realizes that each transmitter sends.In this feed mode, equally spaced add reference information, this is spaced apart an integral multiple symbol of 4.This inserts the interval of reference information, can be 64,128,256,512 symbols usually.The reference information that is inserted can comprise address information, pattern recognition information and the error detection bit etc. of specified data flow delay amount.In this feed mode, when MAIN MUX sent data with n data transfer rate doubly, n can be taken as 2
The objective of the invention is to realize by the following technical solutions, single frequency network signal feed mode in a kind of Digital Television Terrestrial Broadcasting transmission, it is characterized in that, single frequency network is furnished with forming from transmitter from modulator by a master transmitter of being furnished with a MAIN MUX and some, the feed mode of programme signal between each transmitter of single frequency network is, in master transmitter, MPEG-2TS program stream after multiplexing enters MAIN MUX, through chnnel coding, data framings etc. are handled the back and are formed digital baseband signal, per 128 symbols insert and comprise data stream address information, the reference information of pattern recognition information and error detection information etc., with the data transfer rate one tunnel of 2 times of symbol rates directly send into optical fiber transmit network be sent to respectively from transmitter from modulator, cover requirement according to master transmitter and this from distance between the transmitter and scene from modulator, with the system works clock that recovers in the data flow, delay time to the received signal, send into then from modulator and carry out pilot tone insertion and OQAM modulation, directly emission after the up-conversion; After delaying time through this locality, another road carries out pilot tone insertion and OQAM modulation, directly emission after the up-conversion again.。
The invention has the beneficial effects as follows that insert and the OQAM modulation function owing to only need finish pilot tone from modulator, its complexity reduces greatly, reduces to debug complexity, thereby has reduced the cost input effectively.
Describe embodiment in detail below in conjunction with accompanying drawing.
Description of drawings
Fig. 1 is based on the single frequency network networking mode and the signal feeding method of the DVB-T system of COFDM
Fig. 2 is based on the ADTB-T digital television ground broadcast transmission system block diagram of OQAM
Fig. 3 is based on the single frequency network networking mode and the signal feeding method of the ADTB-T system of OQAM
Embodiment
Referring to Fig. 1, represent a kind of single frequency network networking mode and signal feeding method of the DVB-T system based on COFDM, the single frequency network networking mode of system and the schematic diagram of signal feeding method; Represent the described ADTB-T digital television ground broadcast transmission system block diagram of patent of the present invention referring to Fig. 2 based on OQAM; Referring to Fig. 3, in master transmitter, the MPEG-2TS program stream after multiplexing enters MAIN MUX, through chnnel coding, sign map, synchronizing signal is inserted, and reaches processing back formation digital baseband signals such as data framing, and behind the equally spaced insertion reference information, on the one hand with the speed that is higher than data transfer rate directly send into optical fiber transmit network be sent to respectively from transmitter from modulator, also can insert OQAM modulation, directly emission after the up-conversion more on the other hand through carrying out pilot tone after the time-delay of local time-delay mechanism.
Respectively receive master transmitter by the digital baseband signal that optical fiber sends, send into from modulator from transmitter.
From modulator the digital baseband signal that receives is handled, recovered data clock wherein, this data clock is carried out some frequency lockings handle the back as work clock from modulator.Transmit time-delay according to master transmitter and this from the optical fiber between the transmitter from modulator, and for satisfying the delay compensation that the covering requirement is set, utilize above-mentioned work clock that obtains and local Buffer Pool to delay time to the received signal, send into then from modulator and carry out the pilot tone insertion, the OQAM modulation, directly emission after the up-conversion.

Claims (7)

1. single frequency network signal feed mode during a Digital Television Terrestrial Broadcasting is transmitted, it is characterized in that, single frequency network is furnished with forming from transmitter from modulator by a master transmitter of being furnished with a MAIN MUX and some, the feed mode of programme signal between each transmitter of single frequency network is, in master transmitter, MPEG-2 TS program stream after multiplexing enters MAIN MUX, handle the digital baseband signal that the back forms through chnnel coding and data framing etc., after equally spaced adding reference information, with n data transfer rate one tunnel doubly directly send into optical fiber transmit network be sent to respectively from transmitter from modulator, cover requirement according to master transmitter and this from distance between the transmitter and scene from modulator, with the system works clock that recovers in the data flow, delay time to the received signal, send into then from modulator and insert pilot tone, carry out the OQAM modulation, directly emission after the up-conversion; Another road is inserted pilot tone and is carried out the OQAM modulation through local time-delay back, directly emission after the up-conversion again.
2. the signal feed mode of single frequency network according to claim 1 is characterized in that, the programme signal source of described generation MPEG-2 TS form only has in master transmitter, does not have from transmitter.
3. the signal feed mode of single frequency network according to claim 1 is characterized in that, described each master and slave modulator is inserting pilot tone and carrying out postponing before the OQAM modulation, with the signal time consistency that realizes that each transmitter sends.
4. the signal feed mode of single frequency network according to claim 1 is characterized in that, equally spaced adds reference information, and this is spaced apart an integral multiple symbol of 4.
5. according to the signal feed mode of claim 1 and 4 described single frequency network, it is characterized in that the interval of the reference information that inserts can be 64,128,256,512 symbols usually.
6. the signal feed mode of single frequency network according to claim 1 is characterized in that, the reference information of insertion can comprise address information, pattern recognition information and the error detection bit of specified data flow delay amount.
7. the signal feed mode of single frequency network according to claim 1 is characterized in that, when MAIN MUX sent data with n data transfer rate doubly, n can be taken as 2.
CNB2004100299113A 2004-03-29 2004-03-29 Single-frequency network signal fedback mean in digital TV ground broadcast transmission Expired - Fee Related CN100356787C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100299113A CN100356787C (en) 2004-03-29 2004-03-29 Single-frequency network signal fedback mean in digital TV ground broadcast transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100299113A CN100356787C (en) 2004-03-29 2004-03-29 Single-frequency network signal fedback mean in digital TV ground broadcast transmission

Publications (2)

Publication Number Publication Date
CN1678059A true CN1678059A (en) 2005-10-05
CN100356787C CN100356787C (en) 2007-12-19

Family

ID=35050330

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100299113A Expired - Fee Related CN100356787C (en) 2004-03-29 2004-03-29 Single-frequency network signal fedback mean in digital TV ground broadcast transmission

Country Status (1)

Country Link
CN (1) CN100356787C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010031347A1 (en) * 2008-09-18 2010-03-25 华为技术有限公司 Method, apparatus and system for configuring resource in multicast broadcast single frequency network
CN101076145B (en) * 2007-06-29 2012-04-18 北京创毅视讯科技有限公司 Mobile multi-medium broadcasting system, mono-frequency network system and synchronizing system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534938A (en) * 1991-07-18 1996-07-09 Citta; Richard W. Digital TV system using segment and field sync signals
US5799037A (en) * 1996-02-16 1998-08-25 David Sarnoff Research Center Inc. Receiver capable of demodulating multiple digital modulation formats
CN1187921C (en) * 1999-02-25 2005-02-02 索尼公司 Digital broadcasting apparatus
JP4138141B2 (en) * 1999-03-18 2008-08-20 株式会社東芝 OFDM signal transmitter
CN1407802A (en) * 2001-08-23 2003-04-02 浙江大学 Dada mapping method in digital TV and broadcasting transmission
KR100906339B1 (en) * 2002-06-14 2009-07-06 삼성전자주식회사 Single Carrier Transmitter capable of inserting field-synch. of variable symbols into a field

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076145B (en) * 2007-06-29 2012-04-18 北京创毅视讯科技有限公司 Mobile multi-medium broadcasting system, mono-frequency network system and synchronizing system
WO2010031347A1 (en) * 2008-09-18 2010-03-25 华为技术有限公司 Method, apparatus and system for configuring resource in multicast broadcast single frequency network
US8599754B2 (en) 2008-09-18 2013-12-03 Huawei Technologies Co., Ltd. Method, device, and system for configuring multicast broadcast single frequency network resources

Also Published As

Publication number Publication date
CN100356787C (en) 2007-12-19

Similar Documents

Publication Publication Date Title
KR100900531B1 (en) System and method for synchronizing a transport stream in a single frequency network
CN1312929C (en) Single-frequency network system of ground digital TV broadcast and its realizing method
US8675691B2 (en) Added information insertion apparatus and method in broadcasting system
US7542511B2 (en) Wireless RF link for uncompressed transmission of HDTV signals
US20090040962A1 (en) Method of generating and demultiplexing an optimized contribution signal, and regionalized data broadcasting system
US8279908B2 (en) Synchronization of separated platforms in an HD radio broadcast single frequency network
KR20120042354A (en) Center district dual mode network synchronization acquisition method and apparatus for satellite communication system
WO2016105922A1 (en) Apparatus and method for distributing content from an hd radio system
JP2015095679A (en) Sfn broadcast system using ip line and broadcast ts transmission method
CN101018085B (en) A method and system for providing the digital multi-media broadcast signal
CN1604646B (en) Method for reducing power consumption of hand-held mobile multimedia telecasting equipment
CN104683993A (en) Multi-domain cooperative communication system of satellites and land
CN101227222B (en) Ground transmitting synchronous system of mobile multimedia broadcasting satellite dispense system an method thereof
CN100356787C (en) Single-frequency network signal fedback mean in digital TV ground broadcast transmission
CN201369798Y (en) Ground digital TV transmitting system
US20080160913A1 (en) Continental Size Single Frequency Network
CN1612555A (en) Modulation apparatus for reducing time delay of on-channel repeater in terrestrial digital TV broadcasting system
US20100329228A1 (en) Digital broadcast retransmission system, digital broadcast retransmission method, packet converting apparatus, and frequency converting apparatus
US20080107099A1 (en) System and method for adapting a transport stream for transmission
CN101562486A (en) Method for adding associated audio frequency signaling to frequency modulation synchronized broadcast
JP2000188584A (en) Broadcast wave relay system, transmission station and relay station used for it
CN101883272B (en) Multi-service adaptation method based on DTMB (Digital Television Terrestrial Multimedia Broadcasting) single-frequency network system and implementation device thereof
CN101442369A (en) Ground forwarding synchronization system and method for mobile multimedia broadcast satellite distribution system
JP2015162848A (en) Digital broadcast transmission system and method thereof and receiver
CN208143229U (en) A kind of terrestrial wireless digital television broadcasting Single Frequency Network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071219

Termination date: 20130329