CN1646939A - 用于采集地震数据的方法和系统 - Google Patents

用于采集地震数据的方法和系统 Download PDF

Info

Publication number
CN1646939A
CN1646939A CNA038090422A CN03809042A CN1646939A CN 1646939 A CN1646939 A CN 1646939A CN A038090422 A CNA038090422 A CN A038090422A CN 03809042 A CN03809042 A CN 03809042A CN 1646939 A CN1646939 A CN 1646939A
Authority
CN
China
Prior art keywords
data
signal
time
expression
collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038090422A
Other languages
English (en)
Other versions
CN1311245C (zh
Inventor
斯科特·K·伯克霍尔德
保罗·D·法夫雷
托德·J·弗克勒
罗伯特·斯图尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ascend Geo LLC
Original Assignee
Ascend Geo LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29254601&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1646939(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ascend Geo LLC filed Critical Ascend Geo LLC
Publication of CN1646939A publication Critical patent/CN1646939A/zh
Application granted granted Critical
Publication of CN1311245C publication Critical patent/CN1311245C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/24Recording seismic data

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Recording Measured Values (AREA)

Abstract

本发明提供了用于采集地震数据的方法和系统,用于收集在不同地理位置上的从地球接收的表示声音信号的数据(304),还用于收集在不同地理位置上的表示环境信号的数据(308)。对于每个地理位置,使依赖环境信号的已知时间与依赖收集的声音信号数据的时间相互关联(320),来定义时间相关的声音信号数据。在不同地理位置收集的声音信号数据与时间相关的声音信号数据同步(324)。

