CN1639819A - 用于电气开关装置的控制系统 - Google Patents

用于电气开关装置的控制系统 Download PDF

Info

Publication number
CN1639819A
CN1639819A CNA038049996A CN03804999A CN1639819A CN 1639819 A CN1639819 A CN 1639819A CN A038049996 A CNA038049996 A CN A038049996A CN 03804999 A CN03804999 A CN 03804999A CN 1639819 A CN1639819 A CN 1639819A
Authority
CN
China
Prior art keywords
actuator
contact
voltage
electric current
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA038049996A
Other languages
English (en)
Inventor
M·P·顿克
J·P·乔纳斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
McGraw Edison Co
Original Assignee
McGraw Edison Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by McGraw Edison Co filed Critical McGraw Edison Co
Publication of CN1639819A publication Critical patent/CN1639819A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/20Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0062Testing or measuring non-electrical properties of switches, e.g. contact velocity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/06Arrangements for supplying operative power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/006Calibration or setting of parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/06Details with automatic reconnection
    • H02H3/07Details with automatic reconnection and with permanent disconnection after a predetermined number of reconnection cycles

Abstract

一种用于AC电路的系统包括执行机构(110)、源(115)和执行机构控制系统(120)。所述执行机构将电流转换为力,使触点相对于另一触点移动,从而接通和断开所述AC电路中的电力。所述源用来为执行机构提供电流。所述执行机构控制系统连接到所述执行机构和所述源,用于控制送到所述执行机构的电流。送到所述执行机构的电流与所述执行机构在开关期间产生的电压以及所述源的工作电压无关。

Description

用于电气开关装置的控制系统
技术领域
本申请涉及电气开关装置的控制。
背景技术
在配电系统中,开关装置通常用于保护系统不受异常条件、如电力线故障条件或不规则负荷条件的影响。对于不同的应用存在不同类型的开关装置。故障断流器是一类开关装置。故障断流器用于在检测到故障条件时自动断开电力线。
自动重接器是另一类开关装置。与故障断流器不同的是,自动重接器响应故障条件,根据一组时间-电流曲线多次地迅速跳闸断开电力线并随后重新合闸接通电力线。然后,在预定次数的跳闸/合闸操作后,如果故障条件仍然没有消除,那么自动重接器将切断该电力线。
断路器是第三类开关装置。断路器与自动重接器类似。但是,它们一般仅能执行单个断开-闭合-断开序列,并且它们所中断的电流比自动重接器的电流高得多。
电容器开关是第四类开关装置。电容器开关用于电容器组的充电和放电。当大负载(例如工业负载)引起线电流滞后于线电压时,利用电容器组调节馈送到所述负载的电流。一旦电容器组启用,它将线电流推回与线电压同相,由此提高功率因数(即,电量输送到负载上)。电容器开关每次通常执行一次断开操作或一次闭合操作。
发明内容
在一个方面中,用于AC(交流)电路的系统包括执行机构、源以及执行机构控制系统。执行机构将电流转化为力,使触点相对另一个触点移动,从而接通和切断AC电路中的电力。源用于为执行机构提供电流。执行机构控制系统连接到执行机构和源,以便控制送到执行机构的电流。送到执行机构的电流与执行机构在开关期间产生的电压以及源的工作电压无关。
实施例可包括以下特征中的一个或者多个特征。例如,所述系统也可以包括放大器,用于控制从源到执行机构的电流。所述系统还可以包括控制器,它连接到源和放大器,并配置成检测来自源的电压,向放大器提供信息以控制送到执行机构的电流。
源可在高于执行机构在开关期间产生的电压的电压下工作。执行机构可将电流转化为力,使触点沿直线方向相对另一个触点移动。
执行机构可通过移动其中至少一个触点远离另一触点来接通和切断AC电路中的电力。触点可连接到AC电路,这样,当触点接触时,电流流经AC电路。执行机构控制系统可包括检测电压源所提供的电压的控制器。
系统可包括连接到触点的控制电路,以便根据来自控制电路的信息对执行机构电流进行控制。
在另一个概括的方面中,用于控制连接到AC电路的执行机构以中断电流的方法包括为执行机构供电,以及控制送到执行机构的电流,使得送到执行机构的电流与执行机构在开关期间产生的电压以及提供电力的电压无关。执行机构配置成将电流转化为力,使触点相对另一个触点移动,从而接通和切断AC电路中的电力。
在又一个概括的方面中,AC电路的执行机构控制系统包括执行机构接口、输入接口以及连接到执行机构接口和输入接口的控制器。执行机构接口连接到执行机构,执行机构将电流转化为力,使触点相对另一个触点移动,从而接通和切断AC电路中的电力。输入接口与用以向执行机构提供电流的源相连接。控制器控制送到执行机构的电流,使得送到执行机构的电流与执行机构在开关期间产生的电压以及源的工作电压无关。
在下面的附图和说明书中对一个或多个实施例进行了详细描述,通过说明书、附图以及权利要求可以明白本发明的其它特征、目的和优点。
附图说明
图1是包括执行机构控制系统的系统框图。
图2是包括在图1的执行机构控制系统中的输入接口的框图。
图3A-3I是图2的输入接口的元件图。
图4A是包括在图1的执行机构控制系统中的控制接口的框图。
图4B和4C是图4A的控制接口的元件图。
图5是包括在图1的执行机构控制系统中的指令接口的示意图。
图6是包括在图1的执行机构控制系统中的传感器接口的示意图。
图7A是包括在图1的执行机构控制系统中的执行机构接口的框图。
图7B-7G是图7A的执行机构接口的元件图。
图8-14是由图1的执行机构控制系统所执行的程序的流程图。
图15是输入接口中储能部分的工作电压与时间的曲线图以及经过执行机构的电流与时间的曲线图。
各图中类似的参考标号表示类似的元件。
详细说明
参照图1,系统100保护AC电路105不受异常条件的影响。此系统100包括执行机构110、源115、执行机构控制系统120以及控制电路125。执行机构110将电流转化为力,使触点相对另一个触点移动,从而接通和切断AC电路105中的电力。
具体地说,执行机构110将电流转化为力,使触点沿直线方向相对另一个触点移动。AC电路105包括断流器130,其中含有触点。断流器130连接到AC电路105,以便触点的位置控制电流是否流经电路105。
源115向执行机构110提供电流。源115的工作电压高于在断流器130的开关期间由执行机构110所产生的电压。执行机构控制系统120连接到执行机构110以及源115,控制由源115提供给执行机构110的电流。
执行机构控制系统120还连接到与电路105相关联的电流互感器135。电流互感器135检测电路105的状态,例如电流和电压。执行机构控制系统120还连接到与执行机构110相关联的传感器140。传感器140检测执行机构110的状态,例如位置和速度。此外,执行机构控制系统120还连接到用于提供和接收来自用户的信息的主计算机145。
除了其它元件外,执行机构控制系统120还包括执行机构接口150、输入接口155及控制器160。执行机构接口150与执行机构110相连。输入接口155与源115相连。控制器160连接到执行机构接口150和输入接口155,用于根据有关AC电路105的信息来控制送到执行机构110的电流。
执行机构控制系统120还包括控制接口165、指令接口170以及传感器接口175。控制接口连接到控制电路125、电流互感器135以及断流器130上。指令接口170连接到主计算机145。传感器接口175与传感器140相连。
输入接口155设计成可以减少由执行机构控制系统120产生以及进入其中的电气噪声。输入接口155还可提供一些保护以避免能造成内部损坏的高压频率瞬变。同样参照图2,输入接口155包括输入调节系统200和一个或多个电源,如后备电源225、主电源250以及控制电源275。
输入调节系统200滤除由源115所产生的噪声。同样参照图3A,在一种实现中,上述输入调节系统200包括低通滤波器302,用于阻止低于由滤波器内在元件所硫定的阈值的频率。低通滤波器302包括共模扼流圈304和电容器306、308,配置成截止频率为3kHz。作为选择,可以是铁氧体磁珠和共模扼流圈的组合的器件310提供噪声的进一步衰减。系统200还可包括由电容器312和314构成的T-形低通滤波器,它有助于改善从源115输入的电力的电涌处理能力。系统200还可包括高压陶瓷器件316,例如金属氧化物变阻器(MOV),用于源输入的线间过电压保护以及改善电涌处理能力。
主电源250通过转换源115输入的电力来为执行机构控制系统120提供工作电力。主电源250还用于隔离断流器130和源115。
参照图3B,在一种实现中,主电源250可设计为完全隔离的电流型回扫切换开关。主电源250的输入范围可低于或高于它的输出。主电源250设计成以1-3瓦特的功率连续工作,而很少会产生最大功率的电脉冲。主电源250将断流器130与源115进行电隔离。
图3C表示图3B的主电源250的电路图。主电源250包括输入部分352、开关部分358、反馈部分364以及储能部分370。
当输入电力为AC时,输入部分352对输入电力进行整流。如果输入电力为DC,输入部分352则直接引入电力而使输入是非极化的。输入部分352包括输入电桥353和桥式整流器354。另外,输入部分352包括滤波器355,用于使开关部分358的电压不低于预定阈值,从而避免充电条件期间的回动电压。假定在60HZ输入电压为105V且输入电流为1A,那么峰值电压为105×1.414=148V。
开关部分358产生主供给功率。在一种实现中,开关部分358包括脉宽调制(PWM)控制器。PWM控制器可利用从Unitrode获取的UCC2802来实现。UCC2802是一种高速小功率集成电路,具有峰值电流型或平均电流控制,并利用双环路控制电路来调节调整脉宽以响应负载变化。
反馈部分364将主电源250的调整环路闭合。反馈部分364检测来自备份电源225的+HV,通过一组电阻器将此信号分压,随后用电容器对该信号进行滤波。
储能部分370是一组并联电容器。对于在极冷的条件下工作,储能部分370的总电容为8800μF。由于主电源250的输出是经过较好调整的,因此电容器可以在其额定电压下工作。
参照图3D,在一种实现中,备份电源225包括连接到控制器160和控制接口165的欠压断路器330,以及连接到执行机构接口150的备份切换开关335。
欠压断路器330检测来自控制接口165的电压电平,当电压电平下降到预定阈值电平以下时,欠压断路器断开备份电源225。因此,欠压断路器330阻止备份电源225对备份切换开关335过量放电到低于预定阈值。此外,欠压断路器330还防止备份切换开关335在控制接口165的电压切断前关断。参照图3E,在一种实现中,欠压断路器330设计为具有开关332。图3F表示欠压断路器330的更详细电路。
在主电源250不工作的情况下,备份切换开关335通过执行机构110维持能够操作断流器130的电压。备份切换开关335从控制接口165获取其电力。同样参照图3G,在一种实现中,备份切换开关335作为一种隔离的升压回扫电源来工作。备份切换开关335配置为能够提供操作执行机构控制系统120所必需的所有电力,并可以通过断流器130完成至少一次断开/闭合操作。图3H表示备份切换开关335的更详细电路。
控制电源275产生执行机构接口150所需的额外电力。控制电源275设计为根据主电源250的储能电容器来工作,并接收来自备份电源225的输入电压。同样参照图3I,控制电源275的一种实现是一种简单的、隔离的、降压开关电源,具有两个输出+V(本实现中为+5V)和+Vcc(本实现中为+15V)。
控制接口165检测来自控制电路125的中断信号,并将它们转换为用于控制器160的逻辑信号。如图4A中所示,为执行这些功能,控制接口165包括互感器接口400和控制输入系统450。控制输入系统450隔离并检测来自控制电路125的中断信号。另外,控制输入系统450将中断信号传过断流器130。互感器接口400端接并路由通向电流互感器135,且保护不受电流互感器135的特定条件的影响。
参照图4B,控制输入系统450可包括一个或多个光耦合器452以及一个或多个施密特反相器454,各个施密特反相器454与光耦合器452相关联。每个光耦合器452包括发光二极管(LED)456和晶体管458。光耦合器452提供控制电路125与内部线路之间对地的隔离。当跳闸或闭合信号被拉低时,电流经过LED 456,因此,接通光耦合器452并将对应的晶体管集电极拉低。晶体管458的输出被缓冲并由对应的施密特反相器454反相,所得信号发送到控制器160。当LED456上的电压达到二极管的正向电压时,LED 456才导通电流。在此电平下的LED 456的漏电流不会产生光子。为设置导通电平,LED 456被电阻器旁路,此电阻器具有在指定电流电平下产生等于正向电压的电压降的值。当电流达到预定值(例如10mA)时,电阻器上的电压超过LED正向电压(例如0.8-1.35V,取决于工作温度)。随后,电流可流经LED 456。此外,与LED 456串联的电阻器设置最大电压,串联电阻器的电阻由LED 456的最大电流和串联电阻器的额定功率决定。
在另一种实现中,控制输入系统450可包括另一个光耦合器,它与第一光耦合器串联,但不包括设置电平的电阻器。第二光耦合器可用于检测来自控制电路125的跳闸或合闸信号的状态电流。控制器160可利用该信息确定断流器130的状态并检测控制断路。
还参照图4C,在电流互感器与控制电路125断开连接时,互感器接口400保护各相(对于三相系统用A、B、C来表示)上的电流互感器不受损坏。当电流互感器与控制电路125断开连接时,如果浪涌电流通过电流互感器,则电流互感器的输出电压将升高到使互感器的绝缘损坏的点。因此,浪涌保护器件402插入各互感器的高压侧。各个浪涌保护器件可以实现为SIDACtor,该器件可从TeccorElectronics公司获取。每个SIDACtor 402一直处于关断状态,直到SIDACtor上的电压达到预定阈值,这时,SIDACtor导通并将线路短接,一直到流经SIDACtor的电流中断或者下降到最小阈值以下为止。当流经SIDACtor的电流降到最小阈值以下时,SIDACtor关断,直到电压又升高到预定阈值以上为止。
指令接口170为用户提供了对执行机构控制系统120进行编程、测试和使用的途径。指令接口170是逻辑电平异步串行接口,还可提供允许用户将系统120设置为编程模式和将系统120复位的控制。参照图5,可将指令接口170设计为与主计算机145的六个引脚相连,各个引脚执行不同的功能。例如,引脚1可设为目标地,引脚2可在复位后强制控制器160进入引导模式,引脚3可设置由控制器160从外部主机接收的串行数据,引脚4可设置由控制器160发送到外部主机的串行数据,引脚5可将控制器160复位,引脚6可提供对控制电源275的测试。
传感器接口175使控制器160可以检测关于执行机构110的信息。如所讨论的,执行机构110用线性力将AC电路105的电力接通和断开。为此,执行机构通常包括沿直线方向移动、从而使断流器130开路和闭合的器件。因此,有关执行机构110的信息包括关于执行机构线性器件的位置和速度信息。控制器160利用有关执行机构110的信息来更好地控制执行机构线性器件的运动。
例如,执行机构可以是包括由磁结构和线圈绕组所形成的空隙磁场的磁性执行机构。对电流流过线圈绕组作出响应,磁性执行机构开始工作。此电流通过磁结构的空隙中的稳态磁场作出反应,在线圈绕组上施加力。施加在线圈绕组上的力传递到与线圈绕组相连的操作杆(线性装置)。操作杆上所得的力与流过线圈绕组的电流成比例,并且使操作杆沿其线性轴运动,产生与断开操作和闭合操作相关的力。操作杆根据流经线圈绕组的电流方向,朝后或者朝前运动。根据开关操作是断开操作还是闭合操作,操作杆的运动又使断流器130中的触点对接合或分离。操作杆一般利用闩锁装置来保持断开或闭合的位置。闩锁装置提供足够的接触压力以尽量减小接触电阻,并在额定的瞬时电流期间保持触点接合。在各种实现中,闩锁装置包括斜置弹簧、球形塞、磁式锁、双稳态弹簧或肘节上弹簧。
因此,控制器160可利用此信息改善对流经线圈绕组的电流的控制。另外,控制器160可使执行机构110补偿由制造公差和环境条件引起的变化条件。这种传感器接口175还消除了对机械阻尼系统(如阻尼器)的需要,从而使执行机构110更有效地工作。
在一种实现中,传感器140是光增量编码器。在此实现中,如图6中所示,传感器接口175包括编码器连接器600、与编码器连接器600相连的解码器605、施密特反相器610和诸如金属氧化物半导体场效应晶体管(MOSFET)的开关615。光增量编码器产生两个方波通道A和B,各通道彼此间具有90度的偏移。在工作时,每当编码器条带上的刻线通过编码器时,编码器便产生一个方波周期。每个周期表示一次位置变化。如果此周期具有每英寸300条线的速率,那么执行机构110的位置变化是0.0033英寸。解码器605对通道的每次转换进行计数,并提供每英寸1200线或0.000833英寸的有效分辨率。解码器605根据通道A在通道B之前上升还是下降来确定位置变化是向前或向后。另外,由于控制器160按照固定的时间间隔从传感器140读出位置,因此可以确定执行机构110的速度。
执行机构接口150接收来自控制器160的数字输入,并利用此数字输入控制电流向执行机构110的流动。参照图7A,执行机构接口150包括输出部分700和控制部分725。输出部分700控制流经执行机构110的电流,控制部分725设置并保持所控制的电流。执行机构接口150还可包括消隐部分750,用于防止瞬间噪声干扰输出电流。
同样参照图7B,在一种实现中,输出部分700配置为二次转接转换器或双转发转换器。输出部分700可以包括开关702、704、706以及相关的电阻器和二极管,开关704和706是低侧开关并且共用高侧开关702。在此实现中,如图7C和7D所示,输出部分700配置成操作磁性执行机构的线圈710。磁性执行机构的线圈710设置在高侧开关702与低侧开关704或706之间。两个开关一起接通和断开。这种配置防止高压瞬变并提高执行机构接口150的效率。当开关702和704或706接通时(图7C),来自主电源250(输入接口155)中的储能电容器的电流开始流过执行机构的线圈710。分别与开关702、704或706相关联的高低二极管712、714反向偏置,不导通。由于可以将执行机构的线圈710视为大的电感器,因此电流在开关重新断开之前一直沿斜线上升。此时,储存在执行机构线圈710中的能量使电流继续流过执行机构线圈710(图7D)。高低二极管712、714分别变成正向偏置并且开始导通。贮存于线圈710中的能量返回到主电源250的储能电容器中,从而减少了一些小损耗。
同样,参照图7E,控制部分725基本上是固定断开时间的脉宽调制器。控制部分725包括数模(D/A)转换器728,用于接收来自控制器160的数字电流指令。从图7F中的控制部分725的示意图可以看到,D/A转换器728将此指令转换为电压电平,并将此电压电平输出到比较器730的+输入端。比较器730的输出端与开关702、704、706的集电极相连,定时电容器可以一直充电到+V。施密特反相器732在+V电压导通,这样随后也导通上下开关702、704或706。电流开始流过线圈710和检测电阻器Rs 716。电流继续沿斜线上升,一直到电阻716上的电压降超过D/A转换器728的输出为止。这时,比较器730的输出被拉向地,定时电容器Ct 718放电。施密特反相器732的输出变为0V,断开了开关702、704或706。线圈710中的电流开始下降。检测电阻器Rs 716中的电流变为零,比较器730重新导通。但是,定时电容器Ct 718的电容仍然低,并通过电阻器Rt 720重新充电,从而将开关702、704或706的接通延迟一段固定的时间。过了断开时间以后,定时电容器Ct 718重新充电到导通阈值并重复此循环。电阻器Rf722用于防止当检测电压接近基准电压时的振荡。
同样参照图7G,消隐部分750可用于禁止脉宽调制器或者控制部分725在开关702和704或706接通后的一段时间断开。这允许电流中的任何尖峰信号通过而不影响控制部分725。接通上面的开关702触发将电流检测信号箝制到地的单稳态电路。当单稳态电路超时后,就释放箝制,而且控制部分725照常工作。
在工作中,执行机构控制系统120通过控制器160响应来自控制电路125的断开和闭合输入,从而产生适当的电流分布,此电流分布输出到执行机构110以断开或闭合断流器130。参考图8,执行机构控制系统120执行过程800来产生适当的电流分布。执行机构控制系统120通过start()过程(步骤805)将硬件和程序变量初始化,通过init_sys()过程(步骤810)完成最终的硬件设置。
然后,执行机构控制系统120启用通过init_int()过程激活的中断(步骤815)。在启用上述中断后,系统120检查是否有在中断启用以前可能已出现的待处理的断开指令(步骤820)。如果系统120检测到待处理的断开指令(步骤820),那么系统120通过设置标志(OpFlg)来开始执行断开指令(步骤825)。
如果系统120未检测到待处理的跳闸指令(步骤825),则系统120进入空闲状态,此空闲状态从以下操作开始:将执行机构接口150设置为断开状态,并写入控制器160中的内部寄存器(步骤830)。这样,如果控制器160停止工作,则系统120能够使自己复位。
接着,系统120检查来自主计算机145的指令(由标志RXFULL指明)(步骤835)。来自主计算机145的指令称作串行指令。如果系统检测到串行指令,则系统解释该串行指令,并通过do_msg()过程根据此串行指令的解释来工作(步骤840)。
如果系统未检测到串行指令,则检查断开或闭合操作指令(OpFlg)(步骤845)。如果系统检测到操作指令,则系统通过do_ops()过程执行该断开或闭合操作(步骤850)。
如果系统120未检测到操作指令,则检查等待指令以确定系统是否应当进入低功率状态(步骤855)。如果检测到等待指令,系统120则进入低功率状态(步骤860)并过渡到空闲状态。如果未检测到等待指令,系统120则重复空闲状态而不进入低功率状态。
同样参照图9,执行机构控制系统120可以在启用激活的中断(步骤815)时启用定时中断(调用的tint())(步骤900)。执行机构控制系统120还可以在启用激活的中断(步骤815)时启用断开请求中断(调用的opreqint())(步骤905)。作为又一个备选方案,执行机构控制系统120也可以在启用激活的中断(步骤815)时启用闭合请求中断(调用的clreqint())(步骤910)。
参照图10,当定时中断启用时,执行机构控制系统120执行过程900。最初,系统120将下一个中断复位,并从传感器140中读取数据(步骤1000)。接着,系统120通过检查操作计时器(称为OpTimer)的状态来确定是否发生操作(步骤1005)。
如果系统120确定没有发生操作(步骤1005),则系统120执行无操作例程,也称作内务处理例程(步骤1010)。在内务处理例程(步骤1010)期间,系统120可以例如检查储能部分370的电压,检查主电源250的状态,以及设置互锁和可能在断开与闭合操作过程中进入的操作模式。
如果系统120确定发生操作(步骤1005),则系统120使操作计时器减1(步骤1015),同时将执行机构110的当前速度记录在称为IdArray的数组中(步骤1020)。
系统120确定所述操作是否为断开变速序列(步骤1025)。断开变速序列防止执行机构110在断开序列过程中减速太多。如果速度降到预定阈值(称为MINTRIPVEL)以下(步骤1030),则系统120将瞬时电流(iout)设为固定的提升电流(称为TRIPBOOST),以确保完成断开操作(步骤1035)。否则,系统120将瞬时电流(iout)设为零电流(步骤1040)。
接着,系统120确定操作是否为闭合变速序列(步骤1045)。闭合变速序列是执行机构速度受控制的闭合序列的阶段。如果操作为闭合变速序列,那么系统120将当前速度与目标速度(称为SETVEL)比较(步骤1050)。如果当前速度高于目标速度,系统120则从瞬时电流中减去抵消电流,并确保该电流不会降到零以下(步骤1055)。如果当前速度低于目标速度,系统120则将提升电流加到瞬时电流中,以提高执行机构的速度(步骤1060)。随后,系统120根据瞬时电流将电流输出到执行机构110(步骤1065)。
当系统120检测到控制电路125发出的断开请求时,便产生断开请求中断。如果在步骤815启用了断开请求中断,那么系统120为断开操作作准备而将传感器140接通,等待一段时间,然后判断断开请求是否仍然存在。如果仍然存在断开请求,则系统120对断开请求计数,并重复预定次数(例如五次)的等待并判断的循环。如果在预定次数后系统120对断开请求的计数超过预定次数,则系统120产生断开指令,并禁用所有中断。如果在预定次数后系统120对断开请求的计数等于或少于预定次数,则系统120不产生断开指令,并复位定时中断。
当系统120检测到来自控制电路125的闭合请求时,便产生闭合请求中断。如果在步骤815启用了闭合请求中断,那么系统120为闭合操作作准备而将传感器140接通,等待一段时间,然后判断闭合请求是否仍然存在。如果仍然存在闭合请求,则系统120对闭合请求计数,并重复预定次数(例如五次)的等待并判断的循环。如果在预定次数后系统120对闭合请求的计数超过预定次数,则系统120产生闭合指令,并禁用所有中断。如果在预定次数后系统120对闭合请求的计数等于或少于预定次数,则系统120不产生闭合指令,并复位定时中断。
还参照图11,系统120执行过程840以解释串行指令并操作。首先,系统120设置计时器(称为COMMTIME),确保在计时器到期以前执行串行指令(步骤1100)。系统120判断串行指令是否为操作指令(如ASCII文本中的‘g’指令)(步骤1105)。如果串行指令为操作指令并且计时器未到期(步骤1110),则系统120例如通过判断ASCII文本中的下一个字符是否为‘o’来判断操作指令是否为断开指令(步骤1120)。如果操作指令是断开指令,则系统120通过例如将操作标志(OpFlg)设置为断开(OPREQ)来设置断开操作指令(步骤1125)。如果系统120判断操作指令是闭合指令(步骤1130),则系统120通过例如将操作标志设置为闭合(CLREQ)来设置闭合操作指令(步骤1135)。
如果串行指令是操作指令,并且如果计时器已到期(步骤1110),则系统120判断串行指令标志是否为空(由标志RXEMPTY来指明)(步骤1115),串行指令标志为空表明串行指令不完整。如果串行指令不完整,系统则再次判断计时器是否还未到期(步骤1110)。
如果系统120确定串行指令是检查参数指令(例如ASCII文本中的‘r’指令)(步骤1140),则系统120从主计算机中获取参数列表(步骤1145)。如果系统120确定串行指令是发送参数指令(例如ASCII文本中的‘s’指令)(步骤1150),则系统120将参数列表发送到主计算机(步骤1155)。如果系统120确定串行指令是发送速度信息指令(例如ASCII文本中的‘p’指令)(步骤1160),则系统120将所保存的有关最近操作的速度分布信息发送到主计算机(步骤1165)。所保存的速度分布信息可以是64字节的带符号的字符数组。
如果系统120未收到有效的指令,则系统复位操作标志并退出。
还参照图12,系统120执行过程850以执行断开或闭合操作。开始,系统120复位计时器中断,并禁用其它任何中断(步骤1200)。另外,系统120从传感器140中读取当前速度(步骤1205),并将当前速度保存到速度分布数组中(步骤1210)。
系统120判断是否收到断开操作指令,这由操作标志为OPREQ来指示(步骤1215)。如果已经收到断开操作指令,则系统120执行断开操作(步骤1220)。系统判断是否已经收到闭合操作指令,这由操作标志为CLREQ来指示(步骤1225)。如果已经收到闭合操作指令,则系统120执行闭合操作(步骤1230)。
如果系统120在已经执行了断开操作或闭合操作后,既未接收断开操作指令,也未接收闭合操作指令,那么系统120将执行机构接口150复位到断开状态,并写入控制器160中的内部寄存器(步骤1235)。接着,系统120启用激活的中断(步骤1240)。
同样参照图13,系统120执行过程1220以执行断开操作。开始,系统120执行将保持触点接合的闩锁装置的力取消的序列。在此序列中,系统120输出编程参数以取消断流器130中的闩锁装置的力(步骤1300)。于是,系统120在预定的一段时间里将预定电流输出到执行机构110。接着,系统120判断传感器140输出的位置是否小于预定位置(称作CONTACTPART)(步骤1305)。如果上述位置小于预定位置,系统120判断当前时间是否小于预定时段(步骤1310)。
如果传感器140输出的位置超过或等于预定位置,或者如果当前时间超过或等于预定时段,则系统120执行缓慢断开断流器130的序列。在此序列期间,系统120使执行机构缓慢断电一直到断流器130在最终的断开位置为止。最初,如果速度下降到预定水平MINTRIPVEL以下,则系统120设置允许定时中断增加电流的标志(步骤1315)。然后,系统判断传感器140输出的位置是否小于预定的断开位置(称作FULLOPEN)(步骤1320)。如果上述位置小于预定的断开位置,系统120判断当前时间是否小于预定时间(步骤1325)。
在执行机构110已到达完全断开的位置(步骤1320)后或者预定时间到期后(步骤1325),系统120重置跳闸参数(步骤1330),并继续记录速度,直到存储速度分布数组的缓冲器装满为止(步骤1335)。这允许系统120记录在断流器130内可能出现的任何跳跃。系统使操作计数器递增,并在一段预定的时间内禁止备份电源225中的欠压关断,直到系统稳定为止(步骤1340)。
同样参照图14,系统120执行过程1230以执行闭合操作。最初,系统120执行闩锁断开序列,消除维持触点处于断开位置的闩锁装置的力(步骤1400)。随后,系统120执行控制执行机构110的速度的变速序列(步骤1425)。最后,系统120执行闩锁操作序列,以便保持触点处于闭合位置(步骤1450)。
在闩锁断开序列期间(步骤1400),系统120输出编程参数以消除断流器130中的闩锁装置的力(步骤1402)。于是,系统120使执行机构110在预定电流上工作一段预定的时间。接着,系统120判断传感器140输出的位置是否小于预定的阈值位置(称作BREAKPOINT)(步骤1404)。如果上述位置小于预定的阈值位置,系统120判断当前时间是否小于最大时间(步骤1406)。
如果传感器140输出的位置超过或等于预定的阈值位置(步骤1404),或者如果当前时间超过或等于最大时间(步骤1406),则系统120执行变速序列(步骤1425)。在变速序列期间,系统120试图控制执行机构110的速度,一直到达到预定闭合位置(称作CONTACTMAKE)为止。系统120在一段预定的时间内将电流输出到执行机构110(步骤1428)。然后,系统120判断传感器140输出的位置是否小于预定的闭合位置(步骤1430)。如果上述位置小于预定的闭合位置,系统120判断当前时间是否小于预定的时段(步骤1432)。
在执行机构110已到达预定的闭合位置(步骤1430)后,或者预定时段到期后(步骤1432),系统120进入闩锁操作序列(步骤1450)。在闩锁操作序列期间,系统120在一段预定的时间施加预定电流(步骤1452)。当时间小于预定的时段时(步骤1454),系统120判断执行机构的位置是否大于闩锁位置(称为SPRINGCOCKED)(步骤1456)。如果所述位置大于闩锁位置(步骤1456),并且时间小于预定时段(步骤1452),则系统120检查断开指令(步骤1458)。否则,如果时间不小于预定的时段(步骤1452),则系统120检查断开指令(步骤1460)。如果在任一步骤收到断开指令,则系统120准备执行机构(步骤1462),并利用图13的过程1220执行断开指令。
如果未收到断开指令,则系统120继续记录速度,直到存储速度分布数组的缓冲器装满为止(步骤1478)。这允许系统120记录在断流器130内可能出现的任何跳动。系统使操作计数器递增,并在一段预定的时间内禁止备份电源225中的欠压关断,直到系统稳定为止(步骤1480)。
参照图15,曲线1500显示了储能部分370的工作电压随时间的变化,曲线1550显示了执行机构110中的电流随时间的变化。该数据是对磁性执行机构取得的。因此,流经执行机构110的电流是流经执行机构的线圈的电流。从这些曲线可以看出,流经线圈的电流与储能部分370的工作电压无关。此外,由于储能部分在高于正常电压的条件下工作,因此电流上升的时间常数减小。这使得能够精确地控制断开和闭合断流器130时所用的力。从曲线1500和1550还可以看出,流经线圈的电流与执行机构110在执行过程中产生的电压无关。
此外,控制器160和数模转换器728用于产生精确且可重复的电流分布(如曲线1550所示)。采用控制器160与可控执行机构接口150提供了实际的运动反馈,这种反馈可以实现更好的控制并节省能量。
以上已经对多种实现进行了描述。相应地,在随后的权利要求的范围内还包含其它实现。

Claims (25)

1.一种用于AC电路的系统,所述系统包括:
执行机构,用于将电流转换为力以使触点相对于另一触点移动,从而接通和断开所述AC电路中的电力;
源,用于向所述执行机构提供电流;以及
执行机构控制系统,连接到所述执行机构和所述源,以便控制送到所述执行机构的电流;
其中,送到所述执行机构的电流与所述执行机构在开关期间所产生的电压以及所述源的工作电压无关。
2.如权利要求1所述的系统,其特征在于还包括控制从所述源到所述执行机构的电流的放大器。
3.如权利要求2所述的系统,其特征在于还包括连接到所述源和所述放大器的控制器,所述控制器配置成:
检测来自所述源的电压,以及
为所述放大器提供信息以控制送到所述执行机构的电流。
4.如权利要求1所述的系统,其特征在于,所述源的工作电压高于所述执行机构在开关期间所产生的电压。
5.如权利要求1所述的系统,其特征在于,所述执行机构将所述电流转换为使触点沿直线方向相对于另一触点移动的力。
6.如权利要求1所述的系统,其特征在于,所述执行机构通过移动至少一个触点以使其远离另一个触点来接通和断开所述AC电路中的电力。
7.如权利要求1所述的系统,其特征在于,所述触点连接到所述AC电路,使得所述触点接触时,电流流过所述AC电路。
8.如权利要求1所述的系统,其特征在于,所述执行机构控制系统包括检测所述电压源提供的电压的控制器。
9.如权利要求1所述的系统,其特征在于还包括与所述触点相连的控制电路;其中,根据来自所述控制电路的信息控制所述执行机构的电流。
10.一种用于控制与AC电路相连的执行机构以中断电流的方法,所述执行机构配置成将电流转换为力,使触点相对于另一触点移动,从而接通和断开所述AC电路中的电力,所述方法包括:
为执行机构供电;以及
控制送到所述执行机构的电流,使得送到所述执行机构的电流与所述执行机构在开关期间所产生的电压以及供电的电压无关。
11.如权利要求10所述的方法,其特征在于还包括:
检测为所述执行机构供电的电压,以及
提供信息以控制送到所述执行机构的电流。
12.如权利要求10所述的方法,其特征在于,所述供电的电压高于所述执行机构在开关期间产生的电压。
13.如权利要求10所述的方法,其特征在于,所述执行机构通过移动至少一个触点以使其远离另一个触点来接通和断开所述AC电路中的电力。
14.如权利要求10所述的方法,其特征在于,所述触点连接到所述AC电路,使得当所述触点接触时,电流流过所述AC电路。
15.如权利要求10所述的方法,其特征在于还包括检测向所述执行机构供电的电压。
16.如权利要求10所述的方法,其特征在于,根据来自所述控制电路的信息来控制所述执行机构的电流。
17.如权利要求10所述的方法,其特征在于,所述执行机构将所述电流转换为将触点相对于另一触点沿直线方向移动的力。
18.一种用于AC电路的执行机构控制系统,所述执行机构控制系统包括:
连接到执行机构的执行机构接口,所述执行机构将电流转换为力,使触点相对于另一触点移动,从而接通和断开所述AC电路中的电力;
连接到源的输入接口,所述源用于为所述执行机构提供电流;以及
控制器,它连接到所述执行机构接口和所述输入接口,用于控制送到所述执行机构的电流,使得送到所述执行机构的电流与所述执行机构在开关期间所产生的电压以及所述源的工作电压无关。
19.如权利要求18所述的系统,其特征在于还包括控制从所述源到所述执行机构的电流的放大器。
20.如权利要求19所述的系统,其特征在于,所述控制器配置成:
检测来自所述源的电压,以及
为所述放大器提供信息以控制送到所述执行机构的电流。
21.如权利要求18所述的系统,其特征在于,所述源的工作电压高于所述执行机构在开关期间产生的电压。
22.如权利要求18所述的系统,其特征在于,所述执行机构通过移动至少一个触点以使其远离另一个触点来接通和断开所述AC电路中的电力。
23.如权利要求18所述的系统,其特征在于,所述触点连接到所述AC电路,使得当所述触点接触时,电流流过所述AC电路。
24.如权利要求18所述的系统,其特征在于,所述控制器检测所述源提供的电压。
25.如权利要求18所述的系统,其特征在于,所述执行机构控制系统与连接所述触点的控制电路相连;其中,根据来自所述控制电路的信息来控制所述执行机构的电流。
CNA038049996A 2002-01-02 2003-01-02 用于电气开关装置的控制系统 Pending CN1639819A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US34359402P 2002-01-02 2002-01-02
US60/343,594 2002-01-02
US10/067,530 2002-02-07
US10/067,530 US20030123212A1 (en) 2002-01-02 2002-02-07 Control system for electrical switchgear

Publications (1)

Publication Number Publication Date
CN1639819A true CN1639819A (zh) 2005-07-13

Family

ID=26747976

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA038049996A Pending CN1639819A (zh) 2002-01-02 2003-01-02 用于电气开关装置的控制系统

Country Status (9)

Country Link
US (1) US20030123212A1 (zh)
EP (1) EP1466340A4 (zh)
JP (1) JP2005514738A (zh)
KR (1) KR20040076881A (zh)
CN (1) CN1639819A (zh)
AU (1) AU2003202200A1 (zh)
BR (1) BR0306742A (zh)
CA (1) CA2472274A1 (zh)
WO (1) WO2003058663A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873693A (zh) * 2017-05-15 2018-11-23 通用电气公司 对控制系统不稳定输入的稳定的方法及相应系统和飞行器
CN111816496A (zh) * 2019-04-12 2020-10-23 Abb瑞士股份有限公司 断路器的同步断开

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073992A1 (en) * 2004-01-30 2005-08-11 Abb Technology Ltd. Condition monitor for an electrical distribution device
ITMI20040760A1 (it) * 2004-04-19 2004-07-19 Abb Service Srl Dispositivi di protezione elettronici per interuttori automatici
WO2006017162A1 (en) * 2004-07-09 2006-02-16 Abb Technology Ag A method and apparatus for operating a magnetic actuator in a power switching device
US20070105181A1 (en) * 2005-05-04 2007-05-10 Invitrogen Corporation Identification of cancer biomarkers and phosphorylated pdroteins
US7999416B2 (en) * 2008-04-14 2011-08-16 Emergie H. T. International Inc. Module for controlling a switch in a high voltage electrical substation
KR101011008B1 (ko) * 2008-12-08 2011-01-26 최충현 개폐기 제어 시스템
GB201209110D0 (en) * 2012-05-24 2012-07-04 Alstom Technology Ltd Method of fault clearance
US9541604B2 (en) 2013-04-29 2017-01-10 Ge Intelligent Platforms, Inc. Loop powered isolated contact input circuit and method for operating the same
CN103701091B (zh) * 2013-10-22 2017-02-15 博耳(宜兴)电力成套有限公司 断路器漏电控制器
KR101654570B1 (ko) * 2014-07-28 2016-09-06 (주)도일코리아 두 개의 로우패스필터를 구비한 서지필터부를 갖는 개폐기
DE102015217403A1 (de) 2015-09-11 2017-03-16 Siemens Aktiengesellschaft Schaltgerät mit einer Vakuumröhre
CN105551885B (zh) * 2015-12-31 2017-12-29 广州金升阳科技有限公司 接触器的节电电路
JP7275588B2 (ja) * 2019-01-15 2023-05-18 日本ケミコン株式会社 電子部品、電子部品の製造方法およびノイズ処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4423336A (en) * 1982-05-17 1983-12-27 Mcgraw-Edison Company Electromechanically controlled automatic transfer switch and bypass switch assembly
US6291911B1 (en) * 1995-05-15 2001-09-18 Cooper Industries, Inc. Electrical switchgear with synchronous control system and actuator
US6331687B1 (en) * 1995-05-15 2001-12-18 Cooper Industries Inc. Control method and device for a switchgear actuator
JP3562892B2 (ja) * 1996-01-26 2004-09-08 三菱電機株式会社 電磁アクチュエータの駆動回路、電磁アクチュエータ装置、ビデオテープレコーダ及び投写型映像表示装置
US6249418B1 (en) * 1999-01-27 2001-06-19 Gary Bergstrom System for control of an electromagnetic actuator
CN1252768C (zh) * 1999-12-03 2006-04-19 西门子公司 带有受控驱动装置的电磁开关设备以及相应方法和电路
US6501196B1 (en) * 2000-09-12 2002-12-31 Storage Technology Corporation Fault tolerant AC transfer switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873693A (zh) * 2017-05-15 2018-11-23 通用电气公司 对控制系统不稳定输入的稳定的方法及相应系统和飞行器
CN108873693B (zh) * 2017-05-15 2021-09-03 通用电气公司 用于对控制系统不稳定输入的稳定性方法以及相应的系统和飞行器
CN111816496A (zh) * 2019-04-12 2020-10-23 Abb瑞士股份有限公司 断路器的同步断开

Also Published As

Publication number Publication date
WO2003058663A1 (en) 2003-07-17
EP1466340A4 (en) 2005-03-30
CA2472274A1 (en) 2003-07-17
WO2003058663A8 (en) 2004-10-28
EP1466340A1 (en) 2004-10-13
JP2005514738A (ja) 2005-05-19
BR0306742A (pt) 2004-12-28
KR20040076881A (ko) 2004-09-03
AU2003202200A1 (en) 2003-07-24
US20030123212A1 (en) 2003-07-03

Similar Documents

Publication Publication Date Title
CN100561848C (zh) 用于开关式电源的控制电路
CN1639819A (zh) 用于电气开关装置的控制系统
US9270170B2 (en) Voltage sag corrector using a variable duty cycle boost converter
EP1058374A1 (en) PWM control apparatus
CN100431253C (zh) 带接触器旁路功能的功率单元和高压变频器
CN202652595U (zh) Led驱动电路和包括其的led电路
CN202076948U (zh) 改进的开关电路和改进的功率变换系统
CN105493218A (zh) 具有混合开关的断路器
WO2014011259A1 (en) Circuit and method for providing hold-up time in a dc-dc converter
CN104578279A (zh) 电池充电电源系统
CN110970263A (zh) 一种智能型永磁开关控制器
CN1409474A (zh) 开关电源装置
CN1018497B (zh) 电源系统
CN110676918A (zh) 一种电池开关电路、供电管理系统及方法
CN100511904C (zh) 数字继电保护用开关电源
US20190074149A1 (en) DC Voltage Switch
US20190312423A1 (en) Low-voltage protective device
CN114175481A (zh) 电力转换系统的dc-dc转换器
US20190149058A1 (en) Switched mode power supply controller
CN104393571A (zh) 一种igbt模块过流保护系统
CN201075661Y (zh) 短路保护与过欠压保护为一体的开关电源
CN102857102B (zh) 电流保护装置的电流提供组件
CN210640722U (zh) 一种电池开关电路以及包含该电路的供电管理系统
KR102047826B1 (ko) 과전압 보호 회로 및 이를 포함하는 전원 공급 장치
CN201466986U (zh) 具防止突波功能的交换式电源供应器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication