CN1595111A - 基于光源调制测量气体浓度的方法和装置 - Google Patents

基于光源调制测量气体浓度的方法和装置 Download PDF

Info

Publication number
CN1595111A
CN1595111A CN 200410028049 CN200410028049A CN1595111A CN 1595111 A CN1595111 A CN 1595111A CN 200410028049 CN200410028049 CN 200410028049 CN 200410028049 A CN200410028049 A CN 200410028049A CN 1595111 A CN1595111 A CN 1595111A
Authority
CN
China
Prior art keywords
infrared light
modulation
driving circuit
light supply
single machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410028049
Other languages
English (en)
Other versions
CN100356162C (zh
Inventor
李新胜
张伟
周慧玲
刘强
叶继伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Mindray Bio Medical Electronics Co Ltd
Original Assignee
Shenzhen Mindray Bio Medical Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Mindray Bio Medical Electronics Co Ltd filed Critical Shenzhen Mindray Bio Medical Electronics Co Ltd
Priority to CNB2004100280494A priority Critical patent/CN100356162C/zh
Publication of CN1595111A publication Critical patent/CN1595111A/zh
Application granted granted Critical
Publication of CN100356162C publication Critical patent/CN100356162C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

基于光源调制测量气体浓度的方法和装置,所述方法包括步骤:a.设置脉冲光源驱动电路(20),该驱动电路(20)的输入受单片机单元(10)控制;b.由单片机单元(10)输入一定时间间隔的脉冲串;c.所述驱动电路(20)的输出驱动红外光源(30);最终由单片机单元(10)对输入的数字信号进行处理;本发明采用光源调制方式来替代机械调制方式,探头设计中不需要斩波电机和斩波片,可以大大减小探头的体积和重量,并能消除电机带来的电磁干扰,增加测量仪器的可靠性和抗干扰能力。