Description

用于采集地震数据的方法和系统
技术领域
本申请主要涉及用于采集地震数据的方法和系统。更具体而言,本申请涉及不需要有线遥测或无线电遥测元件或无线电介入(radio initiation)而采集地震数据的方法和系统。
背景技术
当前,陆上石油或气体钻探地点通过使用反射地震数据产生的立体图像来选择。该图像由使用实时地震X线断层摄影术的数据采集生成。将合成物理冲击波应用到采集地点。这些波以可变速率反射离开岩层并返回表面。地表的地震检波器在采集地点测量和记录地面运动。数据收集中心集中收集来自每个接收机点(一个地震检波器单元或多个地震检波器单元的总响应)的地震响应。通过复杂计算机分析对收集的数据进行还原(reduce,处理),生成地质构造的三维立体图像。
典型的地震采集地点可以包括可以测量8km2的实时接收机展开(spread),多个接收机点位于每隔15~100m的栅格(grid)中。地震接收机试图响应人工爆破或机械源导致的地震事件。因此,该接收机通常被装配成只在大约几秒钟的时间内记录数据。另外,人工爆破的使用限制了接收机的地理分布,因为爆破通常不能在城镇或城市、和其他类似地点进行。
当前使用的地震记录模型的例子包括以下:(1)来自每个接收机信道的地震数据通过导线发送到中心收集单元;(2)来自每个接收机的地震数据通过无线遥测装置发送到中心收集单元;以及(3)当每个单元都被连接到大容量的存储装置(例如硬盘)并通过其进行处理时,来自每个接收机信道的数据都被记录到闪存中并且在随后下载。这些模型的每个都至少有一些缺点,它们共同的一个缺点是需要把专用定时信号传输到收集单元,以便使记录与带有人工产生的地震震动导致的爆炸时间同步。例如,虽然有线遥测是可靠的、快速的,并且能够在记录的几秒钟内检查收集的数据,但是这需要线路的设计和保持,其可能经常被干扰,例如被动物或其他干扰源干扰。无线电遥测消除了保持有线连接的需要,但是需要保持与所有接收机单元的无线电连接和通过狭窄的商业无线带宽进行大量数据传输。无线电遥测也是很慢的和不可靠的。第三种模式消除了有线连接的一些缺点,但是仍需要无线传输状态和专用无线开始时间同步信息(specific radio start-time synchronization information)。
因此,在本领域需要采集地震数据的改进方法和系统。
发明内容
根据本发明的实施例给出了采集地震数据的方法和系统。在不同的实施例中,这些方法和系统允许在一段延长的时间内连续监控声信息,并且允许使用环境信号实现声音数据的同步。这些功能不仅简化了完成当前地震测试的方法,而且允许执行新的地震测试类型,从预先未知发生时间(timing,定时)的地震源中收集信息。
因此在一组实施例中,给出了一种采集地震数据的方法。收集表示在多个不同的地理位置从地球接收的声音信号的数据。也收集表示在多个不同地理位置环境信号的数据。在多个地理位置中的每个位置,使依赖环境信号的已知时间和依赖收集的声音信号数据的时间相互关联,来定义时间相关的声音信号数据。使在多个不同地理位置收集的声音信号数据与时间相关的声音信号数据同步。
在一些实施例中,可以分析同步的声音信号数据来识别地下特征(subterranean feature)。例如,这种分析可以包括从同步的声音信号数据生成声音全息图。在不同的实施例中,在每个不同的地理位置在超过一分钟、超过一小时、超过一天、或超过一周的时间内连续执行对表示声音信号的数据的收集。在一个实施例中,收集的表示环境信号的数据被嵌入收集的从地球接收的表示声音信号的数据中。在一实施例中,根据地球的表面情况,多个不同地理位置可以在不同的深度上。在一个实施例中,环境信号包括电磁广播信号,而在另一个实施例中,它包括时间参考信号。
本发明的方法可以包含在采集地震数据的系统中。分布在多个不同的地理位置的多个收集器适手收集从地球接收的表示声音信号的数据和表示环境信号的数据。与其中包含计算机可读程序的计算机可读存储介质连接的处理器用于使使时间相关性(timedependences)相关联,并且根据以上描述的实施例,通过执行指令使收集的数据同步。
在一些实施例中,收集器可以表现为地震传感数据记录器的形式。地震传感数据记录器可以包括:适于接收来自地震传感器的连续的传感器数据流的信号预处理机;以及适于接收连续的环境无线电信号流的无线电接收机。可以设置模数转换器与信号预处理机通信,并且与无线电接收机通信,适于把传感器数据转换为数字传感器数据流,并把连续的环境无线电信号流转换为数字无线电信号流。与模数转换器通信的处理单元适于接收和处理存储在存储器中的数字无线电信号流和数字传感器数据流。
附图说明
本发明的特征和优点将参考说明书的其它部分和附图进一步说明,其中多个附图中使用的相同的参考标号用来表示相似的组件。在一些情况下,结合参考标号并用连字号表示的子标号用于表示多个相似组件中的一个组件。当说明书中的参考标号不存在子标号时,就意味着该参考标号用于表示所有这样的多个相似组件。
图1A给出了根据本发明的实施例的用于采集地震数据的系统的结构图;
图1B给出了在本发明的一个实施例中的收集单元的另一实现方式的结构图;
图2给出了数据处理计算机(data-reduction computer,又称数据还原计算机)的示意图,利用其实现本发明的方法;
图3给出了根据本发明的实施例阐明采集地震数据的方法的流程图;以及
图4A-4E给出了本发明的实施例中使用的阐明同步技术的方面的示意性仿真声轨迹。
具体实施方式
本发明的实施例涉及采集地震数据的方法和系统。如在此所使用的,“采集”地震数据应当宽泛解释为在地震数据采集过程中所涉及的多个阶段,包括收集、存储、和处理地震数据。
本发明的实施例利用了多个独立的无线地震收集单元。这些独立的收集单元起到数据传感记录器和/或源事件记录器的作用。每个收集单元都随着时间(over time)记录独立的地震数据流,例如,按照位移-时间的形式进行记录。这些收集单元不需要与其它收集单元进行无线连接,而且也不需要与其它收集单元或源开始时间直接同步。另外,这些收集单元不需要主机初始化记录序列。在这些实施例中,消除了连接接收站的遥测电缆的使用可能的。可选地,分配给这些单元的信息可以通过使用物理连接或使用红外线连接用无线网络协议下载,例如无线本地网络协议。
在一些实施例中,每个收集单元都可以包括与现有地震检波器构件连接的轻便的、用电池供电的装置。另外,可以用任意数量的单元与现有记录系统连接来填充没有被覆盖的区域。而且,收集单元可以被设置在用电缆连接的地震检波器很难到达或很难使用无线连接的位置。在确定的实施例中,收集单元可以被配置成在不同时间段上(例如超过一分钟的时间、超过一小时的时间、甚至超过一天的时间)连续记录。在一个特殊的实施例中,收集单元可以连续记录超过一周的时间。在其它的实施例中,收集单元被设置成以预先确定的次数在开、关位置之间转换,或在预定幅度范围内响应地震变化。在任何一种情况下,表示接收的地震声音信号的数据均可被储存在内部存储器中,用于随后的恢复和处理。
收集单元的结构允许它们在探测的地区被随意放置,可以减少称为“采集足迹”的假象,该“采集足迹”出现在多数立体地震数据集中。在高环境噪声或低源点密度的地区把单个位置的收集器移动到任何位置的能力也可以增加接收器点密度和地下覆盖,通常被称为“折叠(fold)”。在被放置后,收集单元的实际位置可以通过收集单元中的全球定位系统(“GPS”)单元测定。这一特征消除了测量员测量每个独立的接收机单元的位置的需要。
收集单元连续记录重要时间段的功能可以增加在可能被收集的数据和可能完成的分析类型方面的灵活性。例如,连续记录允许堆叠许多微弱源点(例如通过小型蓝宝石硅片集成电路和弹性波发生器产生),以便增加反射信号的有效深度和减少不需要的随机地震噪声。从而这一功能增加了这样的更弱源的效用,否则其可能只从邻近的和浅的反射事件中得到有效的数据。同样,如下面进一步解释的,连续记录允许堆叠被动(passive)和/或随机源噪声,其可以被用于收集很难使用爆破的城市或郊区环境中的数据。
图1A示出了本发明的一个实施例中收集单元100的例子。如图1A所示,收集单元100可以与源编码器104连接,其可以是震动源电子装置或与炸药爆破物一起使用的电子装置的一部分、或声音数据收集器108(例如地震检波器、加速计、或类似的设备)。有多个不同类型的地震检波器可以使用。例如,在一个实施例中,使用P型波(P是“primary(最主要)”或“press(压力)”的首字母)收集器,其设置有仅具有用于向上(upward-heading)探测压缩波的垂直元件的串结构(strings);在另一个实施例中,使用S型波(S是“secondary(次要的)”或“shear(剪切力)”的首字母)收集器,其设置有仅具有用于探测横波的水平元件的串结构;在下一个实施例中,使用三组件(three-component)收集器,该组件具有垂直、并行、和交叉线传感元件的串结构。在不同实施例中,收集器可以包括加速计或检漏器。如图1A所示源编码器104和/或声音数据收集器108可以设置在收集单元100的外部,在这种情况下,收集单元的框架可以包括外部接口连接。可选择地,源编码器104和/或声音数据收集器108可以集成在收集单元内部,在下面论述如图1B所示的例子。框架中有多个模块,其中一些可以集成在印刷电路板装置上。例如,印刷电路板装置可以包括信号预处理机112和与接收实时地震数据的输入传感器连接的模数转换器116。该信号预处理机112可以包括放大器、滤波器、和类似的元件来从实时地震数据中放大和/或选择需要的具体数据部分。
另外,收集单元100可以包括无线电接收机120和天线。该无线电接收机120可以如以下所描述的用来作为独立的同步量度器来捕捉环境信号。该环境信号可以是被广播的电磁信号,用于与地震调查无关的目的。例如,该环境信号可以包括以本地商业广播、GPS定时信号、通用同步时间广播信号、或其他环境信号形式出现的邻近AM、FM、短波或其他波长的无线通信的无线电信号。通过计算(考虑)收集单元100的内部时间的变化,环境信号的特征可以用于同步收集单元100。在一些情况下,无线电接收机120可以只用于探测确定的波长,因此收集单元100只限于提供带有具体信号类型的同步信息。在其它实施例中,无线电接收机120是可调谐的,以便其可以被配置成根据无线电接收机120确定的状态类型来识别和收集不同类型的环境信号数据。在无线电接收机120被配置以接收GPS信号的情况下,它也可以被配置起到GPS单元的作用,为收集单元100收集本地信息。
因此,当收集单元100运行并且与声音数据收集器108连接时,声音数据收集器108例如在一个或多个信道上以收集器幅度-时间的形式提供地震数据。来自收集器108的信号通过信号预处理机112进行放大和过滤,然后到达模-数转换器116进行数字化处理。来自无线电接收机120的信号也可以通过模-数转换器116进行数字化,并且在一个实施例中,被嵌入地震数据中。
信号预处理机112、模-数转换器116、和/或无线电接收机120的运行可以用处理单元124进行控制,其可以包括,例如,商业上应用的数字信号处理机(“DSP”)。数字化的地震数据和数字化的无线电信号数据可以用处理单元124进行处理,以及下面所描述的,可能包括它们互相嵌入,并储存在存储装置128(例如闪存、随机存取存储器、硬盘、或类似设备)中。在一个可选择的实施例中,可以用并行数据流把表示环境信号的数据嵌入地震数据中,并且直接把环境信号数据写入存储器。可以用电源132给收集单元100中的多种元件供电,在图中,该电源位于在单元100的外部,但是,可选地,其可以集成在单元100内部。电源132可以包括,例如,太阳能电池、化学电池、或类似物。
图1B给出了在本发明的实施例中收集单元的一个可选择的结构的例子。在这种情况下,收集单元100’被配置为一个分层的或集成的采集系统(acquisition system)。用底座170支撑多种元件,在其结构中不同功能的装置对应不同的层。例如,地震检波器元件166可以设置在一层,采集元件162可以设置在另一层,通信和GPS元件158可以设置在再一层,并且电源组件154可以设置在又一层。在已说明的实施例中,电源组件154被设置为顶层以便于利用太阳能电池。通信和GPS元件158最好被设置在与接收环境信号的天线150容易通信的位置。在一个实施例中,每个收集单元100’都可以设置至少两个天线接收器150,一个用于接收GPS位置和系统定时信号,另一个用于进行内部单元通信。
再次参考图1A,在地震分析中使用的多个收集单元100或100’可以通过数据链路136与数据处理计算机140通信。数据链路136可以包括,例如,无线网络、红外线连接、硬件连接、或类似的连接。图2给出了数据处理计算机140结构的示意图,可用于对从多个收集单元100的处理单元124接收的数据进行分析。图2宽泛地示出了单个系统元件是如何以分离或多个集成方式被应用的。所示的数据处理计算机140包括通过总线226电连接的硬件组件,包括处理器202、输入装置204、输出装置206、存储装置208、计算机可读存储介质读取器210a、通信系统214、处理加速单元216(例如DSP或专用处理机)、和存储器218。计算机可读存储介质读取器210a进一步与计算机可读介质210b连接,该组合广泛地代表远程的、本地的、固定的、和/或可移动的带有存储介质的用于临时和/或更持久地存储计算机可读信息的存储装置。通信系统214可以包括有线、无线、调制解调器和/或其他类型的接口连接,并且保证与数据链路136进行数据交换,用于从多个收集单元100收集待处理的数据。
数据处理计算机140还包括软件,如当前设置在工作存储器220中的软件,包括操作系统224和其他的代码222,例如设计用于执行本发明的方法的程序。对于本领域技术人员来说,显然可以根据具体需要做出各种变化。例如,也可以使用传统硬件和/或在硬件、软件(包括便携式软件,例如Java程序)、或两者中应用的具体元件。另外,可以使用与其他计算装置(例如网络输入/输出装置)的连接。
