CN1633108A - 全光交换网动态可重构多粒度光缓存器 - Google Patents

全光交换网动态可重构多粒度光缓存器 Download PDF

Info

Publication number
CN1633108A
CN1633108A CN 200510002008 CN200510002008A CN1633108A CN 1633108 A CN1633108 A CN 1633108A CN 200510002008 CN200510002008 CN 200510002008 CN 200510002008 A CN200510002008 A CN 200510002008A CN 1633108 A CN1633108 A CN 1633108A
Authority
CN
China
Prior art keywords
delay line
buffer
phase
optical
packet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510002008
Other languages
English (en)
Other versions
CN1633108B (zh
Inventor
杨爱英
孙雨南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN 200510002008 priority Critical patent/CN1633108B/zh
Publication of CN1633108A publication Critical patent/CN1633108A/zh
Application granted granted Critical
Publication of CN1633108B publication Critical patent/CN1633108B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

一种基于光纤延迟线和SOA增益光开关的全光交换网动态可重构多粒度光缓存器,具有纳秒量级的读写速度,支持全光交换网中不定长度数据包的缓存。整个光缓存器由不同粒度的光延迟线树级联,每个延迟线树由4种不同粒度的光延迟线组成。每个延迟线树通过最多两个不同粒度延迟线的组合,可以提供10个基本单位(0,1,2,3…9)的缓存时延。因此,两级光延迟线树级联的光缓存器可以提供100个基本单位的缓存时延,三级级联的光缓存器可以1000个基本单位的缓存时延。与已经报道过的光缓存器相比,本发明结构紧凑,缓存时延变化范围大(10ns~1ms),插入损耗低,数据包可以随机读取的特点。

Description

全光交换网动态可重构多粒度光缓存器
技术领域:
本发明涉及一种多粒度光缓存器,尤其涉及多粒度光延迟线树的结构。光缓存是全光分组交换网必不可少的技术,是实现分组包头读取、分组同步、解决路由竞争的关键器件,属于光通信技术领域。
背景技术:
光交换/光路由属于全光网络中关键光节点技术,光交换器件是光交换/光路由的基础。实现光交换系统的关键是开发高速光逻辑器件,即光的读写器件和存储器件。光存储器可以实现光信号的存储。常用的光存储器有双稳态激光二极管光存储器和光纤延迟线。双稳态激光二极管光存储器的原理是利用双稳态激光二极管对输入光信号的响应和保持特性存储光信号。光纤延迟线光存储器的原理是利用光信号在光纤中的传输延时特性达到存储光信号的目的。由于它是无源器件,比双稳态存储器稳定。国内外研究机构针对基于光纤延迟线的光缓存进行了大量研究。光交换系统中的光存储器要求存储时延能够以纳秒量级进行变化;当竞争发生/解除时数据包能够方便灵活地进入/退出光缓存;光缓存还应该对不同比特率、调制格式及波长透明。目前在实验室研究、演示的光纤延迟线光缓存可以分为两类基本结构:环路型和行波型。环路型光缓存,结构紧凑,需要的元器件少。但是数据包在环路中多次循环导致ASE噪声的积累,因此循环次数受到限制。另外由于环路长度固定,为防止前后数据碰撞的发生,数据包的最大长度也受到限制(Langenhorst R.,Eiselt M.,Pieper,W.Fiber,Loop optical buffer,IEEEJournal of Lightwave Technology,1996,14(3),324-335)。和环路结构相比,行波光缓存体积大但存储数据包的长度不受限制(Hunter D.K.,Cotter D.,AhmadR.B.,2×2 buffered switch fabrics for traffic routing,merging,and shaping inphotonic cell networks,IEEE Journal of Lightwave Technology,1997,15(1),86-101)。行波光缓存可以用2×2光开关和光纤延迟线组成,或者采用广播-选择的方式通过由LiNbO3材料制成的定向耦合器连接光纤延迟线组成(Murphy E.J.,AmbroseA.F.,Irvin R.W.,16×16 strictly nonblocking guided-wave optical switchingsystem,IEEE Journal of Lightwave Technology,1996,14(3),352-358)。这类光缓存具有动态重构的特点,但需要解决插损大、偏振敏感以及串扰的问题。
发明内容:
本发明的目的在于针对现有技术的不足,提出一种新的基于多粒度光纤延迟线、SOA增益开关和相移器构成光延迟线树,再由多粒度光延迟线树级联构成光缓存器。本发明的光缓存器提供的缓存时延具有更多的可变值和更大的可变范围(变化范围为10ns至1毫秒),同时又具备结构紧凑、可升级、缓存时延在纳秒量级内动态可重构的特点;存储的数据包长度不受限制,数据包进出光缓存灵活,积累噪声比较低,能满足未来广交换网对光缓存的要求。
为实现这样的目的,本发明由多级光延迟线树构成光缓存器,相邻延迟线树之间具有10倍递增的粒度(如图2所示);如图1所示,每级延迟线树由3dB耦合器(7),1×、2×、4×、7×本级单位长度光延迟线(8)、TOAD环(9)组成;其中TOAD环(9)如图3所示,由3dB耦合器(4)、相移器(5)、SOA增益开关(6)、光纤环(10)组成。在每级延迟线树,通过控制TOAD环中SOA增益开关、相移器使得最多两个不同粒度延迟线级联能够提供10个可变的缓存时延值,分别为{0×,1×,2×,3×,4×,5×,6×,7×,8×,9×}2倍本级单位长度光延迟。总共n级光延迟线树级联,控制各级延迟线树中SOA增益开关、相移器,整个光缓存器可提供10n个可变时延值{0,1×2T,2×2T…(10n-1)×2T}。本发明的核心在于对多粒度光延迟线的设计和对SOA增益开关、相移器的控制。光延迟线的基本粒度T取决于SOA增益开关和相移器的响应速度,在ns量级。以一级延迟线树为例,控制步骤如下
1)数据包输入环形器端口(1),从输出端口(2)进入光缓存器,经过3dB耦合器(4)分成两路分别进入TOAD环(9)和光纤延迟线1T(8)。控制SOA增益开关S0处于开状态,其它所有元器件处于关状态,则数据包通过TOAD环从输入端口返回到环形器端口(2),再通过环形器输出端口(3)离开缓存器;在缓存器中经历的时延为零。
2)数据包输入环形器端口(1),从输出端口(2)进入光缓存器,经过3dB耦合器(4)分成两路分别进入TOAD环(9)和光纤延迟线1T(8)。控制SOA增益开关S0′处于开状态,其它所有元器件处于关状态,数据包通过光纤延迟线1T后进入TOAD环,然后从TOAD环的输入端返回,再次经过延迟线1T后,通过环形器离开缓存器;在缓存器中经历的时延为2×1T。
3)将步骤1)中的相移器P0置于开状态,同时打开增益开关S1′,其它元器件置于关状态,数据包在缓存器中经历的时延为2×2T。
4)将步骤2)中的相移器P0′置于开状态,同时打开增益开关S1′,其它元器件置于关状态,数据包在缓存器中经历的时延为2×(1T+2T)。
5)将步骤1)中的相移器P0、P1打开,同时打开增益开关S1、S2′,其他元器件关闭,数据包在缓存器中经历的时延为2×4T。
6)将步骤2)中的相移器P0′、P1打开,同时打开增益开关S1、S2′,其他元器件关闭,数据包在缓存器中经历的时延为2×(1T+4T)。
7)将步骤3)中的相移器P1′打开,同时打开增益开关S2′,其他元器件关闭,数据包在缓存器中经历的时延为2×(2T+4T)。
8)将步骤1)中的相移器P0、P1、P2打开,同时打开增益开关S1、S2、S3,其他元器件关闭,数据包在缓存器中经历的时延为2×7T。
9)将步骤2)中的相移器P0′、P1、P2打开,同时打开增益开关S1、S2、S3,其他元器件关闭,数据包在缓存器中经历的时延为2×(1T+7T)。
10)将步骤3)中的相移器P1′、P2打开,同时打开增益开关S2、S3,其他元器件关闭,数据包在缓存器中经历的时延为2×(2T+7T);以上控制步骤可以用表一表示数据包在延迟线树中经历时各延值时元器件的工作状态。
按照上述控制步骤,对每级延迟线树进行相似的控制,则在每个延迟线树都可得到10个可变的时延值,从而整个n级延迟线树级联的光缓存器可以提供10n个可变时延值{0,1×2T,2×2T…(10n-1)×2T}。
                                   表一各元件的工作状态
时延2T S0 P0 S0 P0 S1 P1 S1 P1 S2 P2 S2 S3
0 × × × × × × × × × × ×
1 × × × × × × × × × × ×
2 × × × × × × × × ×
3 × × × × × × × × ×
4 × × × × × × ×
5 × × × × × × ×
6 × × × × × × ×
7 × × × × ×
8 × × × × ×
9 × × × × ×
说明:“√”表示元件处于开状态;“×”表示元件处于关状态;相移器处于开状态时使TOAD环中相反方向传输的光产生相对相移π;相移器处于关状态时相反方向传输的光不产生相对相移。
本发明具有显著的有益效果。本发明不限制缓存数据包的长度;当交换节点资源动态可用/不可用时,通过增益开关和相移器的控制,使得正在缓存的数据包退出/进入缓存器。通过对各级光延迟线树的控制,光缓存器能够提供各个可变值的缓存时延,变化范围在10ns-1ms之间,满足光交换网对光缓存的要求。
附图说明:
图1为本发明中多粒度光延迟线树的示意图。
图2为本发明动态可重构多粒度光缓存器示意图。
图3为本发明中环形器的示意图。
图4为本发明中TOAD环的示意图。
图5为数据包在本发明光缓存器中缓存时延为9750×2T的流程图。
图6为数据包在本发明光缓存器中缓存时延为123×2T的流程图。
具体实施方式:
以下结合附图对本发明技术方案的具体实施方式作详细描述。
如图1所示,本发明基于环形器(如图2)、耦合器(7)、多粒度光纤延迟线(8)、TOAD环(9)构成光纤延迟线树,其中TOAD环(9)如图3所示,由3dB耦合器(4)、相移器(5)、SOA增益开关(6)、光纤环(10)构成。数据包输入环形器端口(1),从端口(2)输出进入到光纤延迟线树;在光纤延迟线树中经过缓存后返回到环形器端口(2),从环形器端口(3)输出(即从光延迟线树退出),经过光放大器补偿数据包在缓存器中的经历的功率损耗。本发明的特点是数据包写入、读出缓存器将两次经过同一光延迟线,因此每个延迟线提供两倍的缓存时延。
如图2所示,光缓存器级由4级光延迟线树构成,每级光延迟线树结构相同,不同的是各级延迟线树基本延迟粒度10倍递增。控制各级延迟线树(如发明内容描述),该缓存器能够提供104个可变缓存时延。数据包到达交换网节点,该节点根据资源利用情况,决定数据包是否进入缓存器进行缓存以及相应的缓存时延。一旦数据包需要缓存的时延确定,数据包在光缓存器内各级延迟线树的时延也就确定。通过控制各级延迟线树中的SOA增益开关及相移器,实现数据包在各级延迟线树的缓存时延。根据交换网对缓存的需要,加上更高级的延迟线树,该缓存器还可升级。下结合附图和实施例对本发明做进一步说明。
实施例1:欲将数据包在光缓存器中缓存时延为9750×2T。
数据包在4级延迟线树缓存时延为9×1000×2T;在3级延迟线树缓存时延为7×100×2T;在2级延迟线树缓存时延为5×10×2T;在1级延迟线树缓存时延为0。数据包在缓存器中经历的过程如附图5中虚线所示,步骤如下:
(1)数据包从环形器端口(1)输入,通过端口(2)首先进入第4级延迟线树,此时该延迟线树中增益开关S0,S1′,S2,S3打开,相移器P0,P1′,P2打开,其他增益开关和相移器关闭。数据包通过光延迟线2000T,然后再通过光延迟线7000T,从TOAD环返回后再通过延迟线7000T,顺原路再一次经过延迟线2000T,然后输入环形器端口(2),从端口(3)输出,经过放大后,进入下一级延迟线树。此时该延迟线树中的所有SOA开关和相移器关闭。在第4级延迟线树数据包经历的缓存时延为(2000T+7000T)×2。
(2)数据包从环形器端口(1)输入,通过端口(2)进入第3级延迟线树。此时该延迟线树中增益开关S0,S1,S2,S3打开,相移器P0,P1,P2打开,其他增益开关和相移器关闭。数据包通过光延迟线700T,从TOAD环返回后再通过延迟线700T,然后输入环形器端口(2),从端口(3)输出,经过放大后,进入下一级延迟线树。此时关闭该延迟线树中所有SOA开关和相移器。在第3级延迟线树数据包经历的缓存时延为700T×2。
(3)数据包从环形器端口(1)输入,通过端口(2)进入第2级延迟线树。此时该延迟线树中增益开关S0′,S1,S2′打开,相移器P0′,P1打开,其他增益开关和相移器关闭。数据包通过光延迟线10T后在通过延迟线40T,从TOAD环返回后再通过延迟线40T,顺原路再一次经过延迟线10T然后输入环形器端口(2),从端口(3)输出,经过放大后,进入下一级延迟线树。此时关闭该延迟线树中所有SOA开关和相移器。在第2级延迟线树数据包经历的缓存时延为(10T+40T)×2。
(4)数据包从环形器端口(1)输入,通过端口(2)进入第1级延迟线树。此时该延迟线树中只有增益开关S0打开,其他增益开关和相移器关闭。数据包直接从TOAD环返回到环形器端口(2),从端口(3)输出,关闭增益开关S0。这时数据包在第1级延迟线树没有进行缓存。至此数据包在整个缓存器中的缓存结束,总的缓存时延为9750×2T。
实施例2:欲将数据包在光缓存器中缓存时延为123×2T。
数据包在4级延迟线树缓存时延为零;在3级延迟线树缓存时延为1×100×2T;在2级延迟线树缓存时延为2×10×2T;在1级延迟线树缓存时延为3×2T。数据包在缓存器中经历的过程如附图6中虚线所示,步骤如下:
(1)数据包从环形器端口(1)输入,通过端口(2)首先进入第4级延迟线树,此时该延迟线树中增益开关只有增益开关S0打开,其他增益开关和相移器关闭。数据包直接从TOAD环返回到环形器端口(2),从端口(3)输出,经过放大后,进入下一级延迟线树。这时数据包在第4级延迟线树没有进行缓存。此时该延迟线树中的所有SOA开关和相移器关闭。
(2)数据包从环形器端口(1)输入,通过端口2进入第(3)级延迟线树。此时该延迟线树中增益开关S0′打开,其他增益开关和相移器关闭。数据包通过光延迟线100T,从TOAD环返回后再通过延迟线100T,然后输入环形器端口(2),从端口(3)输出,经过放大后,进入下一级延迟线树。此时关闭该延迟线树中所有SOA开关和相移器。在第3级延迟线树数据包经历的缓存时延为100T×2。
(3)数据包从环形器端口(1)输入,通过端口(2)进入第2级延迟线树。此时该延迟线树中增益开关S0,S1′打开,相移器P0打开,其他增益开关和相移器关闭。数据包通过光延迟线20T,从TOAD环返回后再通过延迟线20T,然后输入环形器端口(2),从端口(3)输出,经过放大后,进入下一级延迟线树。此时关闭该延迟线树中所有SOA开关和相移器。在第2级延迟线树数据包经历的缓存时延为20T×2。
(4)数据包从环形器端口(1)输入,通过端口(2)进入第1级延迟线树。此时该延迟线树中增益开关S0′,S1′打开,相移器P0′打开,其他增益开关和相移器关闭。数据包通过光延迟线1T后在通过延迟线2T,从TOAD环返回后再通过延迟线2T,顺原路再一次经过延迟线1T然后输入环形器端口(2),从端口(3)输出,关闭该延迟线树中所有SOA开关和相移器。这时数据包在第1级延迟线树经历的缓存时延为(1T+2T)×2。至此数据包在整个缓存器中的缓存结束,总的缓存时延为123×2T。

Claims (5)

1.一种动态可重构多粒度光缓存器结构,其特征在于:不同粒度光延迟线树级联,数据包通过环形器依次写入各级光纤延迟线树,再通过环形器从光纤延迟线树读出;数据包在每个延迟线树中,通过各TOAD环和不同粒度光延迟线的组合经历10个(0,1,2...7,8,9)不同值的时延。
2.如权利要求1所述的动态可重构多粒度光缓存器,其特征在于:所述的各级延迟线树分别由4种不同粒度的光纤延迟线(8)构成;构成一级延迟线树的时延粒度是1T,2T,4T,7T;构成二级延迟线树的粒度是10T,20T,40T,70T,…构成n级延迟线树的粒度是10n-1T,2×10n-1T,4×10n-1T,7×10n-1T。
3.如权利要求1所述的动态可重构多粒度光缓存器,其特征在于:所述的延迟线树由耦合器(7)、光纤延迟线(8)和TOAD环构成(9);其中TOAD环(9)由3dB光耦合器(4)、SOA增益光开关(6)、相移器(5)和光纤环(10)组成,相移器(5)关时环路中正、反向传输的光相位相同(耦合器引起的突变相位除外),相移器(15)开时环路中正、反向传输的光相位相差π弧度(耦合器引起的突变相位除外)。
4.如权利要求1所述的动态可重构多粒度光缓存器,其特征在于:在每个延迟线树中控制TOAD环的状态和不同粒度光延迟线的组合提供10个(0,1,2...7,8,,9)不同值的时延;以一级延迟线树为例,控制步骤如下:
1)数据包输入环形器端口(1),从输出端口(2)进入光缓存器,经过3dB耦合器(4)分成两路分别进入TOAD环(9)和光纤延迟线1T(8);控制SOA增益开关S0处于开状态,其它所有元器件处于关状态,则数据包通过TOAD环从输入端口返回到环形器端口(2),再通过环形器输出端口(3)离开缓存器;在缓存器中经历的时延为零;
2)数据包输入环形器端口(1),从输出端口(2)进入光缓存器,经过3dB耦合器(4)分成两路分别进入TOAD环(9)和光纤延迟线1T(8);控制SOA增益开关S0′处于开状态,其它所有元器件处于关状态,数据包通过光纤延迟线1T后进入TOAD环,然后从TOAD环的输入端返回,再次经过延迟线1T后返回到环形器端口(2),再通过环形器输出端口(3)离开缓存器;在缓存器中经历的时延为2×1T;
3)将步骤1)中的相移器P0置于开状态,同时打开增益开关S1′,其它元器件置于关状态,数据包在缓存器中经历的时延为2×2T;
4)将步骤2)中的相移器P0′置于开状态,同时打开增益开关S1′,其它元器件置于关状态,数据包在缓存器中经历的时延为2×(1T+2T);
5)将步骤1)中的相移器P0、P1打开,同时打开增益开关S1、S2′,其他元器件关闭,数据包在缓存器中经历的时延为2×4T;
6)将步骤2)中的相移器P0′、P1打开,同时打开增益开关S1、S2′,其他元器件关闭,数据包在缓存器中经历的时延为2×(1T+4T)
7)将步骤3)中的相移器P1′打开,同时打开增益开关S2′,其他元器件关闭,数据包在缓存器中经历的时延为2×(2T+4T);
8)将步骤1)中的相移器P0、P1、P2打开,同时打开增益开关S1、S2、S3,其他元器件关闭,数据包在缓存器中经历的时延为2×7T;
9)将步骤2)中的相移器P0′、P1、P2打开,同时打开增益开关S1、S2、S3,其他元器件关闭,数据包在缓存器中经历的时延为2×(1T+7T);
10)将步骤3)中的相移器P1′、P2打开,同时打开增益开关S2、S3,其他元器件关闭,数据包在缓存器中经历的时延为2×(2T+7T);
以上控制步骤可以用表一表示数据包在延迟线树中经历时各延值时元器件的工作状态;
                            表一  各元件的工作状态 时延2T S0 P0 S0 P0 S1 P1 S1 P1 S2 P2 S2 S3 0 × × × × × × × × × × × 1 × × × × × × × × × × × 2 × × × × × × × × × 3 × × × × × × × × × 4 × × × × × × × 5 × × × × × × × 6 × × × × × × × 7 × × × × × 8 × × × × × 9 × × × × ×
说明:“√”表示元件处于开状态;“×”表示元件处于关状态;相移器处于开状态时使TOAD环中相反方向传输的光产生相对相移π;相移器处于关状态时相反方向传输的光不产生相对相移。
5.如权利要求4所述的控制步骤,对每级延迟线树进行相似的控制,则在每个延迟线树都可得到10个可变的时延值,从而整个n级延迟线树级联的光缓存器可以提供10n个可变时延值{0,1×2T,2×2T…(10n-1)×2T}。
CN 200510002008 2005-01-12 2005-01-12 全光交换网动态可重构多粒度光缓存器 Expired - Fee Related CN1633108B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200510002008 CN1633108B (zh) 2005-01-12 2005-01-12 全光交换网动态可重构多粒度光缓存器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510002008 CN1633108B (zh) 2005-01-12 2005-01-12 全光交换网动态可重构多粒度光缓存器

Publications (2)

Publication Number Publication Date
CN1633108A true CN1633108A (zh) 2005-06-29
CN1633108B CN1633108B (zh) 2010-05-05

Family

ID=34852914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510002008 Expired - Fee Related CN1633108B (zh) 2005-01-12 2005-01-12 全光交换网动态可重构多粒度光缓存器

Country Status (1)

Country Link
CN (1) CN1633108B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114886B (zh) * 2007-08-30 2011-09-07 北京交通大学 偏振型光缓存器及其调节方法
CN102354802A (zh) * 2011-11-01 2012-02-15 东南大学 连通树形延迟线领结脉冲天线
CN102354800A (zh) * 2011-11-01 2012-02-15 东南大学 树形延迟线领结脉冲天线
CN102361161A (zh) * 2011-09-08 2012-02-22 东南大学 树形接入连通延迟线渐变槽线脉冲天线
CN102361159A (zh) * 2011-10-20 2012-02-22 东南大学 树形接入异面延迟线电阻加载对跖维瓦尔第脉冲天线
CN102361158A (zh) * 2011-10-20 2012-02-22 东南大学 延迟线对跖维瓦尔第脉冲天线
CN101431700B (zh) * 2008-12-19 2012-03-28 重庆邮电大学 一种输出式循环共享光分组交换网络缓存装置
CN102509864A (zh) * 2011-11-01 2012-06-20 东南大学 连通树形延迟线电阻加载领结脉冲天线
CN102509863A (zh) * 2011-11-01 2012-06-20 东南大学 树形延迟线电阻加载领结脉冲天线
CN103715598A (zh) * 2014-01-07 2014-04-09 北京交通大学 半导体光放大器级联偏振主态高可靠性对准方法及系统
WO2015188372A1 (zh) * 2014-06-13 2015-12-17 华为技术有限公司 光缓存器以及光缓存方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064547A (ja) * 2000-08-16 2002-02-28 Nippon Telegr & Teleph Corp <Ntt> スイッチ装置及びスイッチング方法
DE50200697D1 (de) * 2002-01-08 2004-09-02 Alcatel Sa Variable optische Verzögerungsleitung und Verwendung der variablen optischen Verzögerungsleitung
CN1186659C (zh) * 2002-11-27 2005-01-26 北京交通大学 双环耦合全光缓存器

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114886B (zh) * 2007-08-30 2011-09-07 北京交通大学 偏振型光缓存器及其调节方法
CN101431700B (zh) * 2008-12-19 2012-03-28 重庆邮电大学 一种输出式循环共享光分组交换网络缓存装置
CN102361161B (zh) * 2011-09-08 2014-01-01 东南大学 树形接入连通延迟线渐变槽线脉冲天线
CN102361161A (zh) * 2011-09-08 2012-02-22 东南大学 树形接入连通延迟线渐变槽线脉冲天线
CN102361159B (zh) * 2011-10-20 2014-01-01 东南大学 树形接入异面延迟线电阻加载对跖维瓦尔第脉冲天线
CN102361159A (zh) * 2011-10-20 2012-02-22 东南大学 树形接入异面延迟线电阻加载对跖维瓦尔第脉冲天线
CN102361158A (zh) * 2011-10-20 2012-02-22 东南大学 延迟线对跖维瓦尔第脉冲天线
CN102354802B (zh) * 2011-11-01 2013-11-27 东南大学 连通树形延迟线领结脉冲天线
CN102509863A (zh) * 2011-11-01 2012-06-20 东南大学 树形延迟线电阻加载领结脉冲天线
CN102354800B (zh) * 2011-11-01 2013-11-27 东南大学 树形延迟线领结脉冲天线
CN102509864A (zh) * 2011-11-01 2012-06-20 东南大学 连通树形延迟线电阻加载领结脉冲天线
CN102509864B (zh) * 2011-11-01 2014-01-01 东南大学 连通树形延迟线电阻加载领结脉冲天线
CN102354800A (zh) * 2011-11-01 2012-02-15 东南大学 树形延迟线领结脉冲天线
CN102509863B (zh) * 2011-11-01 2014-01-01 东南大学 树形延迟线电阻加载领结脉冲天线
CN102354802A (zh) * 2011-11-01 2012-02-15 东南大学 连通树形延迟线领结脉冲天线
CN103715598A (zh) * 2014-01-07 2014-04-09 北京交通大学 半导体光放大器级联偏振主态高可靠性对准方法及系统
CN103715598B (zh) * 2014-01-07 2017-01-04 北京交通大学 半导体光放大器级联偏振主态高可靠性对准方法及系统
WO2015188372A1 (zh) * 2014-06-13 2015-12-17 华为技术有限公司 光缓存器以及光缓存方法
CN105393477A (zh) * 2014-06-13 2016-03-09 华为技术有限公司 光缓存器以及光缓存方法
CN105393477B (zh) * 2014-06-13 2018-07-13 华为技术有限公司 光缓存器以及光缓存方法

Also Published As

Publication number Publication date
CN1633108B (zh) 2010-05-05

Similar Documents

Publication Publication Date Title
CN1633108A (zh) 全光交换网动态可重构多粒度光缓存器
Chlamtac et al. An optical switch architecture for Manhattan networks
Saleh Transparent optical networking in backbone networks
CN1141817C (zh) 基于光突发交换的多粒度光路由器
CN101610435B (zh) 队列式全光缓存器
Shukla et al. Performance comparison between recirculating loop buffer-based optical packet switch architectures
CN110430486B (zh) 一种基于集成式混合光交换网络的边界交换节点
CN101039528A (zh) 基于光分组交换及光组播的分级控制计算机系统
CN100428660C (zh) 一种具有内部加速的光突发交换节点
CN1324830C (zh) 可调光分路可扩展组播光交换结构
CN1235357C (zh) 支持突发及非突发业务的全光分组交换节点结构
TWI744945B (zh) 綠色再生能源之高效率網路
CN101350672B (zh) 堆栈式全光缓存器
CN1678127A (zh) 一种大容量多播严格无阻塞交叉矩阵结构
CN1283058C (zh) 基于可调波长变换器共享的光包交换节点结构
CN1190915C (zh) 采用多波长标记的光控光交换结构
Farahmand et al. Differentiated energy savings in optical networks with grooming capabilities
Masetti System functionalities and architectures in photonic packet switching
Wu et al. A switched delay line based optical switch architecture with a bypass line
Bowers et al. Optical buffering and switching for optical packet switching
CN1206825C (zh) 基于可调波长变换器的光包交换网络节点结构
CN101656900A (zh) 一种基于负载选择的ops节点光缓存装置及缓存方法
Anan et al. Architecture and performance of a next-generation optical burst switch (OBS)
Van Caenegem et al. Internal connectivity of optical crossconnects in opaque networks
Pattavina Performance of deflection routing algorithms in IP optical transport networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100505

Termination date: 20130112

CF01 Termination of patent right due to non-payment of annual fee