Description

基于光源调制测量气体浓度的方法和装置
技术领域  本发明涉及利用特定气体对特定波长红外光波吸收率高的现象来检测人体呼出气体浓度的方法和装置,尤其涉及基于将光源调制后测量气体浓度的方法和装置。
背景技术  目前医用呼吸气体(包括二氧化碳气体、笑气N2O和麻醉气体)监测仪器的测量方法大都是基于非色散红外光谱分析技术(NDIR,Non-DispersiveInfrared),即利用不同气体分子对特定波长的中红外线存在一个选择性的吸收峰,而且气体浓度与其产生的光强衰减量符合Beer-Lambert定律。例如二氧化碳气体对4.26μm附近的红外光有一个吸收峰,因此可以根据4.26μm波段附近光强的衰减量来检测出相应的二氧化碳气体浓度。
现有的基于红外光谱吸收的气体浓度测量仪器一般采用热释电型红外传感器,热释电传感器的优点是抗干扰能力强,稳定性好,响应能力强。但由于热释电探测器是一种交流或瞬时响应的器件,所以使用时必须对光路进行调制,通常采用斩波片等机械装置对光源进行调制。测量探头一般由稳态光源及驱动电路、驱动斩波片的电机及其控制电路、滤光片、红外传感器及信号处理电路等几部分组成。例如二氧化碳的测量过程如下:稳态光源发出一定光谱范围的红外光,经过斩波片后产生光脉冲信号,斩波片上有两个滤光片,一个是中心波长为4.26μm的带通滤光片,做为测量通道用于二氧化碳气体浓度测量,另一个是不被检测气室中任何气体吸收的波段做为参考通道,如中心波长为3.75μm的窄带滤光片。经过斩波片调制后产生的脉冲光信号经过被测气体后测量通道的红外光强有一定衰减,而参考通道的红外光强基本不变,经红外传感器转换成两路电信号,通过取信号通道与参考通道两路电信号的测量值之比来消除光源发光效率、传感器响应能力以及温度漂移等因素对测量结果的影响,
目前所了解的上述基于红外光谱吸收方法气体浓度测量仪器的主要缺陷有:
光源调制采用机械调制方式,需要斩波电机和斩波片,测量探头的体积较大,结构复杂,制作难度大;由于测量装置中有旋转部件,对振动和电磁干扰非常敏感,使用寿命和可靠性显著降低。
发明内容  本发明所要解决的技术问题是为了克服上述呼吸气体测量设备的缺陷而进行的改进,本发明采用电子脉冲光源方式,这样就不需要机械斩波装置对光源进行调制。本发明测量探头的结构简单,体积也可以做得很小。由于取消了机械旋转部件,使检测设备的可靠性和抗干扰能力大大提高。本发明脉冲光源采用PWM(脉宽调制)方式驱动,传感器选用多通道红外传感器,传感器的测量窗口分别嵌入中心波长为3.75μm、4.26μm以及其他波长的窄带滤光片,用于采集待测气体浓度测量信号和参考信号,通过取各通道信号与参考信号的测量值之比以达到与机械斩波相同的性能指标。
本发明通过采用以下的技术方案来实现;
实施一种基于光源调制测量气体浓度的方法,基于包括单片机单元、红外光源、滤光片组、红外传感器、信号处理电路、A/D转换电路和显示及其他处理单元的系统,所述方法包括步骤:
a.设置脉冲光源驱动电路,该驱动电路的输入受单片机单元控制;
b.由单片机单元输入一定时间间隔的脉冲串;
c.所述驱动电路的输出驱动红外光源;
d.红外光源发出的红外光穿过气体通道中的被测气体,再分别通过滤光片组中各滤光片,在红外传感器上感应出被测信号和参考信号;
e.被测信号和参考信号被信号处理电路放大处理后,再经A/D转换电路转换成数字信号输入到单片机单元;
f.单片机单元对各路数字信号进行处理。
在上述方法中,可以将光源驱动电路、红外光源、滤光片组、红外传感器以及气体通道组合为一体探头器件。
还可以将信号处理电路加入到一体探头器件当中。
还可以不包括光源驱动电路,只将红外光源、滤光片组、红外传感器以及气体通道组合为一体探头器件,这样体积会更小。
在上述方法中,步骤b所述的一定时间间隔,为间隔16~25ms,再发送16~25ms的频率为10KHz的脉冲串,也就是用20~30Hz的低频调制10KHz的脉冲。
本发明还可以通过以下的技术方案进一步得到实施:
设计制造一种基于光源调制测量气体浓度的装置,包括单片机单元、红外光源、滤光片组、红外传感器、信号处理电路和A/D转换电路,尤其是还包括脉冲光源驱动电路;所述脉冲光源驱动电路的输入端接单片机单元中MCU的一个输出端,所述脉冲光源驱动电路的输出驱动器件,场效应晶体管的漏极接红外光源,源极接地,红外光源的另一引脚接电源正极Vcc。
可以将脉冲光源驱动电路、红外光源、滤光片组、红外传感器以及气体通道组合成为一体探头器件。
还可以不包括光源驱动电路,只将红外光源、滤光片组、红外传感器以及气体通道组合为一体探头器件,这样体积会更小。
还可以将信号处理电路、加入到一体探头器件中,也就是将脉冲光源驱动电路、红外光源、滤光片组、红外传感器以及气体通道、信号处理电路组合成为一体探头器件。
红外光源采用红外发光二极管器件。
滤光片组中各滤光片包括中心波长为4.26μm、3.75μm、为3.3μm、3.9μm、的窄带滤光片。
与现有技术相比较,本发明中采用光源调制方式来替代机械调制方式,探头设计中不需要斩波电机和斩波片,可以大大减小探头的体积和重量,并能消除电机带来的电磁干扰,增加测量仪器的可靠性和抗干扰能力。
附图说明  图1是本发明基于光源调制测量气体浓度的方法的流程图;
图2是本发明的装置构成方框图;
图3是本发明的装置电原理图;
图4是本发明的装置中一体探头器件实施例一的构成方框图;
图5是本发明的装置中一体探头器件实施例二的构成方框图。
具体实施方式下面结合附图及各实施例对本发明做进一步详尽的描述:
参照图1~图3,实施本发明基于光源调制测量气体浓度的最佳方法,基于包括单片机单元10、红外光源30、滤光片组50、红外传感器150、信号处理电路60、A/D转换电路70和显示及其他处理单元120的系统,所述方法包括步骤:
a.设置脉冲光源驱动电路20,该驱动电路20的输入受单片机单元10控制;
b.由单片机单元10输入一定时间间隔的脉冲串;
c.所述驱动电路20的输出驱动红外光源30;
d.红外光源30发出的红外光穿过气体通道40中的被测气体,再分别通过滤光片组50中各滤光片,在红外传感器150上感应出被测信号和参考信号;
e.被测信号和参考信号被信号处理电路60放大处理后,再经A/D转换电路70转换成数字信号输入到单片机单元10;
f.单片机单元10对各路数字信号进行处理。
在上述方法中,本发明实施例之一可以将光源驱动电路20、红外光源30、滤光片组50、红外传感器150以及气体通道40组合为一体探头器件100。
本发明实施例之二还可以不包括光源驱动电路,只将红外光源30、滤光片组50、红外传感器150以及气体通道40组合为一体探头器件100。
本发明的最佳实施例将信号处理电路60加入到一体探头器件100中,也就是将脉冲光源驱动电路20、红外光源30、滤光片组50、红外传感器150以及气体通道40、信号处理电路60组合成为一体探头器件100。
在上述方法中,步骤b所述的一定时间间隔为间隔25ms,再发送25ms的频率为10KHz的脉冲串。或者是一定时间间隔为间隔16ms,再发送16ms的频率为10KHz的脉冲串。
在上述方法中,信号处理电路60中的信号处理通道数目根据所要检测气体种类的数目设置来设定。
本发明还可以通过以下的技术方案进一步得到实施:
如图3所示:设计制造一种基于光源调制测量气体浓度的装置,包括单片机单元10、红外光源30、滤光片组50、红外传感器150、信号处理电路60、A/D转换电路70和显示及其他处理单元120,尤其是:
还包括脉冲光源驱动电路20;所述脉冲光源驱动电路20的输入端PWM接单片机单元10中U1的一个输出端,所述脉冲光源驱动电路20的输出驱动器件Q1的漏极接红外光源30,Q1的源极接地,红外光源  30的另一引脚接电源正极Vcc。
在本发明最佳实施例中,输出驱动器件Q1采用场效应晶体管,在其他实施例中可以采用普通晶体管。
如图4所示:在本发明实施例之一中可以将光源驱动电路20、红外光源30、第滤光片组50、红外传感器150以及气体通道40组合为一体探头器件100,本发明的装置与一体探头器件100之间有PWM、GND、Vcc、-Vcc、去(60)的输入和导气胶管连接。
如图5所示:在本发明实施例之二中还可以不包括光源驱动电路,只将红外光源30、滤光片组50、红外传感器150以及气体通道40组合为一体探头器件100,本发明的装置与一体探头器件100之间有Q1的漏极、GND、Vcc、去(60)的输入和导气胶管连接。
本发明的最佳实施例将信号处理电路60加入到一体探头器件100中,也就是将脉冲光源驱动电路20、红外光源30、滤光片组50、红外传感器150以及气体通道40、信号处理电路60组合成为一体探头器件100。
本发明的最佳实施例中红外光源30采用红外发光二极管器件。
本发明的最佳实施例中滤光片组50中的滤光片包括中心波长为4.26μm和3.75μm的窄带滤光片。在其他实施例中包括中心波长为4.26μm、3.3μm、3.75μm和3.9μm的窄带滤光片。
本发明的工作原理如下:
红外光源30发出的脉冲光经过被测气体后,被呼吸气体吸收,红外传感器150接收到的光强就发生变化,其变化的规律满足Beer-Lambert定律:
I=L0·e-aLC
式中,I0、I分别为吸收前、后的红外光光强。
以二氧化碳气体为例:α为4.26um波长下二氧化碳气体的吸收系数,L为被测气体的有效吸收光程,C为被测气体的浓度,在测量装置中I0、α、L均保持不变,所以通过测量衰减后的光强,根据事先制定的衰减光强与二氧化碳浓度关系曲线就可以得到被测二氧化碳气体的浓度。在测量过程中光源输出功率的波动、探测电路的温漂等因素都会影响到测量结果准确性,需要在测量装置中引入一个参考波段,二氧化碳在该参考波段没有任何吸收,通过参考通道测量得到的光强是一个不变的量,近似等于I0。取二氧化碳通道测量值与参考通道测量值相比就可以消除光源波动,电路温漂等对测量结果造成的影响。光强的测量通过一个多通道的红外传感器150来实现,红外传感器150的测量窗口前面分别放置中心波长为4.26μm和3.75μm的带通滤光片,测量两个不同波段的光强,其中4.26μm的窗口用来测量二氧化碳吸收后的光强。3.75μm的窗口用来做参考通道。带通滤光片嵌在红外传感器150的感光窗口中,属于一体化的元件。
两个通道的信号经信号处理电路60放大处理后,通过A/D转换电路70,送入单片机单元10进行二氧化碳浓度、呼吸率等参数的计算。
图3所示的是本发明电路的最佳实施例,信号处理电路60中的信号处理通道数目是2个。单片机单元10中的单片机U1可以选用AT89C51系列,其P2.0~P2.2三个管脚接A/D转换电路70中的A/D转换器U2的输入通道选择端A0、A1、A2,用来决定哪一路输入接入工作,信号处理电路60的输出signal_气体和signal_REF接入A/D转换器U2的各一路输入,A/D转换器U2在最佳实施例中选用MAX158,当然也可以选用其他型号的A/D转换器。
如图3所示,单片机U1或者驱动显示及其他处理单元120直接进行显示,或者将处理结果传输给其他装置显示、打印和存储。
如图2所示,稳压电源80向整个装置提供Vcc、-Vcc、GND直流电源。
本发明如采用四通道的红外传感器,四个测量窗口前分别放置3.3μm,3.75μm,3.9μm和4.26μm的滤光片就可以同时测量二氧化碳、笑气(N2O)和麻醉气体的浓度。
信号处理电路60中的信号处理通道数目根据所要检测气体种类的数目设置来设定。如果采用四通道的红外传感器,则信号处理通道数目也是4个。
利用本发明的方法,改变多通道传感器窗口前放置的滤光片,或者增加传感器的测量通道,可以测量其他气体的浓度。
实践证明,本发明中采用光源调制方式来替代机械调制方式,探头设计中不需要斩波电机和斩波片,可以大大减小探头的体积和重量,并能消除电机带来的电磁干扰,增加测量仪器的可靠性和抗干扰能力。

Claims (10)

1.一种基于光源调制测量气体浓度的方法,基于包括单片机单元(10)、红外光源(30)、滤光片组(50)、红外传感器(150)、信号处理电路(60)、A/D转换电路(70)和显示及其他处理单元(120)的系统,其特征在于,所述方法包括步骤:
a.设置脉冲光源驱动电路(20),该驱动电路(20)的输入受单片机单元(10)控制;
b.由单片机单元(10)输入一定时间间隔的脉冲串;
c.所述驱动电路(20)的输出驱动红外光源(30);
d.红外光源(30)发出的红外光穿过气体通道(40)中的被测气体,再分别通过滤光片组(50)中各滤光片,在红外传感器(150)上感应出被测信号和参考信号;
e.被测信号和参考信号被信号处理电路(60)放大处理后,再经A/D转换电路(70)转换成数字信号输入到单片机单元(10);
f.单片机单元(10)对各路数字信号进行处理。
2.根据权利要求1所述的基于光源调制测量气体浓度的方法,其特征在于:将光源驱动电路(20)、红外光源(30)、滤光片组(50)、红外传感器(150)以及气体通道(40)组合为一体探头器件(100)。
3.根据权利要求1所述的基于光源调制测量气体浓度的方法,其特征在于:将红外光源(30)、滤光片组(50)、红外传感器(150)以及气体通道(40)组合为一体探头器件(100)。
4.根据权利要求1所述的基于光源调制测量气体浓度的方法,其特征在于:将光源驱动电路(20)、红外光源(30)、滤光片组(50)、红外传感器(150)、信号处理电路(60)以及气体通道(40)组合为一体探头器件(100)。
5.根据权利要求1所述的基于光源调制测量气体浓度的方法,其特征在于:步骤b所述的一定时间间隔为间隔16~25ms,再发送16~25ms的频率为10KHz的脉冲串。
6.一种基于光源调制测量气体浓度的装置,包括单片机单元(10)、红外光源(30)、滤光片组(50)、红外传感器(150)、信号处理电路(60)、A/D转换电路(70)和显示及其他处理单元(120),其特征在于:
还包括脉冲光源驱动电路(20);所述脉冲光源驱动电路(20)的输入端PWM接单片机单元(10)中U1的一个输出端,所述脉冲光源驱动电路(20)的输出驱动器件Q1的漏极接红外光源(30),Q1的源极接地,红外光源(30)的另一引脚接电源正极Vcc。
7.根据权利要求6所述的基于光源调制测量气体浓度的装置,其特征在于:脉冲光源驱动电路(20)、红外光源(30)、滤光片组(50)、红外传感器(150)以及气体通道(40)组合成为一体探头器件(100)。
8.根据权利要求6所述的基于光源调制测量气体浓度的装置,其特征在于:红外光源(30)、滤光片组(50)、红外传感器(150)以及气体通道(40)组合成为一体探头器件(100)。
9.根据权利要求6所述的基于光源调制测量气体浓度的装置,其特征在于:脉冲光源驱动电路(20)、红外光源(30)、滤光片组(50)、红外传感器(150)、信号处理电路(60)以及气体通道(40)组合成为一体探头器件(100)。
10.根据权利要求6所述的基于光源调制测量气体浓度的装置,其特征在于:滤光片组(50)包括中心波长为4.26μm、3.75μm、3.3μm、3.9μm的窄带滤光片。
CNB2004100280494A 2004-07-07 2004-07-07 基于光源调制测量气体浓度的方法和装置 Active CN100356162C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100280494A CN100356162C (zh) 2004-07-07 2004-07-07 基于光源调制测量气体浓度的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100280494A CN100356162C (zh) 2004-07-07 2004-07-07 基于光源调制测量气体浓度的方法和装置

Publications (2)

Publication Number Publication Date
CN1595111A true CN1595111A (zh) 2005-03-16
CN100356162C CN100356162C (zh) 2007-12-19

Family

ID=34664123

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100280494A Active CN100356162C (zh) 2004-07-07 2004-07-07 基于光源调制测量气体浓度的方法和装置

Country Status (1)

Country Link
CN (1) CN100356162C (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477043B (zh) * 2009-01-05 2011-11-16 浙江理工大学 带有曲线绘制功能的红外酒精测试方法及系统
CN102262061A (zh) * 2011-04-26 2011-11-30 中国人民解放军军事医学科学院卫生装备研究所 一种在线检测二氧化氯气体浓度的方法和装置
CN102507507A (zh) * 2011-11-09 2012-06-20 北京航天益来电子科技有限公司 利用温度修正检测被测气体浓度的装置和方法
CN102608060A (zh) * 2012-03-09 2012-07-25 深圳市理邦精密仪器股份有限公司 一种高可靠性的气体浓度测量方法及装置
CN102768188A (zh) * 2012-07-30 2012-11-07 山东建筑大学 一种医疗设备
CN102818770A (zh) * 2011-11-30 2012-12-12 凯迈(洛阳)环测有限公司 一种采用窄带干涉滤光片的能见度标准器
CN102004070B (zh) * 2009-09-01 2013-08-14 杭州绿洁水务科技有限公司 一种液体中颗粒物检测系统
CN102004067B (zh) * 2009-09-01 2013-12-25 杭州绿洁水务科技有限公司 一种液体中颗粒物的检测系统和方法
CN103868879A (zh) * 2014-03-18 2014-06-18 天津大学 基于光纤布喇格光栅的多种气体浓度传感器
CN107490556A (zh) * 2017-04-19 2017-12-19 安徽华脉科技发展有限公司 一种红外可燃气体浓度检测系统
CN109799206A (zh) * 2019-03-08 2019-05-24 上海大学 一种非分光型红外气体传感器及其运行方式
CN110006836A (zh) * 2019-04-29 2019-07-12 江苏万联达医疗科技有限公司 麻醉气体识别及测量的装置和方法
CN113196038A (zh) * 2018-11-27 2021-07-30 伊莱肯兹公司 包括脉冲光源的气体传感器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694173A (en) * 1985-10-09 1987-09-15 Hibshman Corporation Nondispersive gas analyzer having no moving parts
DE3819987C2 (de) * 1988-06-11 1996-03-28 Draegerwerk Ag Schaltungsanordnung zum Betreiben einer pulsmodulierten Infrarot-Strahlungsquelle insb. für einen Infrarot-Gasanalysator
US5053754A (en) * 1990-04-02 1991-10-01 Gaztech Corporation Simple fire detector
DE4111187C2 (de) * 1991-04-06 1994-11-24 Lfe Lab Fuer Ind Forschung Gmb Verfahren zur Messung des optischen Absorptionsvermögens von Proben unter Eliminierung des Anzeigefehlers hinsichtlich gas-physikalischer Eigenschaften und Vorrichtung zur Durchführung des Verfahrens
US5444249A (en) * 1994-02-14 1995-08-22 Telaire Systems, Inc. NDIR gas sensor
NO312860B1 (no) * 1998-07-17 2002-07-08 Kanstad Teknologi As Metode for utforming og innfesting av et tynt, pulsvarmet legeme
CN2426148Y (zh) * 2000-07-04 2001-04-04 北京天虹智能仪表有限责任公司 红外二氧化硫气体分析仪

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477043B (zh) * 2009-01-05 2011-11-16 浙江理工大学 带有曲线绘制功能的红外酒精测试方法及系统
CN102004070B (zh) * 2009-09-01 2013-08-14 杭州绿洁水务科技有限公司 一种液体中颗粒物检测系统
CN102004067B (zh) * 2009-09-01 2013-12-25 杭州绿洁水务科技有限公司 一种液体中颗粒物的检测系统和方法
CN102262061A (zh) * 2011-04-26 2011-11-30 中国人民解放军军事医学科学院卫生装备研究所 一种在线检测二氧化氯气体浓度的方法和装置
CN102507507A (zh) * 2011-11-09 2012-06-20 北京航天益来电子科技有限公司 利用温度修正检测被测气体浓度的装置和方法
CN102818770B (zh) * 2011-11-30 2016-03-09 凯迈(洛阳)环测有限公司 一种采用窄带干涉滤光片的能见度标准器
CN102818770A (zh) * 2011-11-30 2012-12-12 凯迈(洛阳)环测有限公司 一种采用窄带干涉滤光片的能见度标准器
CN102608060A (zh) * 2012-03-09 2012-07-25 深圳市理邦精密仪器股份有限公司 一种高可靠性的气体浓度测量方法及装置
CN102768188A (zh) * 2012-07-30 2012-11-07 山东建筑大学 一种医疗设备
CN103868879A (zh) * 2014-03-18 2014-06-18 天津大学 基于光纤布喇格光栅的多种气体浓度传感器
CN103868879B (zh) * 2014-03-18 2016-05-11 天津大学 基于光纤布喇格光栅的多种气体浓度传感器
CN107490556A (zh) * 2017-04-19 2017-12-19 安徽华脉科技发展有限公司 一种红外可燃气体浓度检测系统
CN113196038A (zh) * 2018-11-27 2021-07-30 伊莱肯兹公司 包括脉冲光源的气体传感器
CN109799206A (zh) * 2019-03-08 2019-05-24 上海大学 一种非分光型红外气体传感器及其运行方式
CN110006836A (zh) * 2019-04-29 2019-07-12 江苏万联达医疗科技有限公司 麻醉气体识别及测量的装置和方法
CN110006836B (zh) * 2019-04-29 2022-02-18 江苏万联达医疗科技有限公司 麻醉气体识别及测量的装置和方法

Also Published As

Publication number Publication date
CN100356162C (zh) 2007-12-19

Similar Documents

Publication Publication Date Title
CN1595111A (zh) 基于光源调制测量气体浓度的方法和装置
CN101936896B (zh) 一种乙醇气体浓度激光遥测装置
CN101470075B (zh) 气体浓度测量装置
CN203324177U (zh) 一种测量气体浓度的装置
CN211348270U (zh) 一种荧光免疫分析仪
CN102564949B (zh) 气体检测系统及气体检测方法
CN102253012B (zh) 黑碳气溶胶消光系数测量装置及测量方法
CN101551326B (zh) 智能无线车载嵌入式汽车尾气分析装置
CN204556499U (zh) 调谐二极管吸收光谱的多通道高速数据采集和处理系统
CN112763443B (zh) 一种二氧化碳传感器、校准方法及在线检测仪
CN105651662A (zh) 气溶胶质量浓度光学检测装置及其检测方法
CN107560730A (zh) 双腔式光声光谱仪
CN201803948U (zh) 一种乙醇气体浓度激光遥测装置
CN114403904B (zh) 基于肌电信号与肌肉血氧饱和度确定肌肉状态的装置
CN1614394A (zh) 基于机械调制测量气体浓度的方法及装置
CN105891151A (zh) 一种用于反射式激光酒驾检测的单光源激光驱动系统
CN112098355A (zh) 一种适用于宽带发散光束的光声光谱痕量气体检测装置
CN103575687B (zh) 便携式co2高灵敏检测系统
CN1445528A (zh) 无气泵式红外二氧化碳浓度分析方法及装置
CN103462614B (zh) 基于多波长光束无创在体血酒精浓度检测仪器及处理方法
CN110632015A (zh) 可变光程式气体传感器
KR100351975B1 (ko) 배출가스 측정용 광음향센서
CN207472755U (zh) 一种双级增强型光声光谱检测器装置
CN206515235U (zh) 一种量子级联激光器的红外长光程气体检测装置
CN1225641C (zh) 可调谐激光的光波调制硬件结构及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant