CN1598638A - Binocular refracting-reflecting optical system for satellite multi-spectral imaging instrument - Google Patents

Binocular refracting-reflecting optical system for satellite multi-spectral imaging instrument Download PDF

Info

Publication number
CN1598638A
CN1598638A CN 200410066548 CN200410066548A CN1598638A CN 1598638 A CN1598638 A CN 1598638A CN 200410066548 CN200410066548 CN 200410066548 CN 200410066548 A CN200410066548 A CN 200410066548A CN 1598638 A CN1598638 A CN 1598638A
Authority
CN
China
Prior art keywords
refractor
mirror
aberration correction
lens combination
correction lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410066548
Other languages
Chinese (zh)
Other versions
CN1257422C (en
Inventor
刘银年
陈建新
王欣
王建宇
王跃明
黄健
黄立峰
姚志雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN 200410066548 priority Critical patent/CN1257422C/en
Publication of CN1598638A publication Critical patent/CN1598638A/en
Application granted granted Critical
Publication of CN1257422C publication Critical patent/CN1257422C/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

The invention discloses a binocular refraction and reflection style optical system which is used to secondary planet carrier several spectrums imaging machine, its character includes: the system provides a scanning reflection mirror from objective to image in order, and followed two spectroscopy systems. The two spectroscopy systems are mainly composed of main reflecting mirror, hypo-reflecting mirror and phase difference emendation lens groups. The invention has several excellences, such as the structure is simple, compact, machining and proofreading technology is mature. The usage of double optical system decreases the difficulty of optical system designing, machining and proofreading, and improves optical efficiency and image quality.

