CN1623656A - Photocatalyst and preparation method of highly active nano-magnetic composite - Google Patents
Photocatalyst and preparation method of highly active nano-magnetic composite Download PDFInfo
- Publication number
- CN1623656A CN1623656A CN 200410072590 CN200410072590A CN1623656A CN 1623656 A CN1623656 A CN 1623656A CN 200410072590 CN200410072590 CN 200410072590 CN 200410072590 A CN200410072590 A CN 200410072590A CN 1623656 A CN1623656 A CN 1623656A
- Authority
- CN
- China
- Prior art keywords
- solution
- add
- magnetic
- absolute ethanol
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 31
- 239000002131 composite material Substances 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims description 19
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 48
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 claims abstract description 3
- 239000004065 semiconductor Substances 0.000 claims abstract description 3
- 235000011150 stannous chloride Nutrition 0.000 claims abstract description 3
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 claims abstract description 3
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 claims abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 71
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 48
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 34
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 24
- 239000008367 deionised water Substances 0.000 claims description 24
- 229910021641 deionized water Inorganic materials 0.000 claims description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 22
- 239000011553 magnetic fluid Substances 0.000 claims description 20
- 238000010907 mechanical stirring Methods 0.000 claims description 16
- 239000010936 titanium Substances 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- 230000007935 neutral effect Effects 0.000 claims description 11
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 8
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 8
- 239000003513 alkali Substances 0.000 claims description 8
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims description 8
- 239000012065 filter cake Substances 0.000 claims description 8
- 238000003760 magnetic stirring Methods 0.000 claims description 8
- 229910017604 nitric acid Inorganic materials 0.000 claims description 8
- 238000001556 precipitation Methods 0.000 claims description 8
- 239000011162 core material Substances 0.000 claims description 7
- 229940057838 polyethylene glycol 4000 Drugs 0.000 claims description 7
- 238000010992 reflux Methods 0.000 claims description 7
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 4
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical class O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 claims description 4
- 239000004408 titanium dioxide Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000011257 shell material Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000000975 co-precipitation Methods 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims description 2
- 239000011135 tin Substances 0.000 claims description 2
- -1 titanium alkoxide Chemical class 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 5
- 238000002156 mixing Methods 0.000 abstract description 3
- 238000003980 solgel method Methods 0.000 abstract description 2
- 229910021577 Iron(II) chloride Inorganic materials 0.000 abstract 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 abstract 1
- 230000003197 catalytic effect Effects 0.000 abstract 1
- 125000004122 cyclic group Chemical group 0.000 abstract 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical class O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 abstract 1
- 239000012530 fluid Substances 0.000 abstract 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 abstract 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 62
- 239000012982 microporous membrane Substances 0.000 description 13
- 230000032683 aging Effects 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 6
- 229940012189 methyl orange Drugs 0.000 description 6
- 239000012266 salt solution Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000001699 photocatalysis Effects 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WDEQGLDWZMIMJM-UHFFFAOYSA-N benzyl 4-hydroxy-2-(hydroxymethyl)pyrrolidine-1-carboxylate Chemical compound OCC1CC(O)CN1C(=O)OCC1=CC=CC=C1 WDEQGLDWZMIMJM-UHFFFAOYSA-N 0.000 description 2
- 239000011246 composite particle Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229960004756 ethanol Drugs 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 101100183412 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SIN4 gene Proteins 0.000 description 1
- 102100026758 Serine/threonine-protein kinase 16 Human genes 0.000 description 1
- 229910020900 Sn-Fe Inorganic materials 0.000 description 1
- 229910019314 Sn—Fe Inorganic materials 0.000 description 1
- 101150108263 Stk16 gene Proteins 0.000 description 1
- 101150077668 TSF1 gene Proteins 0.000 description 1
- BYTDIQOKYYYLIV-UHFFFAOYSA-N [Ti].[Fe].[Sn] Chemical compound [Ti].[Fe].[Sn] BYTDIQOKYYYLIV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 229960000935 dehydrated alcohol Drugs 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- IXQWNVPHFNLUGD-UHFFFAOYSA-N iron titanium Chemical class [Ti].[Fe] IXQWNVPHFNLUGD-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种高活性纳米磁性复合体的光催化剂及制备方法,属于磁性光催化剂技术。The invention relates to a photocatalyst and a preparation method of a high-activity nanometer magnetic composite, belonging to the magnetic photocatalyst technology.
背景技术Background technique
有关磁性光催化剂论文:Papers about magnetic photocatalysts:
李新军等.磁性纳米光催化剂的制备及其光催化性能[J].中国有色金属学报,2001,11(6):971-976Li Xinjun et al. Preparation and photocatalytic properties of magnetic nano-photocatalysts[J]. Chinese Journal of Nonferrous Metals, 2001, 11(6): 971-976
文章阐述了利用有机—无机纳米复合技术,将酞菁镍与四氧化三铁纳米粒子复合,作为磁核,采用溶胶—凝胶技术制备纳米磁性复合体光催化剂。其结构为核壳结构,壳为二氧化钛,核为酞菁镍与四氧化三铁复合粒子,为了防止磁核与二氧化钛的接触,还加入了二氧化硅惰性层。The article describes the use of organic-inorganic nano-composite technology to compound nickel phthalocyanine and ferric oxide nanoparticles as magnetic cores, and to prepare nano-magnetic composite photocatalysts using sol-gel technology. Its structure is a core-shell structure, the shell is titanium dioxide, and the core is composite particles of nickel phthalocyanine and ferric oxide. In order to prevent the contact between the magnetic core and titanium dioxide, an inert layer of silicon dioxide is also added.
此方法所制备的磁核在乙醇中分散呈悬浮状态,非纳米尺度(胶体状态),而且溶胶—凝胶过程中只采用了搅拌,难以使磁核达到纳米级的分散。热处理升温速度没有加以控制,造成烧结塌陷严重。The magnetic nuclei prepared by this method are dispersed in ethanol in a suspended state, non-nanoscale (colloidal state), and only stirring is used in the sol-gel process, so it is difficult to make the magnetic nuclei reach nanoscale dispersion. The heating rate of heat treatment is not controlled, resulting in serious sintering collapse.
以上方法所制备的纳米磁性复合体光催化剂未经表面改性,光催化活性较低。The nano-magnetic composite photocatalyst prepared by the above method has no surface modification and has low photocatalytic activity.