在本发明的实施例中使用系统采集地震数据的方法用图3的流程图概括。图3中方框中所显示的顺序是示范性的,并不代表需要实现的功能的顺序;在可选择的实施例中,图3中所显示的功能可以用不同的顺序来实现。在方框302,收集开始时间数据,并且随后使用在本方法中以确定所收集到的数据中的哪个是有用的。在方框304,用收集单元100收集声音数据。如果单元100还没有分布在探测地区,这样的收集在通过一个或多个安装者在探测地区分布单元100以后开始。典型地,安装者将记录识别每个所分布的单元100的序列号和所分布的位置。这样的安装可以用具有用于与收集单元100通信的通信接口的手持计算装置协助完成,例如个人数字助手(“PDA”)。当定位收集单元100时,安装者可以在手持计算装置上输入指令,来指示单元100的运行模式,也就是,其是否连续运行,响应于预定变化的信号,当收集到数据时,发送数据或者在本地储存数据,响应于环境数据的类型,以进行采集和记录、以类似的操作。在一些实施例中,安装者可以记录关于每个收集单元100的附加信息,例如当它被定位时的单元100的状态。
使用分布在整个探测地区的收集单元100,它们每个都根据在方框304和308中的指令收集声音数据和环境信号数据。如果收集单元100的状态指示把声地震信号嵌入环境信号数据中,通常根据处理单元124的程序指令,在方框312执行这种嵌入。在一个实施例中,嵌入数据按照保持时间相关的方式对应于环境信号数据与声地震数据的重叠。这样,在一定程度上,环境信号特征仍然是可以识别的,它们可以与它们所嵌入的声地震数据直接同步。另外,当这样的特征在用多个收集单元100收集的数据中仍然是可以识别的时候,它们允许不同数据集之间的同步。在其它实施例中,可以从声地震数据信号中分离保留收集的环境信号;如果每个收集单元100都维持它们的时间相关性,那么分离保留的信号可以仍然被用于同步。可是,嵌入该信号有利于从头开始确保保持确定这种相对时间相关的信息。
不考虑数据信号是否相互嵌入,在方框316中数据可能被写入存储装置中。在一个实施例中,数据被写入被包含在独立的一个收集单元100中的存储器128中。当在一段相对长的时间内探测偏远地区时,这样的实施例是非常方便的,但是可以用于任何收集地震数据的实施例中。在可选择的实施例中,数据可以被临时下载到外部数据存储装置中,例如下载到便携式膝上型电脑或手持计算机中、或当可能时甚至可以通过数据链路136被直接发送到数据处理计算机140中。如果数据被本地存储到收集单元100中,数据可以在随后的时间点及时恢复并通过任何合适的装置发送到数据处理计算机140中,以便在方框320中开始分析数据集(data sets)。
对于每个数据集,在方框320中将环境信号的时间相关性与收集到的声地震数据关联,然后在方框324中执行多路数据集同步,开始分析。在环境和地震信号已经被互相嵌入的实施例中,因为这样的嵌入保持了它们之间的时间相关,在该阶段的相关和同步函数(function)在很大程度上被简化。通过识别来自每个复合地震/环境信号中的环境信号的唯一特征,保持这样的时间相关将允许执行在方框324中的同步操作。在一些情况下,一个唯一的特征对完成识别就足够了,但是最好使用多重特征来在信号变化复杂的情况下进行同步操作,或者使用多重特征来增加同步中的可信度。复合信号中的一个可以被选择作为定义标准时序的基准信号。然后每个其他的复合信号都及时地被转换,以便被选识别特征按照标准时序与它们的出现相匹配。在一些实施例中,时间转换的确定通过计算反相关函数来实现,以确定最大相关次数。这种时间转换可以发生在正方向或负方向上,依赖于定义该标准时序的被选择的具体信号,还依赖于其他信号的具体变化。
在一些情况下,同步也可以包括把压缩或扩充因子(factor)应用到给定信号的时序中。通常希望,对压缩或扩充时序的需要非常小,但是如果环境促使一些信号的记录速率与其他信号的速率不同,那么它就是适当的。在这种情况下,信号的简单线性时间转换不足以使环境信号的多路识别特征与标准时序相匹配。压缩或扩充因子的应用可以通过映射f(t)→f(αt)来观察,其中,对嵌入环境/地震信号f(t)来说,当α>1时,对应压缩,当α<1时,对应扩充。
例如,假设数据处理计算机140接收的嵌入信号集被定义为fi(t)。标准时序可以由这些信号中一个特殊的信号来定义,称为f0(t)。假设识别特征在时间间隔{Δtj}内被识别,通过找到αi和δi执行同步,从而这些特征在每个fjiti)中在这些相同的时间间隔{Δtj}上被再次生成。
当环境信号未被嵌入声地震数据时,基本上可以使用相同的技术。因此对于给定的收集单元100,可以用单个收集单元100充分地同时地收集两个数据集,但是不希望两者之间的时间相关涉及时间相关的压缩或扩充。可代替的,分配一个特殊的时间值作为每个收集单元100各自的地震信号和环境信号的通用时间原点。然后关于环境信号数据的影响同步的计算最初被独立完成,时间转换和压缩/扩充因子由从每个收集单元100到环境信号数据的时间校准识别特征的数据确定。然后,这些各自的转换和压缩/扩充因子都可以被应用到相应的地震数据中完成同步。
例如,假设用Si(t)定义地震数据集,根据各个时间原点,用Ai(t)定义环境数据集。然后在Ai(t)集上以类似上述fi(t)的形式完成同步,使被选择的标准环境信号A0(t)和被确定的元素αj和δi与识别特征在时间间隔{Δtj}内匹配。然后这些确定的元素可以被应用到地震数据中,产生在随后的分析中要使用的一组纯同步地震信号Sjit-δi)。
在一些情况下,随后的分析可以只使用同步数据的被选部分,例如在围绕已知源事件的确定时间间隔中的数据部分。因此,在方框326,质量控制程序可以用于保证在分析中所使用的数据符合预定质量水平,而不可能代表虚假的结果(spurious result)。在方框328,从同步数据集中可以提取出可用时间窗口。通过在数据处理计算机140中的软件来执行可用时间窗口的识别数据处理计算机以便记录源事件次数,例如在方框302所收集的事件次数,以及选择关于这样的源事件次数同步对应的具有具体时间间隔的区域。然后在方框332中,将不需要的数据删除。这样的数据删除是适当的,因为将要使用的数据只用于分析来识别地下特征。在其它情况下,数据可以用于其他目的,这需要将整个数据集保留。下面在一些实施例中论述这样应用的几个例子。
处理以后,如方框336所示,数据可以被储存在大容量存储装置中。另外,在方框340,它可以被传送到已经为数据的收集和准备付费的客户,或者如方框334中示出的,用于所述的进一步分析来识别地下特征。使用同步数据进行这种分析的技术已被本领域中的技术人员所熟知,还可以包括多种处理和声重建技术。在一个实施例中,该分析利用了一种声全息摄影技术。早先的声全息摄影说明实例主要在美国专利第4,070,643号,名称为“声全息摄影设备(ACOUSTIC HOLOGRAPHY APPARATUS)”中提出,其全部内容结合于此作为参考,但是可应用于地震同步数据处理中的其它声全息摄影技术也将被本领域中的技术人员所熟知。
图4A-4E给出了声音数据轨迹的例子来阐明用环境信号信息实现(effecting)同步。在环境信号对应商业广播信号的实施例中,例如广播节目或电视节目信号,其特征在于声音的形式或在确定时间间隔{Δtj}内的其他变化,其可以作为识别特征。例如,发明者发现,确定的说话者的声音具有频率特性,该频率特性使它们特别适合用于提供区别于地震声音数据的识别特征,特别是在声音频率处于正常人类频率范围内的低频端的说话者中,这一特性更加明显。
为了说明使用声音形式作为识别特征的性能,图4A给出了用两个不同收集单元100记录的人类语音信号的例子,分别指定为402和404。该信号是来自一位在电视上和广播中经常听到的受欢迎的播音员,其具有发明者认为特别适合用于根据本发明的实施例的在同步中使用的低音。当该语音信号的一般属性(general behavior)与从图4A中看到的非常相似,与它们的时序的实际匹配可以利用已知的相关求值技术实现,例如交叉相关函数(cross-correlationfunction)的计算。对于两个函数V(1)(t)和V(2)(t),例如在图4A中所示的语音函数,但是通常可以应用到以上所讨论的任何环境信号数据或复合环境/地震信号数据中,延迟δ的交叉相关C为
C ( &delta; ) = &Integral; dt ( V ( 1 ) ( t ) - < V ( 1 ) > ) ( V ( 2 ) ( t - &delta; ) - < V ( 2 ) > ) dt ( &Integral; V ( 1 ) ( t ) - < V ( 1 ) > ) 2 &Integral; dt ( V ( 2 ) ( t - &delta; ) - < V ( 2 ) > ) 2 ,
其中<V(1)>和<V(2)>分别是V(1)(t)和V(2)(t)的平均值(mean)。交叉相关C被最小化时的δ值对应于在同步V(1)(t)和V(2)(t)的过程中被导入的时移(time shift)。
图4B给出了由使用图4A中所示的信号计算得到的交叉相关函数406。因为图4A中的信号402和404被充分完全地对准(匹配),最大相关值在窗口中心近似衰减。如果信号不匹配就需要用于同步的时移,最大相关值将通过数值δ补偿,然后其如以上描述的方式用于提供同步信号。
发明者已经用实际地震数据测试了该技术的应用,结果显示在图4C和图4D中。图4C中的轨迹以真实的幅度显示,图4D中的轨迹反应了自动采集控制(automatic gain control,也称,自动增益控制)的应用。该轨迹用从探测的地面位置偏移一定的量,轨迹408偏移25英尺,轨迹410偏移20英尺,轨迹412偏移15英尺,轨迹414偏移10英尺,轨迹416偏移5英尺。使用以上所描述的技术轨迹已被同步。从而,从底部到顶部和从左侧到右侧的明显偏移(apparent offet)反应了真实的物理变化,该变化给出了所探测地区的信息。在这种情况下,该物理变化对应于传播次数的差,传播次数由源和收集单元100之间偏移的增加而产生。用到达时间差除轨迹偏移差得出的速率非常接近在空气中的声音传播速度,约为1100ft/s。在从地球接收声音信号的情况下,同步曲线差给出了地下物体的结构信息,例如烃气或石油的沉积量。在一组实施例中,这样的信息从地球内部接收的声音信号得出。
图4A中的语音信号是在同步中使用的不规则信号的例子。图4E给出了环境信号产生的规则信号430的例子,那些被嵌入地震声音数据428中的信号由一个收集单元100测量。这样的规则信号可以由对应于例如GPS时间信号、通用同步时间广播信号、以及类似的信号的环境信号产生。特别是当它们的幅度足以淹没地震声音信号428时,环境信号430的规则性才允许把它们应用到未使用交叉相关计算的同步中。特别地,这种信号明确定义的性质允许时间间隔{Δtj}非常窄,有准确的中心时间值。因此,在一些实施例中,同步是用规则环境信号直接实现的,而在其他的实施例中,仍用交叉相关技术实现同步,即使使用规则环境信号。
典示范性应用
在一些实施例中,多个使用本发明的方法和系统的应用阐明了本发明的优点。在一些实施例中,例如,收集单元可以和人为引发事件联系起来使用。一些这样的人为引发事件尤其可以用于提供在地震调查中使用的声源,而其他方法只能被动地或偶然地提供地震信息。例如,在一些实施例中,收集单元可能被分布在用炸药引爆的探测地区,但是该地区的无线电通信能力很差。在这样的情况下,不需要无线电连接,收集单元能够轻易、同步地连续收集数据,而不考虑探测地区的较差无线电通信能力。同样,在一些情况下,收集单元的地理分布可以根据地球表面的情况而在深度上进行改变,而不是只能在它的表面上或在表面上方。例如,一些收集单元可以被设置在垂直矿井(vertical mines)或其它矿井(shafts)中,能够获得来源于不同收集单元分布的信息。利用来自这样垂直分布的收集单元的数据的分析有时称为“断层分析(tomographic analysis)”。
在其他的实施例中,地震数据可以从城市或郊区被动地收集到、或者从很难完成实时数据采集的任何其它地区收集到。可以产生被动源(passive source)事件,例如,跨过公路表面横向放置障碍物以使当车辆驶过它们时发生声音事件。用于被动地产生声音事件的其他机械装置对于本领域中的技术人员来说是显而易见的。然后收集单元可以被设置在离城市或郊区比较近的地方来探测来自地球的响应这些声源的声音。在没有具体知道声音事件发生时间的情况下,收集单元的长时间连续记录的能力允许它们收集信息,如这里所述,该信息用于识别城市、郊区、或其他探测地区的地下资源。一般的情况下,这种被动声源的幅度最适于映射浅事件(shallowevents),但是在一些情况下更深的事件(deeper events)的映射也可以用这种方式完成。
在没有具体知道声音事件发生时间的情况下,收集单元的长时间连续记录的功能可以用在周边应用(peripheral application)中。例如,地震检测者经常遭受来自房屋主人或其他人的抱怨,抱怨产生声源的爆炸导致房屋的结构受损。地震测试者为这种推断进行辩护的代价是非常巨大的。通常,声脉冲的强度在结构已经被损害的地方不足以引起报道中所说的损害,但是通常没有足够的信息指出用于损害的可选择源。在多个地区的地震测试时期,一些收集单元的使用可以产生很多的具体证据,以防止这种推断,特别是通过在确定的地区提供最高粒子速率(“peak particle velocity,PPV”)的实时记录。特别是,收集单元不仅可以显示在那些确定的地区宣称导致损害的爆炸的局部强度,而且可以显示其他声音信号的局部强度,例如飞机、火车、天气模式、和类似的信号强度。PPV在特定时间和位置与不同的声音事件明确连接的情况下,地震测试导致损害的可能性最小。由于能够提供对比证据,再与其它声源产生声干扰的时间相互关联,可以使无根据的推断迅速消失。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (21)

1.一种用于采集地震数据的方法,所述方法包括:
在多个不同的地理位置收集表示从地球接收到的声音信号的数据;
在多个不同的地理位置收集表示环境信号的数据;
对于所述多个地理位置的每个位置,使依赖于所述环境信号的已知时间和依赖于所述收集到的声音信号数据的时间相互关联,从而定义时间相关声音信号数据;以及
使在所述多个不同地理位置收集到的声音信号数据与所述时间相关声音信号数据同步。
2.根据权利要求1所述的方法,进一步包括:分析所述同步的声音信号数据,以识别地下特征。
3.根据权利要求2所述的方法,其中,分析所述同步的声音信号数据包括:由所述同步的声音信号生成声音全息图。
4.根据权利要求1所述的方法,其中,在每个所述的不同的地理位置,连续执行收集表示声音信号的数据超过一分钟的时间。
5.根据权利要求1所述的方法,其中,在每个所述的不同的地理位置,连续执行收集表示声音信号的数据超过一小时的时间。
6.根据权利要求1所述的方法,其中,在每个所述的不同的地理位置,连续执行收集表示声音信号的数据超过一天的时间。
7.根据权利要求1所述的方法,其中,在每个所述的不同的地理位置,连续执行收集表示声音信号的数据超过一周的时间。
8.根据权利要求1所述的方法,进一步包括:把所述收集到的表示所述环境信号的数据嵌入所述收集到的表示从地球接收的声音信号的数据中。
9.根据权利要求1所述的方法,其中,收集表示从地球接收的声音信号的数据包括接收响应人为事件而产生的声音数据。
10.根据权利要求1所述的方法,其中,所述多个不同的地理位置位于相对于所述地球表面的不同深度上。
11.根据权利要求1所述的方法,其中,所述环境信号包括电磁广播信号。
12.根据权利要求1所述的方法,其中,所述环境信号包括时间参考信号。
13.一种用于采集地震数据的系统,所述系统包括:
多个收集器,分布在多个不同的地理位置,其中每个这样的收集器都用于:
收集表示从地球接收的声音信号的数据;以及
收集表示环境信号的数据;以及
处理器,与计算机可读存储介质连接,所述计算机可读存储介质储存有计算机可读程序,用于引导所述处理器的操作,所述计算机可读程序包括:
使依赖所述环境信号的已知时间和依赖所述收集的声音信号数据的时间相互关联从而定义时间相关声音信号数据的指令;以及
使在所述的多个地理位置收集的所述声音信号数据与所述时间相关声音信号数据同步的指令。
14.根据权利要求13所述的系统,其中,所述可读计算机程序进一步包括用于分析所述同步的声音信号数据以识别地下特征的指令。
15.根据权利要求13所述的系统,其中,每个这样的收集器都包括能够储存在超过一周的时间内连续收集的数据的数据存储器。
16.根据权利要求13所述的系统,其中,每个这样的收集器还用于:把所述收集到的表示所述环境信号的数据嵌入所述收集到的表示从地球接收的声音信号的数据中。
17.根据权利要求13所述的系统,其中,所述环境信号包括电磁广播信号。
18.根据权利要求13所述的系统,其中,所述环境信号包括时间参考信号。
19.一种地震传感器数据记录器,包括:
信号预处理机,用于接收来自地震传感器的连续的传感器数据流;
无线电接收机,用于接收连续的环境无线电信号流;
模数转换器,与所述信号预处理机和所述无线电接收机通信,其中所述模数转换器用于把所述传感器数据转换为数字传感器数据流,以及把所述连续的环境无线电信号流转换为数字无线电信号流;以及
处理单元,与所述模数转换器通信,用于接收和处理所述数字无线电信号流和储存在存储器中的所述数字传感器数据流。
20.根据权利要求19所述的地震传感器数据记录器,其中,所述处理单元还用于:在储存到所述存储器之前,把所述数字无线电信号流嵌入所述数字传感器数据流。
21.根据权利要求19所述的地震传感器数据记录器,其中,所述处理单元还用于:在所述存储器中按照分离信道编码所述数字无线电信号流和所述数字传感器数据流。
CNB038090422A 2002-04-24 2003-04-22 用于采集地震数据的方法和系统 Expired - Fee Related CN1311245C (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US37554502P 2002-04-24 2002-04-24
US60/375,545 2002-04-24
US10/418,940 US6934219B2 (en) 2002-04-24 2003-04-18 Methods and systems for acquiring seismic data
US10/418,940 2003-04-18
PCT/US2003/012822 WO2003091750A2 (en) 2002-04-24 2003-04-22 Methods and systems for acquiring seismic data

Publications (2)

Publication Number Publication Date
CN1646939A true CN1646939A (zh) 2005-07-27
CN1311245C CN1311245C (zh) 2007-04-18

Family

ID=29254601

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038090422A Expired - Fee Related CN1311245C (zh) 2002-04-24 2003-04-22 用于采集地震数据的方法和系统

Country Status (7)

Country Link
US (2) US6934219B2 (zh)
CN (1) CN1311245C (zh)
AU (1) AU2003223728A1 (zh)
CA (1) CA2483418A1 (zh)
MX (1) MXPA04010511A (zh)
RU (1) RU2323455C2 (zh)
WO (1) WO2003091750A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103874934A (zh) * 2011-05-23 2014-06-18 离子地球物理学公司 用于确定要采集地球物理数据的位置的方法和设备
CN107835962A (zh) * 2015-05-13 2018-03-23 科诺科菲利浦公司 钻探数据的时间校正

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060009911A1 (en) * 2002-04-24 2006-01-12 Ascend Geo, Llc Methods and systems for acquiring and processing seismic data
US7310287B2 (en) * 2003-05-30 2007-12-18 Fairfield Industries Incorporated Method and apparatus for seismic data acquisition
US7561493B2 (en) 2003-05-30 2009-07-14 Fairfield Industries, Inc. Method and apparatus for land based seismic data acquisition
US7117094B2 (en) * 2003-07-17 2006-10-03 Novatel, Inc. Seismic measuring system including GPS receivers
US8228759B2 (en) 2003-11-21 2012-07-24 Fairfield Industries Incorporated System for transmission of seismic data
US7124028B2 (en) 2003-11-21 2006-10-17 Fairfield Industries, Inc. Method and system for transmission of seismic data
EP1805533B1 (en) * 2004-09-21 2020-05-06 Magseis FF LLC Apparatus for seismic data acquisition
US7557910B2 (en) * 2004-12-19 2009-07-07 Kla-Tencor Corporation System and method for controlling a beam source in a workpiece surface inspection system
US8534959B2 (en) 2005-01-17 2013-09-17 Fairfield Industries Incorporated Method and apparatus for deployment of ocean bottom seismometers
US7447238B2 (en) * 2005-04-26 2008-11-04 Westerngeco L.L.C. Method for compensating for internal delays within each node and transmission delays between the nodes
US8127706B2 (en) * 2005-05-02 2012-03-06 Fairfield Industries Incorporated Deck configuration for ocean bottom seismometer launch platforms
US7433265B2 (en) * 2005-10-04 2008-10-07 Fairfield Industries, Inc. Converted wave energy removal from seismic data
US8238199B2 (en) 2005-10-07 2012-08-07 Wireless Seismic, Inc. Wireless exploration seismic system
US7773457B2 (en) 2005-10-07 2010-08-10 Wireless Seismic Wireless exploration seismic system
US7425902B2 (en) * 2005-11-18 2008-09-16 Honeywell International Inc. Systems and methods for evaluating geological movements
US7680599B1 (en) * 2005-12-13 2010-03-16 Textron Systems Corporation Devices and method for detecting emplacement of improvised explosive devices
US7224642B1 (en) * 2006-01-26 2007-05-29 Tran Bao Q Wireless sensor data processing systems
US8170802B2 (en) * 2006-03-21 2012-05-01 Westerngeco L.L.C. Communication between sensor units and a recorder
US7676326B2 (en) * 2006-06-09 2010-03-09 Spectraseis Ag VH Reservoir Mapping
EP2027494A4 (en) * 2006-06-10 2012-10-31 Inova Ltd DIGITAL ELLEMENTATION MODEL FOR USE WITH EARTHQUAKE ACQUISITION SYSTEMS
WO2008001335A2 (en) * 2006-06-30 2008-01-03 Spectraseis Ag Vh signal integration measure for seismic data
US8147348B2 (en) * 2006-06-30 2012-04-03 Kim Chol Semi-automatically adjustable length and torque resistant golf shaft
ATE543109T1 (de) * 2007-01-20 2012-02-15 Spectraseis Ag Zeitumkehr-reservoir-lokalisierung
WO2008091880A1 (en) * 2007-01-23 2008-07-31 Adobe Systems, Incorporated System and method for simulating shallow water effects on arbitrary surfaces
WO2008142495A1 (en) * 2007-05-17 2008-11-27 Spectraseis Ag Seismic attributes for reservoir localization
EP2191300B1 (en) 2007-09-21 2020-02-12 GTC, Inc. Low- power satellite-timed seismic data acquisition system
US9128202B2 (en) * 2008-04-22 2015-09-08 Srd Innovations Inc. Wireless data acquisition network and operating methods
US8217803B2 (en) * 2008-04-22 2012-07-10 Srd Innovations Inc. Wireless data acquisition network and operating methods
US8611191B2 (en) * 2008-05-22 2013-12-17 Fairfield Industries, Inc. Land based unit for seismic data acquisition
EP2154551A1 (de) * 2008-08-12 2010-02-17 Geolab S.a.s. Verfahren zum Erfassen von Veränderungen in einem Kohlenwasserstoff-Vorkommen
US8254207B2 (en) * 2008-09-22 2012-08-28 Geza Nemeth System and method for seismic data acquisition
US8077547B2 (en) * 2008-09-26 2011-12-13 Providence technologies, Inc. Method and apparatus for seismic exploration
CN101839996B (zh) * 2009-03-20 2011-12-07 中国石油天然气集团公司 一种大范围地震数据采集的同步方法
US20100274492A1 (en) * 2009-04-24 2010-10-28 Susanne Rentsch Determining attributes of seismic events
JP2013506221A (ja) * 2009-09-29 2013-02-21 ボルボ テクノロジー コーポレイション 少なくとも1つのアプリケーションにおいて及び/又は少なくとも1つのアルゴリズムによって更に処理するためにセンサアセンブリのセンサ出力データを作成する方法及びシステム
US20110170443A1 (en) * 2010-01-13 2011-07-14 Ronald Gerald Murias Link sensitive aodv for wireless data transfer
US20110182142A1 (en) * 2010-01-27 2011-07-28 Qinglin Liu Technique and Apparatus for Seismic Data Quality Control
WO2011119802A2 (en) * 2010-03-26 2011-09-29 Shell Oil Company Seismic clock timing correction using ocean acoustic waves
US9529102B2 (en) 2010-04-30 2016-12-27 Conocophillips Company Caterpillar-style seismic data acquisition using autonomous, continuously recording seismic data recorders
CN102012518B (zh) * 2010-11-25 2013-07-10 北京建筑工程学院 本安型24位地震数据采集电路板
MX2013006453A (es) * 2010-12-10 2013-12-06 Bp Corp North America Inc Fuentes sismicas de frecuencia barrida separadas en distancia y en frecuencia.
CN102288991B (zh) * 2011-07-05 2013-06-26 东南大学 一种地震电磁信息采集装置和方法
EP2770343A4 (en) * 2011-10-17 2016-06-01 Inst Geology & Geophysics Cas DIGITAL ALL-IN-ONE DIGITAL SISMOMETER WIRELESS, WIRELESS AND WITHOUT CABLE
US10209381B2 (en) 2014-02-19 2019-02-19 Cgg Services Sas Systems and methods for wireless data acquisition in seismic monitoring systems
WO2018085949A1 (en) * 2016-11-14 2018-05-17 Symroc Business And Project Management Ltd. Vibration-analysis system and method therefor
DK3602141T3 (da) 2017-05-23 2024-09-02 Digicourse Llc Seismisk knudeplaceringssystem
US11313985B2 (en) 2018-06-08 2022-04-26 Ion Geophysical Corporation Sensor node attachment mechanism and cable retrieval system
CN113031057B (zh) * 2021-02-23 2023-07-28 西北核技术研究所 基于定向可控微弱震源地震波信号的通讯方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812457A (en) 1969-11-17 1974-05-21 Shell Oil Co Seismic exploration method
US3886494A (en) * 1972-11-13 1975-05-27 Exxon Production Research Co System for gathering and recording seismic signals
GB1532218A (en) 1975-06-26 1978-11-15 Nat Res Dev Acoustic holography apparatus
US4493063A (en) 1978-10-30 1985-01-08 Phillips Petroleum Company Method and apparatus for seismic geophysical exploration
US4725992A (en) * 1985-12-03 1988-02-16 Amoco Corporation Adaptive seismometer group recorder having enhanced operating capabilities
US4750156A (en) 1986-03-03 1988-06-07 Input/Output, Inc. Noise suppression during seismic exploration
FR2671197A1 (fr) 1990-12-28 1992-07-03 Inst Francais Du Petrole Methode et dispositif pour simplifier la localisation d'une zone souterraine dans le cadre d'une exploration sismique.
NO176860C (no) * 1992-06-30 1995-06-07 Geco As Fremgangsmåte til synkronisering av systemer for seismiske undersökelser, samt anvendelser av fremgangsmåten
RU2190241C2 (ru) 1996-10-23 2002-09-27 Вайбрейшн Текнолэджи Лимитид Система сбора сейсмических данных и способ проведения сейсморазведки
US5920828A (en) * 1997-06-02 1999-07-06 Baker Hughes Incorporated Quality control seismic data processing system
FR2766580B1 (fr) 1997-07-24 2000-11-17 Inst Francais Du Petrole Methode et systeme de transmission de donnees sismiques a une station de collecte eloignee
US5978313A (en) * 1997-09-30 1999-11-02 Trimble Navigaiton Limited Time synchronization for seismic exploration system
US6078283A (en) 1997-10-31 2000-06-20 Input/Output, Inc. Remote seismic data acquisition unit with common radio and GPS antenna
US6002339A (en) * 1998-01-30 1999-12-14 Western Atlas International, Inc. Seismic synchronization system
US6226601B1 (en) * 1998-05-15 2001-05-01 Trimble Navigation Limited Seismic survey system
US6188962B1 (en) * 1998-06-25 2001-02-13 Western Atlas International, Inc. Continuous data seismic system
US20040105533A1 (en) * 1998-08-07 2004-06-03 Input/Output, Inc. Single station wireless seismic data acquisition method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103874934A (zh) * 2011-05-23 2014-06-18 离子地球物理学公司 用于确定要采集地球物理数据的位置的方法和设备
CN103874934B (zh) * 2011-05-23 2017-04-12 离子地球物理学公司 用于确定要采集地球物理数据的位置的方法和设备
CN107835962A (zh) * 2015-05-13 2018-03-23 科诺科菲利浦公司 钻探数据的时间校正

Also Published As

Publication number Publication date
MXPA04010511A (es) 2005-07-14
US20050232078A1 (en) 2005-10-20
AU2003223728A8 (en) 2003-11-10
AU2003223728A1 (en) 2003-11-10
US20030202424A1 (en) 2003-10-30
RU2323455C2 (ru) 2008-04-27
WO2003091750A3 (en) 2004-05-13
US6999377B2 (en) 2006-02-14
US6934219B2 (en) 2005-08-23
CA2483418A1 (en) 2003-11-06
CN1311245C (zh) 2007-04-18
RU2004134215A (ru) 2005-05-10
WO2003091750A2 (en) 2003-11-06

Similar Documents

Publication Publication Date Title
CN1311245C (zh) 用于采集地震数据的方法和系统
Kagami et al. Observation of 1-to 5-second microtremors and their application to earthquake engineering. Part III. A two-dimensional study of site effects in the San Fernando Valley
US8467267B2 (en) Asynchronous operation of seismic sources in a seismic survey
US3812457A (en) Seismic exploration method
US20110310701A1 (en) Seismic Telemetry and Communications System
CN113189644B (zh) 一种微震震源定位方法及系统
CN101100940B (zh) 一种阵列化声信号检测系统及其工程应用
Lancelle Distributed acoustic sensing for imaging near-surface geology and monitoring traffic at Garner Valley, California
Iezzi et al. Seismo-acoustic characterization of Mount Cleveland volcano explosions
Markušić et al. Estimation of near-surface attenuation in the tectonically complex contact area of the northwestern External Dinarides and the Adriatic foreland
Arosio et al. Analysis of microseismic activity within unstable rock slopes
Ahmadi et al. Revealing the deeper structure of the end-glacial Pärvie fault system in northern Sweden by seismic reflection profiling
CN110967760B (zh) 一种微地震数据的降噪处理方法和装置
US20100284246A1 (en) Seismography system
Molinari et al. Investigation of the central Adriatic lithosphere structure with the AlpArray-CASE seismic experiment
Cassidy et al. Strong motion seismograph networks in Canada
US20240255662A1 (en) Scalable telecommunications geotechnical surveying
LU506462B1 (en) Method for monitoring slope deformation based on embedded corner reflector by unmanned aerial vehicles
Lythgoe et al. Detecting events in the urban seismic wavefield using a novel nodal array in Singapore: earthquakes, blasts and thunder quakes
JP2024538432A (ja) 測量可能な電気通信地盤調査
Afonin et al. Frost quakes in wetlands in northern Finland during extreme winter weather conditions and related hazard to urban infrastructure
Feng Rockfall detection, localization and early warning with micro-seismic monitoring network
DeShon et al. Continuation of Detection and Location of Non-volcanic Tremor in the New Madrid Seismic Zone
Zimmer Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics
Stump et al. THE ROLE OF GROUND TRUTH IN IMPROVED IDENTIFICATION OF MINING EXPLOSION SIGNALS UTILIZATION OF CALIBRATION EXPLOSIONS AND ACOUSTIC SIGNALS

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070418

Termination date: 20110422