Description

A kind of binocular refracting-reflecting optical system that is used for spaceborne multi-spectral imager
Technical field
The present invention relates to optical element, system, specifically be meant a kind of broadband large visual field optical system that is used for spaceborne multi-spectral imager.This optical system can be implemented under 2.3 ° of visual fields, divides the spectral coverage imaging to 11 wave bands in 0.45 μ m~12.0 mum wavelength scopes.
Background technology
The transmission optics system is because refractor can be introduced aberration, therefore be difficult to realize broadband imaging, can only realize narrower wave band imaging at present, as: the Super Lamegon PI5.6/90B camera lens of the RC-10 type aerotar of Switzerland Witter factory, German Zeiss (draws from " optical technology handbook volume two ", king Zhijiang River chief editor, the 976th~985 page, China Machine Press published in 1994), its imaging bandwidth is all at 0.4~0.9 mu m waveband.Catadioptric optical system can be realized the imaging in the broadband scope, as 10 wave bands on the FY-1C weather satellite of China visible-infrared scanning radiometer, its wavelength band covers from 0.43 μ m to 12.5 μ m, but the visual field has only 0.072 °, can only realize cell imaging (infrared and millimeter wave journal, the 19th volume, the 5th phase, the 321st~326 page).The total-reflection type optical system can realize the big view field imaging of broadband, as U.S. Pat 4,265,510 " from axle astigmatism-eliminating three-reflector telescopic systems ", but because this total-reflection type optical system structure more complicated, therefore processing and system dress school is difficult.
Summary of the invention
The objective of the invention is to propose a kind of under 2.3 ° of visual fields, in 0.45 μ m~12.0 mum wavelength scopes, that is, visible light divides the binocular refracting-reflecting optical system of spectral coverage imaging to 11 wave bands of long wave infrared region.
Binocular refracting-reflecting optical system of the present invention enters two spectroscopy systems from earth echo signal respectively through scanning reflection mirror 15 reflections: the dual-waveband imaging of first spectroscopy system realization medium wave and LONG WAVE INFRARED as shown in Figure 1; The second spectroscopy system realizes the light spectrum image-forming of 9 wave bands in 0.45 μ m~2.5 mum wavelength scopes.The field of view (fov) registration of two optical systems can be realized by the mechanical adjustment and the image process method of routine.
The first spectroscopy system is made up of a secondary mirror 1, principal reflection mirror 2, aberration correction lens combination 3 and optical filter 4 to picture side in order from object space.
The second spectroscopy system from object space to picture side in order by a secondary mirror 6, principal reflection mirror 7, one this optical system is divided into two tunnel color separation film 8, a tunnel forms by aberration correction lens combination 12 and optical filter 13 successively by aberration correction lens combination 9 and optical filter 10, another road successively.
Earth echo signal enters the first spectroscopy system and the second spectroscopy system respectively through scanning reflection mirror 15 reflections.
The first spectroscopy system: the earth echo signal directive principal reflection mirror 2 of scanning reflection mirror 15 reflections of hanging oneself, reflex to secondary mirror 1 through it, reflect to picture side by secondary mirror 1 again, successively by behind first refractor 301 in the aberration correction lens combination 3, second refractor 302, through optical filter 4 imaging on picture planar detector 5.
The second spectroscopy system: the earth echo signal directive principal reflection mirror 7 of scanning reflection mirror 15 reflections of hanging oneself, reflex to secondary mirror 6 through it, reflect to color separation film 8 by secondary mirror 6 again, be divided into reflection and transmission two road light by color separation film 8.One road reflected light is successively by behind first refractor 901 in the aberration correction lens combination 9, second refractor 902, through optical filter 10 imaging on picture planar detector 11.Another road transmitted light is successively by behind first refractor 1201 in the aberration correction lens combination 12, second refractor 1202, through optical filter 13 imaging on picture planar detector 14.
Secondary mirror 1 of the present invention and 6 is protruding hyperboloidal mirror, and principal reflection mirror 2 and 7 is recessed hyperboloidal mirror, and their curved surface is the standard quadric surface, this reflecting system no color differnece, spherical aberration corrector and coma in the small field of view scope.
Said aberration correction lens combination 3,9,12 is used for proofreading and correct the off-axis aberration after light beam passes through principal reflection mirror 2,7 and secondary mirror 1,6, the remaining monochromatic aberration that also is used for corrective system itself simultaneously, they are made up of two refractors respectively, are spherical lens.
During aberration correction lens combination 9,12 design of the second spectroscopy system, material therefor is identical, and focal power is zero, can not play the deviation effect to light, therefore under achromatic situation, only produces monochromatic aberration.Color separation film 8 is adopted in the beam split of the second spectroscopy system, and first of color separation film 8 is reflecting surface and optical axis included angle 45 degree, and second is 0.178 degree with first depth of parallelism, is used to make the light path of marginal ray to increase, and reaches the purpose of the outer visual field of compensating shaft optical path difference.Wave band 3.5 μ m~12.0 μ m, 0.45 μ m~2.5 μ m that color separation film 8 and 3, the 9 and 12 selected material requirements of aberration correction lens combination are selected for use separately to them are transparent, as Ge crystal, quartz crystal.
First refractor 301,901,1201 in the aberration correction lens combination 3,9,12 and the achromatism condition of second refractor 302,902,1202 and focal power are distributed the requirement that should satisfy following formula:
Figure A20041006654800061
h 301,901,1201 301,901,1201+h 302,902,1202 302,902,1202=h 301,901,1201。(2)
Height when symbol h represents each refractor of light incident in the formula, represents focal power, v represents Abbe constant.Since =0, v 301,90,12011=v 302,902,1202, according to the requirement of formula (1), by each power of lens in the rational allocation achromatic correction mirror group 3,9,12, and control light height of incidence h 301,901,1201And h 302,902,1202, can eliminate the aberration of corrective lens (eye protection) group.
Optical filter 4,10,13 adopts the logical optical filter of different band respectively according to selected wave band.
The advantage of optical system of the present invention is: system architecture is simple, compact, and processing, dress school technology maturation adopt the binocular refracting-reflecting optical system to reduce the difficulty in design of Optical System, processing and dress school on the whole.In first optical system, the long-wave band imaging detector concentrates on the focal plane, reduce optical element, improved the optical efficiency of system, can freeze to infrared eye with same refrigeration system, help reducing volume, weight, the power consumption of system, save cost.Adopt the mode of two optical systems of a scanning reflection mirror, avoid using the color separation film beam split, improved optical efficiency, reduced the coating process difficulty of optical filter, reduced the design of Optical System difficulty, replaced the convenient processing of non-spherical lens aberration correction with spherical lens.Optical system adopts with a kind of optical material, helps guaranteeing the stability of optical system to temperature.There is certain angle between second and first of color separation film, helps the balance aberration.The focal power of aberration correction lens combination is zero, has proofreaied and correct system's aberration.
Description of drawings
Fig. 1 is the optical system structure synoptic diagram,
Fig. 2 is the enlarged drawing of the first spectroscopy system among Fig. 1, among the figure:
D1 is secondary mirror 1 and principal reflection mirror 2 spacing distances;
D2 is secondary mirror 1 and aberration correction mirror group 3 spacing distances;
D3 is first refractor 301 and second refractor, 302 spacing distances of corrective lens (eye protection) group 3;
D4 is second refractor 302 and image planes 5 spacing distances;
R1 is the vertex curvature radius of secondary mirror 1;
R2 is the vertex curvature radius of principal reflection mirror 2;
R3011 is first refractor, the 301 front surface radius-of-curvature of corrective lens (eye protection) group 3;
R3012 is first refractor, the 301 rear surface radius-of-curvature of corrective lens (eye protection) group 3;
R3021 is second refractor, the 302 front surface radius-of-curvature of corrective lens (eye protection) group 3;
R3022 is second refractor, the 302 rear surface radius-of-curvature of corrective lens (eye protection) group 3;
Fig. 3 is the enlarged drawing of the second spectroscopy system among Fig. 1, among the figure:
D5 is secondary mirror 6 and principal reflection mirror 7 spacing distances;
D6 is secondary mirror 6 and color separation film 8 spacing distances;
D7 is first refractor, 901 spacing distances of color separation film 8 and corrective lens (eye protection) group 9;
D8 is first refractor 901 and second refractor, 902 spacing distances;
D9 is second refractor 902 and image planes 11 spacing distances;
D10 is first refractor, 1201 spacing distances of color separation film 8 and corrective lens (eye protection) group 12;
D11 is first refractor 1201 and second refractor, 1202 spacing distances of corrective lens (eye protection) group 12;
D12 is second refractor 1202 and image planes 14 spacing distances;
R6 is the vertex curvature radius of secondary mirror 6;
R7 is the vertex curvature radius of principal reflection mirror 7;
R9011 is first refractor, the 901 front surface radius-of-curvature of corrective lens (eye protection) group 9;
R9012 is first refractor, the 901 rear surface radius-of-curvature of corrective lens (eye protection) group 9;
R9021 is second refractor, the 902 front surface radius-of-curvature of corrective lens (eye protection) group 9;
R9022 is second refractor, the 902 rear surface radius-of-curvature of corrective lens (eye protection) group 9;
R12011 is first refractor, the 1201 front surface radius-of-curvature of corrective lens (eye protection) group 12;
R12012 is first refractor, the 1201 rear surface radius-of-curvature of corrective lens (eye protection) group 12;
R12021 is second refractor, the 1202 front surface radius-of-curvature of corrective lens (eye protection) group 12;
R12022 is second refractor, the 1202 rear surface radius-of-curvature of corrective lens (eye protection) group 12.
Embodiment
According to the optical system structure of Fig. 1, we have designed a broadband telescopic optical system, and picture element is near diffraction limit.The optical system technical indicator is as shown in table 1, and optical system specific design parameter is as shown in table 2.
The technical indicator of table 1 optical system
Title The telescope clear aperture Operation wavelength Relative aperture Focal length The visual field
The first spectroscopy system φ300mm 3.5μm~5.0μm、 8.0μm~12.0μm ????1∶3.3 ??1000mm ????2.3°
The second spectroscopy system φ120mm 0.45μm~2.5μm ????1∶5.83 ??700mm ????2.3°
Table 2 optical system specific design parameter
The element title The face sequence number Radius-of-curvature (mm) Asphericity coefficient (e 2) Interval or thickness (mm) Aperture (mm) Material
The first spectroscopy system Principal reflection mirror 2 ????R2 ????-483.107 ????1.129172 ????160(d1) ????300 Quartzy
Secondary mirror 1 ????R1 ????-238.384 ????4.890628 ????171.97(d2) ????114 Quartzy
First refractor 301 ????R3011 ????-91.422 ????- ????9.316 ????60 Germanium
????R3012 ????-95.687 ????- ????70.104(d3)
Second refractor 302 ????R3021 ????-53.747 ????- ????2.997 ????38 Germanium
????R3022 ????-69.003 ????- ????26.054(d4)
The second spectroscopy system Principal reflection mirror 7 ????R7 ????-451.716 ????1.193938 ????139.991(d5) ????120 Quartzy
Secondary mirror 6 ????R6 ????-253.528 ????5.471814 ????174.996(d6) ????51.8 Quartzy
Color separation film 8 ????- ????- ????3.5 ????39.2 Quartzy
0.178 degree (two face depth of parallelisms)
????54.996(d7)
????54.88(d10)
First refractor 901 ????R9011 ????-59.942 ????- ????3.496 ????31 Quartzy
????R9012 ????-99.839 ????- ????14.41(d8)
Second refractor 902 ????R9021 ????83.733 ????- ????5.727 ????29 Quartzy
????R9022 ????-184.424 ????- ????12.82(d9)
First refractor 1201 ????R1211 ????59.008 ????- ????3.92 ????32 Quartzy
????R1212 ????122.828 ????- ????8.96(d11)
Second refractor 1202 ????R1221 ????-97.229 ????- ????9.43 ????29.8 Quartzy
????R1222 ????112.643 ????- ????12.96(d12)

Claims (3)

1. binocular refracting-reflecting optical system that is used for spaceborne multi-spectral imager, comprising: principal reflection mirror, secondary mirror and aberration correction lens combination is characterized in that:
Optical system extremely then has two spectroscopy systems in order by a scanning reflection mirror (15) in picture side from object space:
The first spectroscopy system is made up of a secondary mirror (1), a principal reflection mirror (2), an aberration correction lens combination (3) and optical filter (4) in order from object space to picture side;
The second spectroscopy system is divided into two tunnel color separation film (8) by a secondary mirror (6), a principal reflection mirror (7), one with this spectroscopy system from object space in order to picture side, and one the tunnel is that aberration correction lens combination (9) and optical filter (10), another road are aberration correction lens combination (12) and optical filter (13) composition;
Earth echo signal enters the first spectroscopy system and the second spectroscopy system respectively through scanning reflection mirror (15) reflection;
The first spectroscopy system: the earth echo signal directive principal reflection mirror (2) of the scanning reflection mirror of hanging oneself (15) reflection, reflex to secondary mirror (1) through it, reflect to picture side by secondary mirror (1) again, by behind first refractor (301) in the aberration correction lens combination (3), second refractor (302), go up imaging at picture planar detector (5) successively through optical filter (4);
The second spectroscopy system: the earth echo signal directive principal reflection mirror (7) of the scanning reflection mirror of hanging oneself (15) reflection, reflex to secondary mirror (6) through it, reflect to color separation film (8) by secondary mirror (6) again, be divided into reflection and transmission two road light by color separation film (8); One road reflected light by behind first refractor (901) in the aberration correction lens combination (9), second refractor (902), is gone up imaging through optical filter (10) at picture planar detector (11) successively; Another road transmitted light by behind first refractor (1201) in the aberration correction lens combination (12), second refractor (1202), is gone up imaging through optical filter (13) at picture planar detector (14) successively;
Said secondary mirror (1) and (6) are protruding hyperboloidal mirror, and principal reflection mirror (2) and (7) are recessed hyperboloidal mirror, and their curved surface is the standard quadric surface;
First refractor (301) of said aberration correction lens combination (3), (9), (12), (901), (1201) and second refractor (302), (902), (1202) are spherical lens.
2. according to a kind of binocular refracting-reflecting optical system that is used for spaceborne multi-spectral imager of claim 1, it is characterized in that: two surperficial depth of parallelism differences of said color separation film (8) are 0.178 degree.
3. according to a kind of binocular refracting-reflecting optical system that is used for spaceborne multi-spectral imager of claim 1, it is characterized in that: said aberration correction lens combination (3), (9), (12) have focal power , each refractor of forming it, i.e. the focal power of first refractor (301), (901), (1201) and second refractor (302), (902), (1202) 301, 901, 1201And 302, 902, 1202Distribution should satisfy the requirement of following formula:
h 301,901,1201 301,901,1201+ h 302,902,1202 302,902,1202=h 301,901,1201, the height when symbol h represents each refractor of light incident in (2) formula, v represents Abbe constant.
CN 200410066548 2004-09-21 2004-09-21 Binocular refracting-reflecting optical system for satellite multi-spectral imaging instrument Active CN1257422C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410066548 CN1257422C (en) 2004-09-21 2004-09-21 Binocular refracting-reflecting optical system for satellite multi-spectral imaging instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410066548 CN1257422C (en) 2004-09-21 2004-09-21 Binocular refracting-reflecting optical system for satellite multi-spectral imaging instrument

Publications (2)

Publication Number Publication Date
CN1598638A true CN1598638A (en) 2005-03-23
CN1257422C CN1257422C (en) 2006-05-24

Family

ID=34666516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410066548 Active CN1257422C (en) 2004-09-21 2004-09-21 Binocular refracting-reflecting optical system for satellite multi-spectral imaging instrument

Country Status (1)

Country Link
CN (1) CN1257422C (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101498838B (en) * 2009-03-04 2011-02-16 中国科学院上海技术物理研究所 Aberration compensating method for 45 degree color separation filter transmission color separation light path
CN102004308A (en) * 2010-09-09 2011-04-06 北京航空航天大学 Multi-spectral imaging method and device for cassegrain telescope
CN102508361A (en) * 2011-10-31 2012-06-20 北京空间机电研究所 Spatial large view field, superwide spectral band and multispectral imaging optical system
CN102866490A (en) * 2012-09-27 2013-01-09 中国科学院西安光学精密机械研究所 Optical imaging system for visible light waveband, medium-wave infrared waveband and long-wave infrared waveband
CN102116926B (en) * 2009-12-31 2013-05-22 北京控制工程研究所 Imaging structure of fixed star sensor
CN108802996A (en) * 2018-06-08 2018-11-13 中国科学院紫金山天文台 A kind of three mirror optical systems of big visual field Survey telescope
CN110146971A (en) * 2019-05-10 2019-08-20 中国科学院西安光学精密机械研究所 A kind of small-sized big visual field focal length camera optical system for cube satellite
CN114296216A (en) * 2021-12-14 2022-04-08 同济大学 Catadioptric infrared polarization imaging optical system based on micro-scanning lens

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101498838B (en) * 2009-03-04 2011-02-16 中国科学院上海技术物理研究所 Aberration compensating method for 45 degree color separation filter transmission color separation light path
CN102116926B (en) * 2009-12-31 2013-05-22 北京控制工程研究所 Imaging structure of fixed star sensor
CN102004308A (en) * 2010-09-09 2011-04-06 北京航空航天大学 Multi-spectral imaging method and device for cassegrain telescope
CN102004308B (en) * 2010-09-09 2013-04-03 北京航空航天大学 Multi-spectral imaging method and device for cassegrain telescope
CN102508361A (en) * 2011-10-31 2012-06-20 北京空间机电研究所 Spatial large view field, superwide spectral band and multispectral imaging optical system
CN102866490B (en) * 2012-09-27 2014-12-10 中国科学院西安光学精密机械研究所 Optical imaging system for visible light waveband, medium-wave infrared waveband and long-wave infrared waveband
CN102866490A (en) * 2012-09-27 2013-01-09 中国科学院西安光学精密机械研究所 Optical imaging system for visible light waveband, medium-wave infrared waveband and long-wave infrared waveband
CN108802996A (en) * 2018-06-08 2018-11-13 中国科学院紫金山天文台 A kind of three mirror optical systems of big visual field Survey telescope
CN108802996B (en) * 2018-06-08 2020-11-03 中国科学院紫金山天文台 Three-mirror optical system of large-view-field telescope
CN110146971A (en) * 2019-05-10 2019-08-20 中国科学院西安光学精密机械研究所 A kind of small-sized big visual field focal length camera optical system for cube satellite
CN110146971B (en) * 2019-05-10 2024-05-31 中国科学院西安光学精密机械研究所 Small-sized large-field tele camera optical system for cube satellite
CN114296216A (en) * 2021-12-14 2022-04-08 同济大学 Catadioptric infrared polarization imaging optical system based on micro-scanning lens
CN114296216B (en) * 2021-12-14 2023-05-02 同济大学 Refractive-reflective infrared polarization imaging optical system based on micro-scanning lens

Also Published As

Publication number Publication date
CN1257422C (en) 2006-05-24

Similar Documents

Publication Publication Date Title
CN105511075A (en) Two-dimensional image motion compensation optical system for large-field-of-view whisk-broom double-channel imager
KR101807414B1 (en) Long Range Oblique Photography Camera Optical System for Simultaneous Shooting of Triple Band Wavelength Image
CN108444600B (en) High-flux wide-spectrum miniaturized imaging spectrometer
CN110568584B (en) 4K high-resolution panoramic annular belt optical system
CN109656006A (en) A kind of non-focusing all-sky airglow imager of wide spectrum
CN114675404A (en) Optical lens
CN115079384B (en) Optical lens
CN116577921A (en) Large-caliber coaxial three-reflector optical system and ultra-light silicon carbide reflector assembly thereof
CN1257422C (en) Binocular refracting-reflecting optical system for satellite multi-spectral imaging instrument
CN115509021A (en) Optical splicing system with optical wedge and imaging lens integrally designed
CN114675406A (en) Optical lens
CN104749745B (en) A kind of big visual field high-resolution optics system
CN104730688B (en) Wide-visual-field and high-resolution optical system
CN211603682U (en) Optical system of ultra-wide-spectrum long-focal-distance star sensor
CN109375343B (en) Vehicle-mounted high-definition looking-around optical system with size of 1.1mm and imaging method thereof
CN114675405B (en) Optical lens
CN115826195A (en) Optical lens
JP7225047B2 (en) Imaging lens and imaging device
CN210465831U (en) Compact type long-focal-length star sensor telecentric optical system
CN104035197A (en) Refraction and reflection type THz wave imaging system
CN109884776B (en) Large-view-field, low-distortion and high-spectrum optical system based on pixel-level optical filter
CN212515196U (en) Large-view-field staring type imaging system introducing aspheric surface
CN115113379B (en) Optical lens
CN219996349U (en) Ultra-long slit imaging spectrum system
CN115128781B (en) Optical lens

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant