CN1639556B - Method for determining the elasto-plastic behavior of parts made of an anisotropic material, and use of said method - Google Patents

Method for determining the elasto-plastic behavior of parts made of an anisotropic material, and use of said method Download PDF

Info

Publication number
CN1639556B
CN1639556B CN038054027A CN03805402A CN1639556B CN 1639556 B CN1639556 B CN 1639556B CN 038054027 A CN038054027 A CN 038054027A CN 03805402 A CN03805402 A CN 03805402A CN 1639556 B CN1639556 B CN 1639556B
Authority
CN
China
Prior art keywords
mrow
munder
msup
sigma
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN038054027A
Other languages
Chinese (zh)
Other versions
CN1639556A (en
Inventor
O·贝恩哈迪
R·米克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of CN1639556A publication Critical patent/CN1639556A/en
Application granted granted Critical
Publication of CN1639556B publication Critical patent/CN1639556B/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/60Investigating resistance of materials, e.g. refractory materials, to rapid heat changes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • G01N2203/0007Low frequencies up to 100 Hz
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
    • G01N2203/0094Visco-elasticity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0218Calculations based on experimental data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0244Tests performed "in situ" or after "in situ" use
    • G01N2203/0246Special simulation of "in situ" conditions, scale models or dummies

Landscapes

  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Disclosed is a method for determining the elasto-plastic behavior of parts, particularly gas turbine installations, at high temperatures, according to which the linear elastic behavior is determined first while also taking into account the inelastic behavior on the basis of the linear elastic results by applying Neuber's rule. The anisotropic properties of the parts, which appear particularly by using monocrystalline materials, are taken into account in a simple manner by a modified anisotropic Neuber's rule of form (I): sigma*2=sigmaep2[1+(A/C)(a/ER)[Asigmaep2/sigma02]n-1], in which A = inelastic anisotropic correction term, A=1/2[F(Dyy-Dzz)<2>+G(Dzz-Dxx)<2>+H(Dxx-Dyy)<2>+2LDyz<2>+2MDzx<2>+2NDxy<2>], F, G, H, L, M, and N representing the Hill constants, C = elastic anisotropic correctionterm, C=D.E-1.D, sigma* = detected linear stress, sigmaep = estimated inelastic stress, D = directional vector of the elastic and inelastic stresses, E-1= inverse stiffness matrix, ER = reference stiffness, sigma0 = reference stress, and alpha, n = material constants.

Description

Method for determining the elastic-plastic properties of a component consisting of an anisotropic material and use of said method
Technical Field
The present invention relates to the field of analysis and prediction of mechanical component characteristics. The invention relates to a method for determining the elastic-plastic properties of components, in particular of gas turbine plants, at high temperatures.
Background
The components (rotor blades, stator blades, linings, etc.) of gas turbines are often subjected to high loads, so that their service life is limited. Predicting such service life is essential to reliably and economically designing a gas turbine.
The loads on these components consist of forces, high thermal loads, oxidation and corrosion. Mechanical and thermal loading in many cases leads to component fatigue after several thousand load cycles. This Low Cycle Fatigue is described by Low Cycle Fatigue tests (LCF) at isothermal conditions and by thermo-Mechanical Fatigue Tests (TMF) at isothermal conditions.
During the design phase of the gas turbine, the stresses caused by the load are calculated. The complexity of the geometry and/or the loading requires the stress to be calculated using finite element method (FE). However, since the necessary inelastic calculations are generally not possible for cost and time reasons, the prediction of the service life can be carried out almost exclusively on the basis of linear-elastic stresses. In most cases only isothermal data (examination of extended LCF tests) are available, so that the LCF data must also be used for the anisothermal evaluation.
In this respect, the total contrast extension εv,epThe magnitude of (c) is used as the degree of damage (law of damage). If the required number of cycles N on the part is reachedreqThen the total comparative elongation ε at each portion of the partv,epMust satisfy the relation
<math><mrow><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>,</mo><msub><mi>&epsiv;</mi><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow></msub><mo>&le;</mo><msubsup><mi>&epsiv;</mi><mi>a</mi><mi>M</mi></msubsup><mrow><mo>(</mo><msub><mi>T</mi><mi>dam</mi></msub><mo>,</mo><msub><mi>N</mi><mi>req</mi></msub><mo>)</mo></mrow><mo>.</mo></mrow></math>
εa MIs the allowable total elongation amplitude determined from isothermal LCF tests. It should be determined for different temperatures and cycle numbers. Temperature T on damage basisdamIt must be properly selected for one cycle of temperature change.
If the standard load is applied for many minutes at high temperature, additional damage should be taken into account. To understand the cumulative reduction in service life based on damage from creep fatigue and cyclic fatigue, LCF data were measured in a test with hold time.
Extent of damage εv,epCorresponding to the degree of elongation of one action cycle. This cycle was determined from the cycle of the linear-elastic analysis by a modified Neuber-rule.
<math><mrow><mrow><mo>(</mo><mi>b</mi><mo>)</mo></mrow><mo>,</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>&CenterDot;</mo><msup><munder><mi>&epsiv;</mi><mo>&OverBar;</mo></munder><mo>*</mo></msup><mrow><mo>(</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>)</mo></mrow><mo>=</mo><msubsup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi><mi>dev</mi></msubsup><mo>&CenterDot;</mo><msub><munder><mi>&epsiv;</mi><mo>&OverBar;</mo></munder><mi>ep</mi></msub><mrow><mo>(</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>dev</mi></msup><mo>)</mo></mrow></mrow></math>
Wherein,
σ *devin order to measure the error of the linear stress,
ε *(σ *dev) For the purpose of measuring the linear elongation,
σ ep deverror for estimated elastic-plastic stress and
ε ep(σ dev) Is the vector of the magnitude of elastic-plastic elongation.
Extent of damage εv,epAssuming by comparison the magnitude of elongation from total elasticity-plasticityε ep(σ dev) Is determined.
For determining the magnitude of the total elastic-plastic elongationεep(σ dev) The required cyclicity σ - ε -curve is analytically represented by a modified Ramberg-Osgood-relation.
The inelastic effects occurring in the gas turbine components (blades, combustion chambers) can then be approximated by means of the Neuber rule. These effects must be considered in the prediction of the useful life of the structure. However, only the Neuber's-rule (b) for isotropic mechanical materials is known to date.
Since, owing to their special properties in gas turbine production, the use of (anisotropic) monocrystalline materials is increasing in particular for turbine blade parts, it is desirable for the design of these parts, in particular in the determination of the service life under cyclic loading, to provide a calculation method which is similar to that of isotropic materials.
Disclosure of Invention
The object of the present invention is therefore to provide a method for the approximate determination of the elastic-plastic properties of monocrystalline materials at high temperatures, in particular for the determination of the service life of gas turbine plant components made of monocrystalline materials.
The core of the invention is that, in order to take account of the anisotropic properties of the component, in particular produced by using a monocrystalline material, the anisotropic Neuber rule is modified in the following manner
<math><mrow><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>&CenterDot;</mo><msup><munder><mi>&epsiv;</mi><mo>&OverBar;</mo></munder><mo>*</mo></msup><mrow><mo>(</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>)</mo></mrow><mo>=</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><msup><munder><mi>E</mi><mo>=</mo></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>=</mo><msubsup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi><mi>dev</mi></msubsup><msup><munder><mi>E</mi><mo>=</mo></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><msubsup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi><mi>dev</mi></msubsup><mo>+</mo><msubsup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi><mi>dev</mi></msubsup><mo>&CenterDot;</mo><mfrac><mrow><mo>&PartialD;</mo><msubsup><mi>&sigma;</mi><mi>vep</mi><mn>2</mn></msubsup></mrow><mrow><mo>&PartialD;</mo><msub><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi></msub></mrow></mfrac><mo>&CenterDot;</mo><mfrac><mi>&alpha;</mi><msub><mi>E</mi><mi>R</mi></msub></mfrac><msup><mrow><mo>(</mo><mfrac><msubsup><mi>&sigma;</mi><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow><mn>2</mn></msubsup><msubsup><mi>&sigma;</mi><mn>0</mn><mn>2</mn></msubsup></mfrac><mo>)</mo></mrow><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></math>
In this respect, the numerical values are preferredσ *devAndσ ep devusing the following relation
<math><mrow><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>=</mo><munder><mi>D</mi><mo>&OverBar;</mo></munder><msqrt><msup><mi>&sigma;</mi><mrow><mo>*</mo><mn>2</mn></mrow></msup></msqrt></mrow></math>
And
<math><mrow><msubsup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi><mi>dev</mi></msubsup><mo>=</mo><munder><mi>D</mi><mo>&OverBar;</mo></munder><msqrt><msubsup><mi>&sigma;</mi><mi>ep</mi><mn>2</mn></msubsup></msqrt></mrow></math>
in this regard, in the case of a liquid crystal display,D=[Dxx,Dyy,Dzz,Dyz,Dzx,Dxy]is a vector of length 1 and is,D T D1, additionally having a bias, Dxx+Dyy+Dzz1. Furthermore, the relational expressions are appliedσ *·σ *=σ*2Andσ ep·σ ep=σep 2from which the modified Neuber-rule is derived, which can be expressed in the following way
<math><mrow><msup><mi>&sigma;</mi><mrow><mo>*</mo><mn>2</mn></mrow></msup><mo>=</mo><msup><msub><mi>&sigma;</mi><mi>ep</mi></msub><mn>2</mn></msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mi>A</mi><mi>C</mi></mfrac><mfrac><mi>&alpha;</mi><msub><mi>E</mi><mi>R</mi></msub></mfrac><msup><mrow><mo>(</mo><mfrac><mrow><mi>A</mi><msubsup><mi>&sigma;</mi><mi>ep</mi><mn>2</mn></msubsup></mrow><msubsup><mi>&sigma;</mi><mn>0</mn><mn>2</mn></msubsup></mfrac><mo>)</mo></mrow><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math>
Adding anisotropic inelastic correction terms
A = 1 2 [ F ( D yy - D zz ) 2 + G ( D zz - D xx ) 2 + H ( D xx - D yy ) 2 + 2 LD yz 2 + 2 MD zx 2 + 2 ND xy 2 ]
And anisotropic elastic correction term
<math><mrow><mi>C</mi><mo>=</mo><munder><mi>D</mi><mo>&OverBar;</mo></munder><mo>&CenterDot;</mo><msup><munder><mi>E</mi><mo>=</mo></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&CenterDot;</mo><munder><mi>D</mi><mo>&OverBar;</mo></munder><mo>,</mo></mrow></math>
Wherein F, G, H, L, M and N are Hill parameters.
According to a preferred embodiment of the method, the equation-modified Neuber rule is solved using an iterative method, in particular Newton-iteration.
According to the invention, the method is used to determine the service life of a gas turbine component under cyclic load.
Detailed Description
The material model on which the invention is based is deduced from the plastic potential:
<math><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>,</mo><mi>&Omega;</mi><mo>=</mo><mfrac><mrow><mi>&alpha;</mi><msubsup><mi>&sigma;</mi><mn>0</mn><mn>2</mn></msubsup></mrow><mrow><msub><mi>E</mi><mi>R</mi></msub><mi>n</mi></mrow></mfrac><msup><mrow><mo>(</mo><mfrac><msubsup><mi>&sigma;</mi><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow><mn>2</mn></msubsup><msubsup><mi>&sigma;</mi><mn>0</mn><mn>2</mn></msubsup></mfrac><mo>)</mo></mrow><mi>n</mi></msup></mrow></math>
in this case
-ERFor 'reference' -rigidity. Substitution into ERIn order to obtain a formal similarity of the formula to that of the well-known isotropic case. ERChosen according to purpose in the order of magnitude of the correction term for elasticity of the material under investigation, e.g. ER=100000Nmm2
Omega is the plastic potential of the material, from which the plastic elongation is calculated by deduction as a stress,
0for the 'reference' -stress, chosen in the order of the yield point according to the purpose, and
v,epcomparative stress for anisotropy (see below).
Plastic elongation and then formation
<math><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mo>,</mo><msub><munder><mi>&epsiv;</mi><mo>&OverBar;</mo></munder><mi>pl</mi></msub><mo>=</mo><mfrac><mrow><mo>&PartialD;</mo><mi>&Omega;</mi></mrow><mrow><mo>&PartialD;</mo><msub><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi></msub></mrow></mfrac></mrow></math>
By pressing stress from the potential of plasticityσ epLocal development of plastic elongationε pl
Using equations (1) and (2) to arrive at
<math><mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mo>,</mo><mfrac><mrow><mo>&PartialD;</mo><mi>&Omega;</mi></mrow><mrow><mo>&PartialD;</mo><msub><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi></msub></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>&PartialD;</mo><msubsup><mi>&sigma;</mi><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow><mn>2</mn></msubsup></mrow><mrow><mo>&PartialD;</mo><msub><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi></msub></mrow></mfrac><mfrac><mi>&alpha;</mi><msub><mi>E</mi><mi>R</mi></msub></mfrac><msup><mrow><mo>(</mo><mfrac><msubsup><mi>&sigma;</mi><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow><mn>2</mn></msubsup><msubsup><mi>&sigma;</mi><mn>0</mn><mn>2</mn></msubsup></mfrac><mo>)</mo></mrow><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></math>
σv,epThe stresses are compared (anisotropically). In the present anisotropic case, the comparative stress per HILL can be used:
<math><mrow><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mo>,</mo><msubsup><mi>&sigma;</mi><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>[</mo><mi>F</mi><msup><mrow><mo>(</mo><msub><mi>&sigma;</mi><mi>yy</mi></msub><mo>-</mo><msub><mi>&sigma;</mi><mi>zz</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><mi>G</mi><msup><mrow><mo>(</mo><msub><mi>&sigma;</mi><mi>zz</mi></msub><mo>-</mo><msub><mi>&sigma;</mi><mi>xx</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><mi>H</mi><msup><mrow><mo>(</mo><msub><mi>&sigma;</mi><mi>xx</mi></msub><mo>-</mo><msub><mi>&sigma;</mi><mi>yy</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>L</mi><msubsup><mi>&sigma;</mi><mi>yz</mi><mn>2</mn></msubsup><mo>+</mo><mn>2</mn><mi>M</mi><msubsup><mi>&sigma;</mi><mi>zx</mi><mn>2</mn></msubsup><mo>+</mo><mn>2</mn><mi>N</mi><msubsup><mi>&sigma;</mi><mi>xy</mi><mn>2</mn></msubsup><mo>]</mo></mrow></math>
for the general case of orthotropic materials, six dependent plastic material constants F, G, H and L, M and N (Hill constants) should be considered. The special case of 1 ═ F ═ G ═ H ═ 3L ═ 3M ═ 3N results in the well-known von-Mises comparative stress of isotropic materials; the special case of two dependent parameters F ═ G ═ H and L ═ M ═ N yields a formulation of the cubic crystal symmetry, which is notable here for single-crystal materials (e.g. CMSX-4).
From equation (3) follows
<math><mrow><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow><mo>,</mo><msub><munder><mi>&epsiv;</mi><mo>&OverBar;</mo></munder><mi>pl</mi></msub><mo>=</mo><msub><mi>&epsiv;</mi><mi>v</mi></msub><mfrac><mrow><mo>&PartialD;</mo><msubsup><mi>&sigma;</mi><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow><mn>2</mn></msubsup></mrow><mrow><mo>&PartialD;</mo><msub><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi></msub></mrow></mfrac></mrow></math>
Add 'vector'
<math><mrow><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow><mo>,</mo><mfrac><mrow><mo>&PartialD;</mo><msubsup><mi>&sigma;</mi><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow><mn>2</mn></msubsup></mrow><mrow><mo>&PartialD;</mo><msub><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi></msub></mrow></mfrac><mo>=</mo><mfenced open='[' close=']'><mtable><mtr><mtd><mo>-</mo><mi>G</mi><mrow><mo>(</mo><msub><mi>&sigma;</mi><mi>zz</mi></msub><mo>-</mo><msub><mi>&sigma;</mi><mi>xx</mi></msub><mo>)</mo></mrow><mo>+</mo><mi>H</mi><mrow><mo>(</mo><msub><mi>&sigma;</mi><mi>xx</mi></msub><mo>-</mo><msub><mi>&sigma;</mi><mi>yy</mi></msub><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mi>F</mi><mrow><mo>(</mo><msub><mi>&sigma;</mi><mi>yy</mi></msub><mo>-</mo><msub><mi>&sigma;</mi><mi>zz</mi></msub><mo>)</mo></mrow><mo>-</mo><mi>H</mi><mrow><mo>(</mo><msub><mi>&sigma;</mi><mi>xx</mi></msub><mo>-</mo><msub><mi>&sigma;</mi><mi>yy</mi></msub><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mo>-</mo><mi>F</mi><mrow><mo>(</mo><msub><mi>&sigma;</mi><mi>yy</mi></msub><mo>-</mo><msub><mi>&sigma;</mi><mi>xx</mi></msub><mo>)</mo></mrow><mo>+</mo><mi>G</mi><mrow><mo>(</mo><msub><mi>&sigma;</mi><mi>zz</mi></msub><mo>-</mo><msub><mi>&sigma;</mi><mi>xx</mi></msub><mo>)</mo></mrow></mtd></mtr><mtr><mtd><mn>2</mn><mi>N</mi><msub><mi>&sigma;</mi><mi>xy</mi></msub></mtd></mtr><mtr><mtd><mrow><mn>2</mn><msub><mi>M&sigma;</mi><mi>zx</mi></msub></mrow></mtd></mtr><mtr><mtd><mn>2</mn><msub><mi>L&sigma;</mi><mi>yz</mi></msub></mtd></mtr></mtable></mfenced></mrow></math>
And 'comparative elongation'
<math><mrow><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow><mo>,</mo><msub><mi>&epsiv;</mi><mi>v</mi></msub><mo>=</mo><mfrac><mi>&alpha;</mi><msub><mi>E</mi><mi>R</mi></msub></mfrac><mo>&CenterDot;</mo><msup><mrow><mo>(</mo><mfrac><msubsup><mi>&sigma;</mi><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow><mn>2</mn></msubsup><msubsup><mi>&sigma;</mi><mn>0</mn><mn>2</mn></msubsup></mfrac><mo>)</mo></mrow><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></math>
Using the linear-elastic equation for single crystal materials with cubic symmetry of note here
( 8 ) , E = - 1 1 / E - v / E - v / E 0 0 0 - v / E 1 / E - v / E 0 0 0 - v / E - v / E 1 / E 0 0 0 0 0 0 1 / G 0 0 0 0 0 0 1 / G 0 0 0 0 0 0 1 / G E, G and v are cubic
Three function-elastic material constants for symmetric (single crystal-) materials.
Complete anisotropic Ramberg-Osgood Material Law as a sum of elastic and Plastic elongation Generation
<math><mrow><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow><mo>,</mo><msub><munder><mi>&epsiv;</mi><mo>&OverBar;</mo></munder><mi>ep</mi></msub><mo>=</mo><msup><munder><mi>E</mi><mo>=</mo></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&CenterDot;</mo><msub><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi></msub><mo>+</mo><mfrac><msubsup><mrow><mo>&PartialD;</mo><mi>&sigma;</mi></mrow><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow><mn>2</mn></msubsup><mrow><mo>&PartialD;</mo><msub><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi></msub></mrow></mfrac><mfrac><mi>&alpha;</mi><msub><mi>E</mi><mi>R</mi></msub></mfrac><msup><mrow><mo>(</mo><mfrac><msubsup><mi>&sigma;</mi><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow><mn>2</mn></msubsup><msubsup><mi>&sigma;</mi><mn>0</mn><mn>2</mn></msubsup></mfrac><mo>)</mo></mrow><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></math>
In a variation of the Neuber's rule used here, the manner of modifying the linear elastic and elastic plastic values works equally well
<math><mrow><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow><mo>,</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>&CenterDot;</mo><msup><munder><mi>&epsiv;</mi><mo>&OverBar;</mo></munder><mo>*</mo></msup><mrow><mo>(</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>)</mo></mrow><mo>=</mo><msubsup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi><mi>dev</mi></msubsup><mo>&CenterDot;</mo><msub><munder><mi>&epsiv;</mi><mo>&OverBar;</mo></munder><mi>cp</mi></msub><mrow><mo>(</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>dev</mi></msup><mo>)</mo></mrow></mrow></math>
Elastic plastic elongationε ep(σ dev) The deviation value is shown in the Ramberg-Osgood-relation
<math><mrow><mrow><mo>(</mo><mn>11</mn><mo>)</mo></mrow><mo>,</mo><msub><munder><mi>&epsiv;</mi><mo>&OverBar;</mo></munder><mi>ep</mi></msub><mrow><mo>(</mo><msubsup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi><mi>dev</mi></msubsup><mo>)</mo></mrow><mo>=</mo><msup><munder><mi>E</mi><mo>=</mo></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&CenterDot;</mo><msubsup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi><mi>dev</mi></msubsup><mo>+</mo><mfrac><msubsup><mrow><mo>&PartialD;</mo><mi>&sigma;</mi></mrow><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow><mn>22</mn></msubsup><mrow><mo>&PartialD;</mo><msub><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi></msub></mrow></mfrac><mfrac><mi>&alpha;</mi><msub><mi>E</mi><mi>R</mi></msub></mfrac><msup><mrow><mo>(</mo><mfrac><msub><mi>&sigma;</mi><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow></msub><msubsup><mi>&sigma;</mi><mn>0</mn><mn>2</mn></msubsup></mfrac><mo>)</mo></mrow><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></math>
Linear elastic elongation epsilon**dev) Generated from Hooke's Law in the following manner
<math><mrow><mrow><mo>(</mo><mn>12</mn><mo>)</mo></mrow><mo>,</mo><msup><munder><mi>&epsiv;</mi><mo>&OverBar;</mo></munder><mo>*</mo></msup><mrow><mo>(</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>)</mo></mrow><mo>=</mo><msup><munder><mi>E</mi><mo>=</mo></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&CenterDot;</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup></mrow></math>
Thus obtaining the anisotropic Neuber's rule
<math><mrow><mrow><mo>(</mo><mn>13</mn><mo>)</mo></mrow><mo>,</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>&CenterDot;</mo><msup><munder><mi>&epsiv;</mi><mo>&OverBar;</mo></munder><mo>*</mo></msup><mrow><mo>(</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>)</mo></mrow><mo>=</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><msup><munder><mi>E</mi><mo>=</mo></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>=</mo><msubsup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi><mi>dev</mi></msubsup><msup><munder><mi>E</mi><mo>=</mo></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><msubsup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi><mi>dev</mi></msubsup><mo>+</mo><msubsup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi><mi>dev</mi></msubsup><mo>&CenterDot;</mo><mfrac><msubsup><mrow><mo>&PartialD;</mo><mi>&sigma;</mi></mrow><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow><mn>2</mn></msubsup><mrow><mo>&PartialD;</mo><msub><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi></msub></mrow></mfrac><mo>&CenterDot;</mo><mfrac><mi>&alpha;</mi><msub><mi>E</mi><mi>R</mi></msub></mfrac><msup><mrow><mo>(</mo><mfrac><msubsup><mi>&sigma;</mi><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow><mn>2</mn></msubsup><msubsup><mi>&sigma;</mi><mn>0</mn><mn>2</mn></msubsup></mfrac><mo>)</mo></mrow><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></math>
It is assumed here that the elastic-plastic stress is proportional to the elastic stress (calculated from finite elements). Or in other words if it is assumed from the elastic stress σ*Stress in the stress space if transitioning to an estimated inelastic stressThe direction is unchanged. The 'vector' D can be determined therefrom
(14) <math><mrow><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><munder><mi>D</mi><mo>&OverBar;</mo></munder><msqrt><msup><mi>&sigma;</mi><mrow><mo>*</mo><mn>2</mn></mrow></msup></msqrt></mrow></math>
For inelastic (estimated) stresses, the same vector now applies
<math><mrow><mrow><mo>(</mo><mn>15</mn><mo>)</mo></mrow><mo>,</mo><msubsup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi><mi>dev</mi></msubsup><mo>=</mo><munder><mi>D</mi><mo>&OverBar;</mo></munder><msub><msup><msqrt><mi>&sigma;</mi></msqrt><mn>2</mn></msup><mi>ep</mi></msub></mrow></math>
Thereby generating elastic stress
<math><mrow><mrow><mo>(</mo><mn>16</mn><mo>)</mo></mrow><mo>,</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><msup><munder><mi>E</mi><mo>=</mo></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>=</mo><munder><mi>D</mi><mo>&OverBar;</mo></munder><mo>&CenterDot;</mo><msup><munder><mi>E</mi><mo>=</mo></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&CenterDot;</mo><munder><mi>D</mi><mo>&OverBar;</mo></munder><msup><mi>&sigma;</mi><mrow><mo>*</mo><mn>2</mn></mrow></msup><mo>=</mo><mi>C</mi><msup><mi>&sigma;</mi><mrow><mo>*</mo><mn>2</mn></mrow></msup></mrow></math>
And is produced for inelastic stress
<math><mrow><mrow><mo>(</mo><mn>17</mn><mo>)</mo></mrow><mo>,</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>dev</mi></msup><msup><munder><mi>E</mi><mo>=</mo></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>dev</mi></msup><mo>=</mo><munder><mi>D</mi><mo>&OverBar;</mo></munder><mo>&CenterDot;</mo><msup><munder><mi>E</mi><mo>=</mo></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&CenterDot;</mo><munder><mi>D</mi><mo>&OverBar;</mo></munder><msup><mi>&sigma;</mi><mn>2</mn></msup><mo>=</mo><mi>C</mi><msup><mi>&sigma;</mi><mn>2</mn></msup></mrow></math>
For elastic-plastic comparative stress
<math><mrow><mrow><mo>(</mo><mn>18</mn><mo>)</mo></mrow><mo>,</mo><msubsup><mi>&sigma;</mi><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>[</mo><mi>F</mi><msup><mrow><mo>(</mo><msub><mi>D</mi><mi>yy</mi></msub><mo>-</mo><msub><mi>D</mi><mi>zz</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><mi>G</mi><msup><mrow><mo>(</mo><msub><mi>D</mi><mi>zz</mi></msub><mo>-</mo><msub><mi>D</mi><mi>xx</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><mi>H</mi><msup><mrow><mo>(</mo><msub><mi>D</mi><mi>xx</mi></msub><mo>-</mo><msub><mi>D</mi><mi>yy</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><mn>2</mn><msubsup><mi>LD</mi><mi>yz</mi><mn>2</mn></msubsup><mo>+</mo><mn>2</mn><msubsup><mi>MD</mi><mi>zx</mi><mn>2</mn></msubsup><mo>+</mo><mn>2</mn><msubsup><mi>ND</mi><mi>xy</mi><mn>2</mn></msubsup><mo>]</mo></mrow></math>
<math><mrow><msubsup><mi>&sigma;</mi><mi>ep</mi><mn>2</mn></msubsup><mo>=</mo><mi>A</mi><msubsup><mi>&sigma;</mi><mi>ep</mi><mn>2</mn></msubsup></mrow></math>
Therefore, equation (13) can also be expressed in the following manner
<math><mrow><mrow><mo>(</mo><mn>19</mn><mo>)</mo></mrow><mo>,</mo><msup><mi>&sigma;</mi><mrow><mo>*</mo><mn>2</mn></mrow></msup><mo>=</mo><msubsup><mi>&sigma;</mi><mi>ep</mi><mn>2</mn></msubsup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mi>A</mi><mi>C</mi></mfrac><mfrac><mi>&alpha;</mi><msub><mi>E</mi><mi>R</mi></msub></mfrac><msup><mrow><mo>(</mo><mfrac><mrow><mi>A</mi><msubsup><mi>&sigma;</mi><mi>ep</mi><mn>2</mn></msubsup></mrow><msubsup><mi>&sigma;</mi><mn>0</mn><mn>2</mn></msubsup></mfrac><mo>)</mo></mrow><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math>
Adding anisotropic inelastic correction terms
( 20 ) , A = 1 2 [ F ( D yy - D zz ) 2 + G ( D zz - D xx ) 2 + H ( D xx - D vy ) 2 + 2 LD yz 2 + 2 MD zx 2 + 2 ND xy 2 ]
Anisotropic elastic correction term
<math><mrow><mrow><mo>(</mo><mn>21</mn><mo>)</mo></mrow><mo>,</mo><mi>C</mi><mo>=</mo><munder><mi>D</mi><mo>&OverBar;</mo></munder><mo>&CenterDot;</mo><msup><munder><mi>E</mi><mo>=</mo></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&CenterDot;</mo><munder><mi>D</mi><mo>&OverBar;</mo></munder></mrow></math>
Equation (19) σ aboveep 2Iterative solutions (Newton-iteration) can be used as in the case of the 'traditional' Neuber rule. If σ isep 2Determination may then be made byDThe elasto-plastic stress vector is immediately calculated.
To supplement the 'linear' results of the finite element calculations, the above steps are performed, depending on the purpose, in a Post-Processing-program which reads the 'linear' data of elongation and stress from the FE-program memory and further processes these data into the desired inelastic results. In the case of the isotropic Neuber rule, this is prior art. By adding the two ' correction factors ' described above to the iteration step, it is very easy to extend to the anisotropic Neuber's rule described herein.

Claims (5)

1. Method for determining the elastic-plastic properties of a component of a gas turbine plant at high temperatures, in which method first the linear-elastic properties are determined and on the basis of the linear-elastic results the inelastic properties are simultaneously taken into account by using the Neuber rule, characterized in that, in order to take account of the anisotropic properties occurring by using a single crystal material for the component, the following formal modified anisotropic Neuber rule is used
<math><mrow><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>&CenterDot;</mo><msup><munder><mi>&epsiv;</mi><mo>&OverBar;</mo></munder><mo>*</mo></msup><mrow><mo>(</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>)</mo></mrow><mo>=</mo><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><msup><munder><mi>E</mi><munder><mo>&OverBar;</mo><mo>&OverBar;</mo></munder></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>=</mo><msubsup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi><mi>dev</mi></msubsup><msup><munder><mi>E</mi><munder><mo>&OverBar;</mo><mo>&OverBar;</mo></munder></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><msubsup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi><mi>dev</mi></msubsup><mo>+</mo><msubsup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi><mi>dev</mi></msubsup><mo>&CenterDot;</mo><mfrac><msubsup><mrow><mo>&PartialD;</mo><mi>&sigma;</mi></mrow><mi>vep</mi><mn>2</mn></msubsup><mrow><mo>&PartialD;</mo><msub><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mi>ep</mi></msub></mrow></mfrac><mo>&CenterDot;</mo><mfrac><mi>&alpha;</mi><msub><mi>E</mi><mi>R</mi></msub></mfrac><msup><mrow><mo>(</mo><mfrac><msubsup><mi>&sigma;</mi><mrow><mi>v</mi><mo>,</mo><mi>ep</mi></mrow><mn>2</mn></msubsup><msubsup><mi>&sigma;</mi><mn>0</mn><mn>2</mn></msubsup></mfrac><mo>)</mo></mrow><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></mrow></math>
Wherein
σ *devThe error in the measured linear stress,
ε **dev) The linear elongation measured is the linear elongation measured,
σ ep devthe error of the estimated elastic-plastic stress,
σv,cphill elastic-plastic comparative stress
Figure F038054027C00012
Rigid inverse square matrix
ERReference-rigidity
σ0As the standard stress, the stress is,
α, n is constant, and
σ epestimated elastic-plastic stress.
2. The method of claim 1, wherein the value is a numerical valueσ *devAndσ ep devgiven the following relation
<math><mrow><msup><munder><mi>&sigma;</mi><mo>&OverBar;</mo></munder><mrow><mo>*</mo><mi>dev</mi></mrow></msup><mo>=</mo><munder><mi>D</mi><mo>&OverBar;</mo></munder><msqrt><msup><mi>&sigma;</mi><mrow><mo>*</mo><mn>2</mn></mrow></msup></msqrt></mrow></math>
And
Figure F038054027C00014
whereinσ ep·σ ep=σep 2Where D is a length 1 vector with bias properties, the Neuber's rule is modified in the following manner
<math><mrow><msup><mi>&sigma;</mi><mrow><mo>*</mo><mn>2</mn></mrow></msup><mo>=</mo><msup><msub><mi>&sigma;</mi><mi>ep</mi></msub><mn>2</mn></msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><mi>A</mi><mi>C</mi></mfrac><mfrac><mi>&alpha;</mi><msub><mi>E</mi><mi>R</mi></msub></mfrac><msup><mrow><mo>(</mo><mfrac><mrow><mi>A</mi><msubsup><mi>&sigma;</mi><mi>ep</mi><mn>2</mn></msubsup></mrow><msubsup><mi>&sigma;</mi><mn>0</mn><mn>2</mn></msubsup></mfrac><mo>)</mo></mrow><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math>
Adding anisotropic inelastic correction terms
A = 1 2 [ F ( D yy - D zz ) 2 + G ( D zz - D xx ) 2 + H ( D xx - D yy ) 2 + 2 LD yz 2 + 2 MD zx 2 + 2 ND xv 2 ]
And anisotropic elastic correction term
<math><mrow><mi>C</mi><mo>=</mo><munder><mi>D</mi><mo>&OverBar;</mo></munder><mo>&CenterDot;</mo><msup><munder><mi>E</mi><munder><mo>&OverBar;</mo><mo>&OverBar;</mo></munder></munder><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>&CenterDot;</mo><munder><mi>D</mi><mo>&OverBar;</mo></munder><mo>,</mo></mrow></math>
Wherein F, G, H, L, M and N are Hill parameters.
3. The method of claim 2, wherein the equation is solved using an iterative method according to a modified Neuber's rule.
4. Use of the method according to any of claims 1-3 for determining the service life of a gas turbine component under cyclic load.
5. The method of claim 3, wherein said iterative process is a Newton-iteration.
CN038054027A 2002-03-08 2003-02-21 Method for determining the elasto-plastic behavior of parts made of an anisotropic material, and use of said method Expired - Fee Related CN1639556B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH00402/02A CH695515A5 (en) 2002-03-08 2002-03-08 A method for determining the elasto-plastic behavior of consisting of anisotropic material components and use of the method.
CH402/02 2002-03-08
CH402/2002 2002-03-08
PCT/CH2003/000135 WO2003076908A1 (en) 2002-03-08 2003-02-21 Method for determining the elasto-plastic behavior of parts made of an anisotropic material, and use of said method

Publications (2)

Publication Number Publication Date
CN1639556A CN1639556A (en) 2005-07-13
CN1639556B true CN1639556B (en) 2010-04-28

Family

ID=27792856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN038054027A Expired - Fee Related CN1639556B (en) 2002-03-08 2003-02-21 Method for determining the elasto-plastic behavior of parts made of an anisotropic material, and use of said method

Country Status (7)

Country Link
US (1) US7050912B2 (en)
EP (1) EP1483563B1 (en)
JP (1) JP2005519300A (en)
CN (1) CN1639556B (en)
AU (1) AU2003205492A1 (en)
CH (1) CH695515A5 (en)
WO (1) WO2003076908A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH695515A5 (en) 2002-03-08 2006-06-15 Alstom Technology Ltd A method for determining the elasto-plastic behavior of consisting of anisotropic material components and use of the method.
US7613585B1 (en) * 2005-12-05 2009-11-03 Livermore Software Technology Corporation Method and system for defining material properties hierarchically in finite element analysis
US8108156B2 (en) * 2008-11-06 2012-01-31 GM Global Technology Operations LLC Methods, program products, and systems for estimating the stress-strain relationship of a toughened structural adhesive polymer
JP5025676B2 (en) * 2009-03-25 2012-09-12 株式会社東芝 Monitoring device and monitoring method
US9194376B2 (en) * 2011-05-24 2015-11-24 General Electric Company System and method for estimating remaining life for a device
FR2999290B1 (en) * 2012-12-12 2016-01-01 Areva METHOD AND DEVICE FOR ULTRASONIC VOLUMIC CONTROL OF THE PRESENCE OF DEFECTS IN A WELDING
CN103091167B (en) * 2013-01-23 2014-10-29 西北工业大学 Method for continuously measuring change of shrinkage strain ratio of titanium alloy pipe
CN104316388B (en) * 2014-07-25 2016-09-28 中国航空工业集团公司北京航空材料研究院 One carries out method for measuring fatigue life to anisotropic material structural member
CN105718735B (en) * 2016-01-22 2021-06-11 中国建筑第八工程局有限公司 Soil plasticity accumulation model under high cycle cyclic load
CN106802202B (en) * 2017-03-15 2019-04-12 哈尔滨工业大学 A method of measurement anisotropic material plane stress
CN107220430B (en) * 2017-05-24 2019-12-10 中南大学 Method for calculating stress distribution of steel wire layer of woven hydraulic rubber hose in vibration environment
CN108009370B (en) * 2017-12-13 2021-08-17 中国飞机强度研究所 Structural stress sensitivity solving method
CN108416084B (en) * 2018-01-23 2022-02-18 南京理工大学 Elastoplasticity damage finite element method considering elastoplasticity and damage coupling of composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031715A1 (en) * 1994-05-18 1995-11-23 Fatigue Management Associates L.L.C. Method for measuring and extending the service life of fatigue-limited metal components
US5736645A (en) * 1997-01-16 1998-04-07 Ford Global Technologies, Inc. Method of predicting crack initiation based fatigue life
DE10118542A1 (en) * 2001-04-14 2002-10-17 Alstom Switzerland Ltd Method for determining the elasto-plastic behavior of components consisting of anisotropic material and application of the method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH695515A5 (en) 2002-03-08 2006-06-15 Alstom Technology Ltd A method for determining the elasto-plastic behavior of consisting of anisotropic material components and use of the method.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031715A1 (en) * 1994-05-18 1995-11-23 Fatigue Management Associates L.L.C. Method for measuring and extending the service life of fatigue-limited metal components
US5736645A (en) * 1997-01-16 1998-04-07 Ford Global Technologies, Inc. Method of predicting crack initiation based fatigue life
DE10118542A1 (en) * 2001-04-14 2002-10-17 Alstom Switzerland Ltd Method for determining the elasto-plastic behavior of components consisting of anisotropic material and application of the method

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
曾海泉等.基于局部应力应变法的寿命预测系统.沈阳化工学院学报11 1.1997,11(1),41-46.
曾海泉等.基于局部应力应变法的寿命预测系统.沈阳化工学院学报11 1.1997,11(1),41-46. *
田秀云,杜洪增,王忠义.铆接薄壁梁疲劳寿命计算与试验分析.航空学报20 5.1999,20(5),471-474.
田秀云,杜洪增,王忠义.铆接薄壁梁疲劳寿命计算与试验分析.航空学报20 5.1999,20(5),471-474. *
高庆 赵永翔 谷芳毓.基于虚拟应力幅的低周疲劳可靠性分析.核动力工程21 1.2000,21(1),88-93.
高庆 赵永翔 谷芳毓.基于虚拟应力幅的低周疲劳可靠性分析.核动力工程21 1.2000,21(1),88-93. *

Also Published As

Publication number Publication date
JP2005519300A (en) 2005-06-30
EP1483563A1 (en) 2004-12-08
US20050065749A1 (en) 2005-03-24
US7050912B2 (en) 2006-05-23
CH695515A5 (en) 2006-06-15
EP1483563B1 (en) 2015-12-30
WO2003076908A1 (en) 2003-09-18
CN1639556A (en) 2005-07-13
AU2003205492A1 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
CN1639556B (en) Method for determining the elasto-plastic behavior of parts made of an anisotropic material, and use of said method
Wang et al. Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens
Staroselsky et al. Creep, plasticity, and fatigue of single crystal superalloy
Chaboche Continuum damage mechanics: Part I—General concepts
Shi et al. Effects of crystallographic orientations and dwell types on low cycle fatigue and life modeling of a SC superalloy
Szmytka et al. New flow rules in elasto-viscoplastic constitutive models for spheroidal graphite cast-iron
Scott-Emuakpor et al. Development of an improved high cycle fatigue criterion
CN110274826A (en) A kind of hard metal material multiaxis high cycle fatigue failure prediction method based on single shaft fatigue S-N curve
US20140192837A1 (en) System and method for generating a combined model for isothermal and anisothermal fatigue life
Rae et al. Experimental characterisation and computational modelling of cyclic viscoplastic behaviour of turbine steel
CN110220805B (en) Variable-amplitude multi-shaft heat engine fatigue life prediction method based on creep fatigue damage accumulation
CN104316388A (en) A fatigue lifetime measuring method for anisotropic material structural parts
Shlyannikov et al. Creep‐fracture resistance parameters determination based on stress and ductility damage models
Beesley et al. A novel simulation for the design of a low cycle fatigue experimental testing programme
Chowdhury et al. Aspects of power law flow rules in crystal plasticity with glide-climb driven hardening and recovery
XiaoAn et al. Viscoplastic analysis method of an aeroengine turbine blade subjected to transient thermo-mechanical loading
Zhang et al. A multiaxial probabilistic fatigue life prediction method for nickel‐based single crystal turbine blade considering mean stress correction
Du et al. A revised Chaboche model from multiscale approach to predict the cyclic behavior of type 316 stainless steel at room temperature
Měšťánek Low cycle fatigue analysis of a last stage steam turbine blade
Erber et al. Hysteresis and fatigue
Coker et al. A comparison of analysis tools for predicting the inelastic cyclic response of cross-ply titanium matrix composites
Wang et al. A continuum damage mechanics-based viscoplastic model of adapted complexity for high-temperature creep–fatigue loading
US6715364B2 (en) Method for determining the elasto-plastic behavior of components consisting of anisotropic material, and application of the process
Zaletelj et al. Numerical methods for TMF cycle modeling
Vasilyev et al. NUMERICAL METHOD OF SINGLE-CRYSTAL TURBINE BLADE STATIC STRENGTH ESTIMATION TAKING INTO ACCOUNT PLASTICITY AND CREEP EFFECTS.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: Swiss Baden 5400 Bulangbo Fairui Street No. 7

Patentee after: ALSTOM TECHNOLOGY LTD

Address before: Baden, Switzerland

Patentee before: Alstom Technology Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100428

Termination date: 20170221