发明内容Contents of the invention
本发明的目的在于提供一种高活性纳米磁性复合体的光催化剂及制备方法,该光催化剂活性高,制备过程简单。The object of the present invention is to provide a photocatalyst and a preparation method of a high-activity nano-magnetic composite body. The photocatalyst has high activity and a simple preparation process.
本发明是通过下述技术方案加以实现的。一种高活性纳米磁性复合体的光催化剂,其特征在于该催化剂平均粒径为80nm~100nm;核材为有机改性四氧化三铁,壳材为二氧化锡二氧化钛的复合半导体,光催化剂中钛锡铁原子比例为:(75~80)∶(10~15)∶(5~10)。The present invention is achieved through the following technical solutions. A photocatalyst of a highly active nano-magnetic composite, characterized in that the average particle size of the catalyst is 80nm to 100nm; the core material is organically modified ferric oxide, and the shell material is a compound semiconductor of tin dioxide and titanium dioxide. The atomic ratio of titanium tin iron is: (75-80): (10-15): (5-10).
上述的光催化剂制备方法,其特征在于包括以下步骤:Above-mentioned photocatalyst preparation method is characterized in that comprising the following steps:
1、醇基Fe3O4磁流体制备1. Preparation of alcohol-based Fe 3 O 4 magnetic fluid
以共沉淀法制备纳米Fe3O4磁流体:按Fe2+、Fe3+摩尔比为1∶2~2∶3,将配制好的0.25mol/L~0.5mol/L FeCl2溶液和0.25mol/L~0.5mol/L FeCl3溶液以及聚乙二醇4000溶液或二乙醇胺溶液加入到装有机械搅拌的四口烧瓶中,其中聚乙二醇4000或二乙醇胺占反应液的质量百分比为1%~2%,在60℃~80℃恒温水浴中加热,同时通入氮气加以保护。缓慢滴加1mol/L~2mol/L NaOH溶液,待pH值到6~7,有黑色Fe3O4粒子出现,继续加碱,调节pH值为11~12。温度升至80℃~90℃,陈化。将制备的Fe3O4粒子用去离子水洗涤至中性,再用无水乙醇洗涤,磁力沉降后,用无水乙醇稀释,超声分散,制成醇基Fe3O4磁流体。Preparation of nanometer Fe 3 O 4 magnetic fluid by co-precipitation method: according to the molar ratio of Fe 2+ and Fe 3+ as 1:2~2:3, the prepared 0.25mol/L~0.5mol/L FeCl 2 solution and 0.25 mol/L~0.5mol/L FeCl 3 solution and polyethylene glycol 4000 solution or diethanolamine solution are added in the four-necked flask equipped with mechanical stirring, wherein the mass percentage of polyethylene glycol 4000 or diethanolamine in the reaction solution is 1% to 2%, heated in a constant temperature water bath at 60°C to 80°C, and at the same time fed nitrogen for protection. Slowly add 1mol/L-2mol/L NaOH solution dropwise, until the pH value reaches 6-7, black Fe 3 O 4 particles appear, continue to add alkali, and adjust the pH value to 11-12. The temperature rises to 80°C to 90°C for aging. The prepared Fe 3 O 4 particles were washed with deionized water until neutral, and then washed with absolute ethanol. After magnetic precipitation, they were diluted with absolute ethanol and dispersed ultrasonically to prepare alcohol-based Fe 3 O 4 magnetic fluid.
2、二氧化锡溶胶制备2. Preparation of tin dioxide sol
采用二氯化锡或四氯化锡为原料,加入到无水乙醇中,配制成0.2mol/L~0.5mol/L的溶液,磁力搅拌条件下,回流,得到无色透明溶胶。陈化12h~24h,缓慢滴加1mol/L~10mol/L NH3·H2O,形成乳白色凝胶。用去离子水洗涤,再醇洗至无氯离子。洗涤后过滤,将滤饼转移入无水乙醇中,超声分散,形成二氧化锡溶胶。Tin dichloride or tin tetrachloride is used as raw material, added to absolute ethanol to prepare a solution of 0.2 mol/L to 0.5 mol/L, and refluxed under magnetic stirring conditions to obtain a colorless transparent sol. After aging for 12h~24h, slowly add 1mol/L~10mol/L NH 3 ·H 2 O dropwise to form a milky white gel. Wash with deionized water, and then wash with alcohol until there is no chloride ion. After washing, filter, transfer the filter cake into absolute ethanol, and ultrasonically disperse to form tin dioxide sol.
3、复合体光催化剂凝胶制备3. Preparation of composite photocatalyst gel
按钛锡原子比为8∶1~5∶1,钛铁原子比为7.5∶1~16∶1。取上述二氧化锡溶胶,加入钛酸四丁酯,超声分散,陈化,再加入上述醇基Fe3O4磁流体,超声分散,形成溶液A。按酸钛摩尔比(H+/Ti)为0.05∶1~0.2∶1,醇钛摩尔比为9∶1~18∶1,水钛摩尔比为2.8∶1~5.6∶1。将去离子水加入到无水乙醇中,滴加硝酸,超声分散,配制成溶液B,剧烈机械搅拌下,将溶液B缓慢滴入溶液A中,直至凝胶形成。The atomic ratio of titanium to tin is 8:1 to 5:1, and the atomic ratio of titanium to iron is 7.5:1 to 16:1. Take the above-mentioned tin dioxide sol, add tetrabutyl titanate, ultrasonically disperse, age, then add the above-mentioned alcohol-based Fe 3 O 4 magnetic fluid, ultrasonically disperse to form solution A. The molar ratio of titanium acid (H + /Ti) is 0.05:1-0.2:1, the molar ratio of titanium alkoxide is 9:1-18:1, and the molar ratio of titanium water is 2.8:1-5.6:1. Add deionized water to absolute ethanol, add nitric acid dropwise, and ultrasonically disperse to prepare solution B. Under vigorous mechanical stirring, slowly drop solution B into solution A until a gel is formed.
4、凝胶的热处理4. Heat treatment of the gel
将凝胶在70℃~90℃下真空干燥,研碎,在氮气气氛下,经程序控温马弗炉热处理。25℃~250℃以1℃/min升温,250℃以上以2℃/min升温,升温至450℃~650℃,保温1h以上,冷却至150℃以下时关闭氮气。The gel is vacuum-dried at 70°C to 90°C, pulverized, and heat-treated in a muffle furnace with programmed temperature under nitrogen atmosphere. From 25°C to 250°C, the temperature is raised at 1°C/min, and above 250°C, the temperature is raised at 2°C/min, and the temperature is raised to 450°C to 650°C, kept for more than 1 hour, and the nitrogen is turned off when it is cooled to below 150°C.
上述的光催化剂及制备方法其优点为:Above-mentioned photocatalyst and its advantage of preparation method are:
整个制备过程为液相化学途径,采用纳米/纳米复合技术,能够保证复合体粒子的结构合理,纳米尺度混合,包覆均匀。磁核经有机表面活性剂改性后,能够在乙醇中呈胶体状态分散,保证了磁核的纳米尺度。表面活性剂不仅起到抗氧化剂和分散剂的作用,还可以在热处理过程中起到隔膜作用,防止铁钛化合物的生成。复合的二氧化锡提供了载流子的转移场所,提高了光生电子空穴的分离率,从而使纳米磁性复合体光催化剂的活性提高约40%。制备过程中大量采用了超声分散,能够保证溶胶、胶体在混合后达到纳米尺度的分散。可控气氛程序控温凝胶热处理技术可以保证材料在热处理过程中基本不团聚,减少烧结塌陷。The whole preparation process is a liquid-phase chemical approach, using nano/nano composite technology, which can ensure that the composite particles have a reasonable structure, nanoscale mixing, and uniform coating. After the magnetic core is modified by an organic surfactant, it can be dispersed in a colloidal state in ethanol, ensuring the nanoscale of the magnetic core. Surfactants not only act as antioxidants and dispersants, but also act as a diaphragm during heat treatment to prevent the formation of iron-titanium compounds. The composite tin dioxide provides the carrier transfer site, which increases the separation rate of photogenerated electrons and holes, so that the activity of the nano-magnetic composite photocatalyst is increased by about 40%. Ultrasonic dispersion is widely used in the preparation process, which can ensure the dispersion of sol and colloid at the nanometer scale after mixing. The controlled-atmosphere program-controlled temperature gel heat treatment technology can ensure that the materials are basically not agglomerated during the heat treatment process and reduce sintering collapse.
此种纳米磁性复合体光催化剂便于分离回收,循环使用。The nano-magnetic composite photocatalyst is convenient for separation, recovery and recycling.
附图说明Description of drawings
图1为高活性纳米磁性复合体光催化材料的磁滞曲线。由曲线可以看出,高活性纳米磁性复合体光催化材料的矫顽力为17.77oe,饱和磁化强度为3.145emu/g。Figure 1 is the hysteresis curve of the highly active nano-magnetic composite photocatalytic material. It can be seen from the curve that the coercive force of the highly active nano-magnetic composite photocatalytic material is 17.77oe, and the saturation magnetization is 3.145emu/g.
图2为高活性纳米磁性复合体光催化剂的XPS全谱。由谱图可以看出,催化剂表面有氧、钛、锡、铁等元素。根据Ti2p,Sn3d,Fe2p的谱图,归一化处理后得到钛锡铁的原子比例为:79.2∶12.5∶8.3。Figure 2 is the XPS full spectrum of the highly active nano-magnetic composite photocatalyst. It can be seen from the spectrum that there are oxygen, titanium, tin, iron and other elements on the surface of the catalyst. According to the spectra of Ti2p, Sn3d and Fe2p, the atomic ratio of Ti-Sn-Fe obtained after normalization treatment is: 79.2:12.5:8.3.
图3为本发明磁性光催化剂和对比例磁性光催化剂对甲基橙的降解率曲线。图中,TSF曲线为本发明磁性光催化剂对甲基橙的降解率曲线,TF曲线为对比例磁性光催化剂对甲基橙的降解率曲线。由图可以看出,本发明磁性光催化剂对甲基橙的光催化降解率要比对比例磁性光催化剂对甲基橙的光催化降解率高约40%。Fig. 3 is the degradation rate curve of the magnetic photocatalyst of the present invention and the magnetic photocatalyst of comparative example to methyl orange. In the figure, the TSF curve is the degradation rate curve of the magnetic photocatalyst of the present invention to methyl orange, and the TF curve is the degradation rate curve of the magnetic photocatalyst of the comparative example to methyl orange. As can be seen from the figure, the photocatalytic degradation rate of the magnetic photocatalyst of the present invention to methyl orange is about 40% higher than the photocatalytic degradation rate of the magnetic photocatalyst of the comparative example to methyl orange.
具体实施方式Detailed ways
实施例1Example 1
实验所用试剂都为A.R级别,所有溶液经0.22μm微孔滤膜过滤,以除去溶液中有害的粒子性杂质。将配制好的0.25mol/L FeCl2溶液80mL和0.25mol/L FeCl3溶液120mL以及聚乙二醇溶液80mL(含5g聚乙二醇4000)加入到带有机械搅拌的500mL四口烧瓶中,在70℃恒温水浴中加热,同时通入高纯氮气加以保护。缓慢滴加1mol/L NaOH溶液,每隔2min测pH值,待pH值到6~7,有黑色Fe3O4粒子出现,继续加碱,调节pH值为11~12。温度升至80℃,陈化2h。将制备的Fe3O4纳米粒子用去离子水洗涤至中性,再用无水乙醇洗涤,磁力沉降后,用250mL无水乙醇稀释,超声5个周期,制成醇基Fe3O4磁流体,取名F1。All the reagents used in the experiment were of AR grade, and all the solutions were filtered through a 0.22 μm microporous membrane to remove harmful particulate impurities in the solution. Add the prepared 0.25mol/L FeCl solution 80mL and 0.25mol/L FeCl solution 120mL and polyethylene glycol solution 80mL (containing 5g polyethylene glycol 4000) into a 500mL four-necked flask with mechanical stirring, Heating in a constant temperature water bath at 70°C while feeding high-purity nitrogen for protection. Slowly add 1mol/L NaOH solution dropwise, and measure the pH value every 2 minutes. When the pH value reaches 6-7, black Fe 3 O 4 particles appear, continue to add alkali, and adjust the pH value to 11-12. The temperature was raised to 80°C and aged for 2h. The prepared Fe 3 O 4 nanoparticles were washed with deionized water until neutral, and then washed with absolute ethanol. After magnetic precipitation, they were diluted with 250 mL of absolute ethanol and ultrasonicated for 5 cycles to make alcohol-based Fe 3 O 4 magnetic Fluid, named F1.
称取11.2815g SnCl2·2H2O,溶于100mL无水乙醇中,经0.22μm微孔滤膜过滤,配制成0.5mol/L的锡盐溶液。磁力搅拌,回流4h。陈化24h后,缓慢滴加2mol/L NH3·H2O至中性,陈化12h。用去离子水洗涤,再醇洗至无氯离子。洗涤后经0.45μm微孔滤膜过滤,将滤饼转移入200mL无水乙醇中,超声分散,形成二氧化锡溶胶,取名S1。Weigh 11.2815g of SnCl 2 ·2H 2 O, dissolve in 100mL of absolute ethanol, filter through a 0.22μm microporous membrane, and prepare a 0.5mol/L tin salt solution. Magnetic stirring, reflux 4h. After aging for 24 hours, slowly add 2mol/L NH 3 ·H 2 O dropwise until neutral, and age for 12 hours. Wash with deionized water, and then wash with alcohol until there is no chloride ion. After washing, filter through a 0.45 μm microporous membrane, transfer the filter cake into 200 mL of absolute ethanol, and ultrasonically disperse to form a tin dioxide sol, named S1.
取20mL二氧化锡溶胶(S1),加入8mL钛酸四丁酯,超声4个周期,陈化0.5h,再加入20mL醇基Fe3O4磁流体(F1),超声2个周期,形成溶液A。1.5mL去离子水加入到15mL无水乙醇中,滴加0.15mL硝酸,超声分散,配制成溶液B。在剧烈机械搅拌下,将溶液B缓慢滴入溶液A中,继续搅拌,直至凝胶形成。Take 20mL tin dioxide sol (S1), add 8mL tetrabutyl titanate, sonicate for 4 cycles, age for 0.5h, then add 20mL alcohol-based Fe 3 O 4 magnetic fluid (F1), and sonicate for 2 cycles to form a solution a. Add 1.5mL of deionized water to 15mL of absolute ethanol, add dropwise 0.15mL of nitric acid, and ultrasonically disperse to prepare solution B. Under vigorous mechanical stirring, slowly drop solution B into solution A, and continue stirring until a gel is formed.
将凝胶在80℃下真空干燥,拈碎,在氮气气氛下,经程序控温马福炉热处理。25℃~250℃以1℃/min升温,250℃以上以2℃/min升温,升温至450℃,保温1h,冷却至150℃以下时关闭氮气。样品取名TSF1。The gel was vacuum-dried at 80°C, crushed, and then heat-treated in a muffle furnace with programmed temperature under a nitrogen atmosphere. From 25°C to 250°C, the temperature is raised at 1°C/min, and above 250°C, the temperature is raised at 2°C/min, and the temperature is raised to 450°C, kept for 1 hour, and the nitrogen gas is turned off when it is cooled to below 150°C. The sample is named TSF1.
实施例2Example 2
将配制好的0.5mol/L FeCl2溶液40mL和0.5mol/L FeCl3溶液80mL以及聚乙二醇溶液80mL(含4.5g聚乙二醇4000)加入到装有机械搅拌的500mL四口烧瓶中,在60℃恒温水浴中加热,同时通入高纯氮气加以保护。缓慢滴加2mol/L NaOH溶液,每隔2min测pH值,待pH值到6~7,有黑色Fe3O4粒子出现,继续加碱,调节pH值为11~12。温度升至90℃,陈化2h。将制备的Fe3O4纳米粒子用去离子水洗涤至中性,再用无水乙醇洗涤,磁力沉降后,用250mL无水乙醇稀释,超声5个周期,制成醇基Fe3O4磁流体,取名F2。Add 40mL of the prepared 0.5mol/L FeCl 2 solution, 80mL of 0.5mol/L FeCl 3 solution and 80mL of polyethylene glycol solution (containing 4.5g polyethylene glycol 4000) into a 500mL four-necked flask equipped with mechanical stirring , heated in a constant-temperature water bath at 60°C, while feeding high-purity nitrogen gas for protection. Slowly add 2mol/L NaOH solution dropwise, and measure the pH value every 2 minutes. When the pH value reaches 6-7, black Fe 3 O 4 particles appear, continue to add alkali, and adjust the pH value to 11-12. The temperature was raised to 90°C and aged for 2h. The prepared Fe 3 O 4 nanoparticles were washed with deionized water until neutral, and then washed with absolute ethanol. After magnetic precipitation, they were diluted with 250 mL of absolute ethanol and ultrasonicated for 5 cycles to make alcohol-based Fe 3 O 4 magnetic Fluid, named F2.
称取11.2815g SnCl2·2H2O,溶于125mL无水乙醇中,经0.22μm微孔滤膜过滤,配制成0.4mol/L的锡盐溶液。磁力搅拌,回流4h。陈化24h后,缓慢滴加10mol/L NH3·H2O至中性,陈化12h。用去离子水洗涤,再醇洗至无氯离子。洗涤后经0.45μm微孔滤膜过滤,将滤饼转移入200mL无水乙醇中,超声分散,形成二氧化锡溶胶,取名S2。Weigh 11.2815g of SnCl 2 ·2H 2 O, dissolve in 125mL of absolute ethanol, filter through a 0.22μm microporous membrane, and prepare a 0.4mol/L tin salt solution. Magnetic stirring, reflux 4h. After aging for 24 hours, slowly add 10mol/L NH 3 ·H 2 O dropwise until neutral, and age for 12 hours. Wash with deionized water, and then wash with alcohol until there is no chloride ion. After washing, filter through a 0.45 μm microporous membrane, transfer the filter cake into 200 mL of absolute ethanol, and ultrasonically disperse to form a tin dioxide sol, named S2.
取18mL二氧化锡溶胶(S2),加入9mL钛酸四丁酯,超声4个周期,陈化0.5h,再加入15mL醇基Fe3O4磁流体(F2),超声2个周期,形成溶液A。2.4mL去离子水加入到24mL无水乙醇中,滴加0.2mL硝酸,超声分散,配制成溶液B。在剧烈机械搅拌下,将溶液B缓慢滴入溶液A中,继续搅拌,直至凝胶形成。Take 18mL tin dioxide sol (S2), add 9mL tetrabutyl titanate, sonicate for 4 cycles, age for 0.5h, then add 15mL alcohol-based Fe 3 O 4 magnetic fluid (F2), and sonicate for 2 cycles to form a solution a. Add 2.4mL of deionized water to 24mL of absolute ethanol, add dropwise 0.2mL of nitric acid, and ultrasonically disperse to prepare solution B. Under vigorous mechanical stirring, slowly drop solution B into solution A, and continue stirring until a gel is formed.
将凝胶在90℃下真空干燥,拈碎,在氮气气氛下,经程序控温马福炉热处理。25℃~250℃以1℃/min升温,250℃以上以2℃/min升温,升温至650℃,保温1h,冷却至150℃以下时关闭氮气。样品取名TSF2。The gel was vacuum-dried at 90°C, crushed, and heat-treated in a muffle furnace with programmed temperature under a nitrogen atmosphere. From 25°C to 250°C, the temperature is raised at 1°C/min, and above 250°C, the temperature is raised at 2°C/min, and the temperature is raised to 650°C, kept for 1 hour, and the nitrogen is turned off when it is cooled to below 150°C. The sample is named TSF2.
实施例3,将配制好的0.4mol/L FeCl2溶液50mL和0.4mol/L FeCl3溶液75mL以及聚乙二醇溶液80mL(含2.5g聚乙二醇4000)加入到装有机械搅拌的500mL四口烧瓶中,在80℃恒温水浴中加热,同时通入高纯氮气加以保护。缓慢滴加1.5mol/L NaOH溶液,每隔2min测pH值,待pH值到6~7,有黑色Fe3O4粒子出现,继续加碱,调节pH值为11~12。温度升至85℃,陈化2h。将制备的Fe3O4纳米粒子用去离子水洗涤至中性,再用无水乙醇洗涤,磁力沉降后,用250mL无水乙醇稀释,超声5个周期,制成醇基Fe3O4磁流体,取名F3。Example 3, the prepared 0.4mol/L FeCl 2 solution 50mL and 0.4mol/L FeCl 3 solution 75mL and polyethylene glycol solution 80mL (containing 2.5g polyethylene glycol 4000) were added to the 500mL with mechanical stirring In a four-neck flask, heat in a water bath at a constant temperature of 80°C, while feeding high-purity nitrogen for protection. Slowly add 1.5mol/L NaOH solution dropwise, and measure the pH value every 2 minutes. When the pH value reaches 6-7, black Fe 3 O 4 particles appear, continue to add alkali, and adjust the pH value to 11-12. The temperature was raised to 85°C and aged for 2h. The prepared Fe 3 O 4 nanoparticles were washed with deionized water until neutral, and then washed with absolute ethanol. After magnetic precipitation, they were diluted with 250 mL of absolute ethanol and ultrasonicated for 5 cycles to make alcohol-based Fe 3 O 4 magnetic Fluid, named F3.
称取11.2815g SnCl2·2H2O,溶于250mL无水乙醇中,经0.22μm微孔滤膜过滤,配制成0.2mol/L的锡盐溶液。磁力搅拌,回流4h。陈化24h后,缓慢滴加1mol/L NH3·H2O至中性,陈化12h。用去离子水洗涤,再醇洗至无氯离子。洗涤后经0.45μm微孔滤膜过滤,将滤饼转移入200mL无水乙醇中,超声分散,形成二氧化锡溶胶,取名S3。Weigh 11.2815g of SnCl 2 ·2H 2 O, dissolve in 250mL of absolute ethanol, filter through a 0.22μm microporous membrane, and prepare a 0.2mol/L tin salt solution. Magnetic stirring, reflux 4h. After aging for 24 hours, slowly add 1 mol/L NH 3 ·H 2 O dropwise until neutral, and age for 12 hours. Wash with deionized water, and then wash with alcohol until there is no chloride ion. After washing, filter through a 0.45 μm microporous membrane, transfer the filter cake into 200 mL of absolute ethanol, and ultrasonically disperse to form a tin dioxide sol, named S3.
取15mL二氧化锡溶胶(S3),加入7mL钛酸四丁酯,超声4个周期,陈化0.5h,再加入25mL醇基Fe3O4磁流体(F3),超声2个周期,形成溶液A。1.2mL去离子水加入到12mL无水乙醇中,滴加0.08mL硝酸,超声分散,配制成溶液B。在剧烈机械搅拌下,将溶液B缓慢滴入溶液A中,继续搅拌,直至凝胶形成。Take 15mL tin dioxide sol (S3), add 7mL tetrabutyl titanate, sonicate for 4 cycles, age for 0.5h, then add 25mL alcohol-based Fe 3 O 4 magnetic fluid (F3), and sonicate for 2 cycles to form a solution a. Add 1.2mL of deionized water to 12mL of absolute ethanol, add dropwise 0.08mL of nitric acid, and ultrasonically disperse to prepare solution B. Under vigorous mechanical stirring, slowly drop solution B into solution A, and continue stirring until a gel is formed.
将凝胶在85℃下真空干燥,拈碎,在氮气气氛下,经程序控温马福炉热处理。25℃~250℃以1℃/min升温,250℃以上以2℃/min升温,升温至500℃,保温1h,冷却至150℃以下时关闭氮气。样品取名TSF3。The gel was vacuum-dried at 85°C, crushed, and heat-treated in a muffle furnace with programmed temperature under a nitrogen atmosphere. From 25°C to 250°C, the temperature is raised at 1°C/min, and above 250°C, the temperature is raised at 2°C/min, and the temperature is raised to 500°C, kept for 1 hour, and the nitrogen gas is turned off when it is cooled to below 150°C. The sample is named TSF3.
实施例4Example 4
将配制好的0.25mol/L FeCl2溶液80mL和0.25mol/L FeCl3溶液120mL以及二乙醇胺溶液80mL(含5ml二乙醇胺)加入到带有机械搅拌的500mL四口烧瓶中,在70℃恒温水浴中加热,同时通入高纯氮气加以保护。缓慢滴加1mol/L NaOH溶液,每隔2min测pH值,待pH值到6~7,有黑色Fe3O4粒子出现,继续加碱,调节pH值为11~12。温度升至80℃,陈化2h。将制备的Fe3O4纳米粒子用去离子水洗涤至中性,再用无水乙醇洗涤,磁力沉降后,用250mL无水乙醇稀释,超声5个周期,制成醇基Fe3O4磁流体,取名F4。Add 80mL of prepared 0.25mol/L FeCl 2 solution, 120mL of 0.25mol/L FeCl 3 solution and 80mL of diethanolamine solution (containing 5ml diethanolamine) into a 500mL four-necked flask with mechanical stirring, and place in a constant temperature water bath at 70°C Heating in medium temperature, while feeding high-purity nitrogen for protection. Slowly add 1mol/L NaOH solution dropwise, and measure the pH value every 2 minutes. When the pH value reaches 6-7, black Fe 3 O 4 particles appear, continue to add alkali, and adjust the pH value to 11-12. The temperature was raised to 80°C and aged for 2h. The prepared Fe 3 O 4 nanoparticles were washed with deionized water until neutral, and then washed with absolute ethanol. After magnetic precipitation, they were diluted with 250 mL of absolute ethanol and ultrasonicated for 5 cycles to make alcohol-based Fe 3 O 4 magnetic Fluid, named F4.
称取17.55g SnCl2·2H2O,溶于125mL无水乙醇中,经0.22μm微孔滤膜过滤,配制成0.4mol/L的锡盐溶液。磁力搅拌,回流4h。陈化24h后,缓慢滴加10mol/L NH3·H2O,调节pH值到8~9,陈化12h。用去离子水洗涤,再醇洗至无氯离子。洗涤后经0.45μm微孔滤膜过滤,将滤饼转移入200mL无水乙醇中,超声分散,形成二氧化锡溶胶,取名S4。Weigh 17.55g of SnCl 2 ·2H 2 O, dissolve in 125mL of absolute ethanol, filter through a 0.22μm microporous membrane, and prepare a 0.4mol/L tin salt solution. Magnetic stirring, reflux 4h. After aging for 24 hours, slowly add 10 mol/L NH 3 ·H 2 O dropwise to adjust the pH value to 8-9, and age for 12 hours. Wash with deionized water, and then wash with alcohol until there is no chloride ion. After washing, filter through a 0.45 μm microporous membrane, transfer the filter cake into 200 mL of absolute ethanol, and ultrasonically disperse to form a tin dioxide sol, named S4.
取20mL二氧化锡溶胶(S4),加入8mL钛酸四丁酯,超声4个周期,陈化0.5h,再加入20mL醇基Fe3O4磁流体(F4),超声2个周期,形成溶液A。1.5mL去离子水加入到15mL无水乙醇中,滴加0.15mL硝酸,超声分散,配制成溶液B。在剧烈机械搅拌下,将溶液B缓慢滴入溶液A中,继续搅拌,直至凝胶形成。Take 20mL tin dioxide sol (S4), add 8mL tetrabutyl titanate, sonicate for 4 cycles, age for 0.5h, then add 20mL alcohol-based Fe 3 O 4 magnetic fluid (F4), and sonicate for 2 cycles to form a solution a. Add 1.5mL of deionized water to 15mL of absolute ethanol, add dropwise 0.15mL of nitric acid, and ultrasonically disperse to prepare solution B. Under vigorous mechanical stirring, slowly drop solution B into solution A, and continue stirring until a gel is formed.
其它条件同实施例1,最后制得纳米磁性复合体光催化剂取名为TSF4。Other conditions are the same as in Example 1, and finally the nano-magnetic composite photocatalyst is named TSF4.
实施例5Example 5
将配制好的0.25mol/L FeCl2溶液80mL和0.25mol/L FeCl3溶液120mL以及二乙醇胺溶液80mL(含3ml二乙醇胺)加入到带有机械搅拌的500mL四口烧瓶中,在70℃恒温水浴中加热,同时通入高纯氮气加以保护。缓慢滴加1mol/L NaOH溶液,每隔2min测pH值,待pH值到6~7,有黑色Fe3O4粒子出现,继续加碱,调节pH值为11~12。温度升至80℃,陈化2h。将制备的Fe3O4纳米粒子用去离子水洗涤至中性,再用无水乙醇洗涤,磁力沉降后,用250mL无水乙醇稀释,超声5个周期,制成醇基Fe3O4磁流体,取名F5。Add 80mL of prepared 0.25mol/L FeCl 2 solution, 120mL of 0.25mol/L FeCl 3 solution and 80mL of diethanolamine solution (containing 3ml of diethanolamine) into a 500mL four-necked flask with mechanical stirring, and place in a constant temperature water bath at 70°C Heating in medium temperature, while feeding high-purity nitrogen for protection. Slowly add 1mol/L NaOH solution dropwise, and measure the pH value every 2 minutes. When the pH value reaches 6-7, black Fe 3 O 4 particles appear, continue to add alkali, and adjust the pH value to 11-12. The temperature was raised to 80°C and aged for 2h. The prepared Fe 3 O 4 nanoparticles were washed with deionized water until neutral, and then washed with absolute ethanol. After magnetic precipitation, they were diluted with 250 mL of absolute ethanol and ultrasonicated for 5 cycles to make alcohol-based Fe 3 O 4 magnetic Fluid, named F5.
称取17.55g SnCl4·5H2O,溶于250mL无水乙醇中,经0.22μm微孔滤膜过滤,配制成0.2mol/L的锡盐溶液。磁力搅拌,回流4h。陈化24h后,缓慢滴加2mol/L NH3·H2O,调节pH值到8~9,陈化12h。用去离子水洗涤,再醇洗至无氯离子。洗涤后经0.45μm微孔滤膜过滤,将滤饼转移入200mL无水乙醇中,超声分散,形成二氧化锡溶胶,取名S5。Weigh 17.55g of SnCl 4 ·5H 2 O, dissolve in 250mL of absolute ethanol, filter through a 0.22μm microporous membrane, and prepare a 0.2mol/L tin salt solution. Magnetic stirring, reflux 4h. After aging for 24 hours, slowly add 2 mol/L NH 3 ·H 2 O dropwise to adjust the pH value to 8-9, and age for 12 hours. Wash with deionized water, and then wash with alcohol until there is no chloride ion. After washing, filter through a 0.45 μm microporous membrane, transfer the filter cake into 200 mL of absolute ethanol, and ultrasonically disperse to form a tin dioxide sol, named S5.
取20mL二氧化锡溶胶(S5),加入8mL钛酸四丁酯,超声4个周期,陈化0.5h,再加入20mL醇基Fe3O4磁流体(F5),超声2个周期,形成溶液A。1.5mL去离子水加入到15mL无水乙醇中,滴加0.15mL硝酸,超声分散,配制成溶液B。在剧烈机械搅拌下,将溶液B缓慢滴入溶液A中,继续搅拌,直至凝胶形成。Take 20mL tin dioxide sol (S5), add 8mL tetrabutyl titanate, sonicate for 4 cycles, age for 0.5h, then add 20mL alcohol-based Fe 3 O 4 magnetic fluid (F5), and sonicate for 2 cycles to form a solution a. Add 1.5mL of deionized water to 15mL of absolute ethanol, add dropwise 0.15mL of nitric acid, and ultrasonically disperse to prepare solution B. Under vigorous mechanical stirring, slowly drop solution B into solution A, and continue stirring until a gel is formed.
其它条件同实施例1,最后制得纳米磁性复合体光催化剂取名为TSF5。Other conditions are the same as in Example 1, and finally the nano-magnetic composite photocatalyst is named TSF5.
实施例6Example 6
将配制好的0.25mol/L FeCl2溶液80mL和0.25mol/L FeCl3溶液120mL以及二乙醇胺溶液80mL(含6ml二乙醇胺)加入到带有机械搅拌的500mL四口烧瓶中,在70℃恒温水浴中加热,同时通入高纯氮气加以保护。缓慢滴加1mol/L NaOH溶液,每隔2min测pH值,待pH值到6~7,有黑色Fe3O4粒子出现,继续加碱,调节pH值为11~12。温度升至80℃,陈化2h。将制备的Fe3O4纳米粒子用去离子水洗涤至中性,再用无水乙醇洗涤,磁力沉降后,用250mL无水乙醇稀释,超声5个周期,制成醇基Fe3O4磁流体,取名F6。Add 80mL of prepared 0.25mol/L FeCl 2 solution, 120mL of 0.25mol/L FeCl 3 solution and 80mL of diethanolamine solution (containing 6ml of diethanolamine) into a 500mL four-necked flask with mechanical stirring, and place in a constant temperature water bath at 70°C Heating in medium temperature, while feeding high-purity nitrogen for protection. Slowly add 1mol/L NaOH solution dropwise, and measure the pH value every 2 minutes. When the pH value reaches 6-7, black Fe 3 O 4 particles appear, continue to add alkali, and adjust the pH value to 11-12. The temperature was raised to 80°C and aged for 2h. The prepared Fe 3 O 4 nanoparticles were washed with deionized water until neutral, and then washed with absolute ethanol. After magnetic precipitation, they were diluted with 250 mL of absolute ethanol and ultrasonicated for 5 cycles to make alcohol-based Fe 3 O 4 magnetic Fluid, named F6.
称取17.55g SnCl4·5H2O,溶于100mL无水乙醇中,经0.22μm微孔滤膜过滤,配制成0.5mol/L的锡盐溶液。磁力搅拌,回流4h。陈化24h后,缓慢滴加1mol/L NH3·H2O,调节pH值到8~9,陈化12h。用去离子水洗涤,再醇洗至无氯离子。洗涤后经0.45μm微孔滤膜过滤,将滤饼转移入200mL无水乙醇中,超声分散,形成二氧化锡溶胶,取名S6。Weigh 17.55g of SnCl 4 ·5H 2 O, dissolve in 100mL of absolute ethanol, filter through a 0.22μm microporous membrane, and prepare a 0.5mol/L tin salt solution. Magnetic stirring, reflux 4h. After aging for 24 hours, slowly add 1 mol/L NH 3 ·H 2 O dropwise, adjust the pH value to 8-9, and age for 12 hours. Wash with deionized water, and then wash with alcohol until there is no chloride ion. After washing, filter through a 0.45 μm microporous membrane, transfer the filter cake into 200 mL of absolute ethanol, and ultrasonically disperse to form a tin dioxide sol, named S6.
取20mL二氧化锡溶胶(S6),加入8mL钛酸四丁酯,超声4个周期,陈化0.5h,再加入20mL醇基Fe3O4磁流体(F6),超声2个周期,形成溶液A。1.5mL去离子水加入到15mL无水乙醇中,滴加0.15mL硝酸,超声分散,配制成溶液B。在剧烈机械搅拌下,将溶液B缓慢滴入溶液A中,继续搅拌,直至凝胶形成。Take 20mL tin dioxide sol (S6), add 8mL tetrabutyl titanate, sonicate for 4 cycles, age for 0.5h, then add 20mL alcohol-based Fe 3 O 4 magnetic fluid (F6), and sonicate for 2 cycles to form a solution a. Add 1.5mL of deionized water to 15mL of absolute ethanol, add dropwise 0.15mL of nitric acid, and ultrasonically disperse to prepare solution B. Under vigorous mechanical stirring, slowly drop solution B into solution A, and continue stirring until a gel is formed.
其它条件同实施例1,最后制得纳米磁性复合体光催化剂取名为TSF6。Other conditions are the same as in Example 1, and finally the nano-magnetic composite photocatalyst is named TSF6.
对比例comparative example
将实施例1中省略二氧化锡溶胶的制备步骤,并在复合体光催化剂凝胶制备过程中,不使用二氧化锡溶胶,而用无水乙醇,其它条件同实施例1,得到磁性光催化剂,取名TF。其对甲基橙的光催化降解率曲线为图3的TF曲线。Omit the preparation step of tin dioxide sol in
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100725905A CN100355497C (en) | 2004-11-01 | 2004-11-01 | Photocatalyst of high active nano magnetic compound and its preparation process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100725905A CN100355497C (en) | 2004-11-01 | 2004-11-01 | Photocatalyst of high active nano magnetic compound and its preparation process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1623656A true CN1623656A (en) | 2005-06-08 |
CN100355497C CN100355497C (en) | 2007-12-19 |
Family
ID=34765213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100725905A Expired - Fee Related CN100355497C (en) | 2004-11-01 | 2004-11-01 | Photocatalyst of high active nano magnetic compound and its preparation process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100355497C (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100351011C (en) * | 2005-10-10 | 2007-11-28 | 北京科技大学 | Composite photo catalytic sewage treating material and its prepn |
CN103773650A (en) * | 2014-02-17 | 2014-05-07 | 江苏科技大学 | Application of chitosan magnetic bead fixed yeast to brewing blueberry fruit wine |
CN105198004A (en) * | 2015-08-18 | 2015-12-30 | 西北大学 | A kind of Fe3O4-SnO2 nanocomposite material and preparation method thereof |
CN106475039A (en) * | 2016-10-09 | 2017-03-08 | 同济大学 | A sea urchin-like three-dimensional Fe3O4/SnO2 nanorod array and its synthesis method and application |
CN108993473A (en) * | 2018-08-25 | 2018-12-14 | 华北水利水电大学 | A kind of compound catalysis material SnO2/TiO2Preparation method |
CN109530418A (en) * | 2018-12-31 | 2019-03-29 | 南京格洛特环境工程股份有限公司 | Heavy-metal contaminated soil restorative procedure |
CN113745546A (en) * | 2021-09-06 | 2021-12-03 | 南京理工大学 | Dynamic SnO2Membrane electrode of-Sb catalyst layer, preparation method and application |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11240722A (en) * | 1998-02-25 | 1999-09-07 | Mitsuboshi Belting Ltd | Complex semiconductor composition and its production |
CN1103637C (en) * | 1998-05-08 | 2003-03-26 | 中国科学院感光化学研究所 | Magnet-separative photocatalyst with multi-layer dressing and manufacture thereof |
-
2004
- 2004-11-01 CN CNB2004100725905A patent/CN100355497C/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100351011C (en) * | 2005-10-10 | 2007-11-28 | 北京科技大学 | Composite photo catalytic sewage treating material and its prepn |
CN103773650A (en) * | 2014-02-17 | 2014-05-07 | 江苏科技大学 | Application of chitosan magnetic bead fixed yeast to brewing blueberry fruit wine |
CN105198004A (en) * | 2015-08-18 | 2015-12-30 | 西北大学 | A kind of Fe3O4-SnO2 nanocomposite material and preparation method thereof |
CN106475039A (en) * | 2016-10-09 | 2017-03-08 | 同济大学 | A sea urchin-like three-dimensional Fe3O4/SnO2 nanorod array and its synthesis method and application |
CN106475039B (en) * | 2016-10-09 | 2019-05-14 | 同济大学 | A kind of sea urchin shape three-dimensional Fe3O4/SnO2Nanometer stick array and its synthetic method and application |
CN108993473A (en) * | 2018-08-25 | 2018-12-14 | 华北水利水电大学 | A kind of compound catalysis material SnO2/TiO2Preparation method |
CN108993473B (en) * | 2018-08-25 | 2021-02-26 | 华北水利水电大学 | A kind of preparation method of composite photocatalytic material SnO2/TiO2 |
CN109530418A (en) * | 2018-12-31 | 2019-03-29 | 南京格洛特环境工程股份有限公司 | Heavy-metal contaminated soil restorative procedure |
CN113745546A (en) * | 2021-09-06 | 2021-12-03 | 南京理工大学 | Dynamic SnO2Membrane electrode of-Sb catalyst layer, preparation method and application |
CN113745546B (en) * | 2021-09-06 | 2022-07-29 | 南京理工大学 | Dynamic SnO 2 Membrane electrode of-Sb catalyst layer, preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN100355497C (en) | 2007-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xiao et al. | Nonaqueous sol− gel synthesized hierarchical CeO2 nanocrystal microspheres as novel adsorbents for wastewater treatment | |
Yao et al. | Magnetic titanium dioxide based nanomaterials: synthesis, characteristics, and photocatalytic application in pollutant degradation | |
CN106984261A (en) | A kind of CoFe2O4/ N/C hollow nano-spheres and its preparation and application | |
CN102976314B (en) | Novel titanium dioxide-graphene nano-composite material as well as manufacturing method and application thereof | |
CN104148047B (en) | Macro preparation method for carbon doped zinc oxide-based visible-light catalyst | |
CN101633779A (en) | Conductive polyaniline composite electrode material and preparation method thereof | |
CN111960464A (en) | Black titanium dioxide light nano material rich in oxygen vacancy defects and preparation method and application thereof | |
CN104759273B (en) | A kind of preparation method of carbon doping hollow titanium dioxide visible light catalyst in situ | |
Anjali et al. | Optical absorption enhancement of PVP capped TiO2 nanostructures in the visible region | |
CN106884309B (en) | Fiber hybrid particle and polymer-based composite material | |
Wang et al. | Preparation of magnetic Fe 3 O 4@ SiO 2@ mTiO 2–Au spheres with well-designed microstructure and superior photocatalytic activity | |
CN102489300A (en) | Preparation method for magnetic nanometer microballoon photocatalysis composite materials | |
CN104759287A (en) | Iron-doped cerium dioxide photocatalyst and preparation method thereof | |
CN110586058B (en) | A kind of preparation method of nanometer titanium dioxide/zirconia composite photocatalyst | |
CN104923309A (en) | Preparation method of superparamagnetic Fe3O4-PAMAM-TiO2 core-shell structure nanoparticle photocatalyst | |
CN1840480A (en) | A kind of cerium oxide nano material and its preparation method and application | |
Wu et al. | Photoluminescence properties and photocatalytic activities of SiO2@ TiO2: Sm3+ nanomaterials | |
CN1623656A (en) | Photocatalyst and preparation method of highly active nano-magnetic composite | |
CN101362605B (en) | Rare-earth nano oxide preparation method | |
CN1376636A (en) | Process for preparing Fe-series catalyst used to synthesize nano carbon tubes | |
CN1792428A (en) | Magnetic nanometer photocatalyst and its prepn. method | |
Fu et al. | A general synthesis strategy for hierarchical porous metal oxide hollow spheres | |
CN110152569A (en) | A kind of nanometer FeO (OH) composite aerogel, its preparation method and use | |
CN1724164A (en) | Preparation method of magnetically separable composite photocatalyst | |
CN116651489A (en) | Preparation method and application of a magnetically modified three-dimensional flower-like N-Bi 2 O 2 CO 3 /g-C3 N 4 photocatalytic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |