CN1588448A - Image optimum fusing method based on fuzzy integral - Google Patents

Image optimum fusing method based on fuzzy integral Download PDF

Info

Publication number
CN1588448A
CN1588448A CN 200410054207 CN200410054207A CN1588448A CN 1588448 A CN1588448 A CN 1588448A CN 200410054207 CN200410054207 CN 200410054207 CN 200410054207 A CN200410054207 A CN 200410054207A CN 1588448 A CN1588448 A CN 1588448A
Authority
CN
China
Prior art keywords
image
fusion
frequency
coefficients
resolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410054207
Other languages
Chinese (zh)
Other versions
CN1303571C (en
Inventor
敬忠良
肖刚
李建勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiao Tong University
Original Assignee
Shanghai Jiao Tong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiao Tong University filed Critical Shanghai Jiao Tong University
Priority to CNB2004100542073A priority Critical patent/CN1303571C/en
Publication of CN1588448A publication Critical patent/CN1588448A/en
Application granted granted Critical
Publication of CN1303571C publication Critical patent/CN1303571C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

一种基于模糊积分的图像优化融合方法,在IHS空间,将多光谱影像的强度分量经小波多层分解得到的低频基带系数,与高分辨率影像经对应多层小波分解得到的低频基带系数,利用模糊积分综合光谱信息和空间分辨率这两个单因素指标,进行迭代求优的像素级融合,同时对经小波分解后的高频子带系数进行高频细节特征融合,然后将融合处理后得到的高频子带系数、低频系数进行对应的小波逆变换,得到新的强度分量I’,再进行IHS逆变换后得到优化融合后的影像。本发明结合了IHS融合方法和小波融合方法的特点,使融合后的影像既达到最高的空间分辨率,又最大限度的降低了彩色的畸变,有效的改善了融合影像的光谱信息指标。

Figure 200410054207

An image optimization fusion method based on fuzzy integrals. In IHS space, the low-frequency baseband coefficients obtained by multi-layer wavelet decomposition of the intensity component of the multispectral image, and the low-frequency baseband coefficients obtained by the corresponding multi-layer wavelet decomposition of the high-resolution image, Using fuzzy integral to synthesize spectral information and spatial resolution, two single-factor indicators, iteratively optimizes pixel-level fusion, and at the same time performs high-frequency detail feature fusion on the high-frequency sub-band coefficients after wavelet decomposition, and then fuses the processed The obtained high-frequency sub-band coefficients and low-frequency coefficients are subjected to corresponding wavelet inverse transformation to obtain a new intensity component I', and then the optimized fusion image is obtained after IHS inverse transformation. The invention combines the characteristics of the IHS fusion method and the wavelet fusion method, so that the fused image not only achieves the highest spatial resolution, but also reduces the color distortion to the greatest extent, and effectively improves the spectral information index of the fused image.

Figure 200410054207

Description

基于模糊积分的图像优化融合方法Image Optimal Fusion Method Based on Fuzzy Integral

技术领域technical field

本发明涉及一种基于模糊积分的图像优化融合方法,结合小波多分辨率分解具有的时频特性和IHS(强度Intensity-色度Hue-饱和度Saturation)变换融合方法,利用模糊积分综合光谱信息和空间分辨率两个单因素指标,进行遥感影像优化融合,有效改善融合影像的光谱信息指标,在各类军用或民用的遥感信息处理系统、数字城市空间信息系统等领域中均可有广泛的应用。The present invention relates to an image optimization fusion method based on fuzzy integral, combined with the time-frequency characteristics of wavelet multi-resolution decomposition and IHS (Intensity-Chroma Hue-Saturation) transformation fusion method, using fuzzy integral to synthesize spectral information and The two single-factor indicators of spatial resolution are used to optimize the fusion of remote sensing images and effectively improve the spectral information indicators of fused images. They can be widely used in various military or civilian remote sensing information processing systems and digital city spatial information systems. .

背景技术Background technique

有效的融合高分辨率全色遥感影像和低分辨率的多光谱遥感影像,均衡融合结果中空间细节信息和光谱信息两项特征指标,是多源遥感影像融合技术的研究热点之一。Effectively fusing high-resolution panchromatic remote sensing images and low-resolution multispectral remote sensing images, and balancing the two characteristic indicators of spatial detail information and spectral information in the fusion results, is one of the research hotspots in multi-source remote sensing image fusion technology.

Haydn等人首先提出的IHS融合方法是经典的实用算法之一。该方法将多光谱影像通过IHS变换从RGB(红Red-绿Green-蓝Blue)空间变换到IHS空间,同时将高分辨率的全色影像进行线性拉伸,使得拉伸后影像的均值和方差与IHS空间中的强度分量I0一致。然后,将拉伸后的高分辨率影像作为新的强度分量,与H和S分量一起按照IHS逆变换公式变换到原RGB空间。这样,使得融合后的影像既具有较高的空间分辨率,同时又保持了原低分辨率多光谱影像相同的色度和饱和度。然而,这种经典的IHS融合方法存在着一定的缺陷,由于不同波段的数据具有不同的光谱特性曲线,IHS融合方法扭曲了原始的光谱特性,产生了不同程度的光谱退化现象,因而不利于影像的正确识别和分类,特别是对于不同时相的多传感器遥感影像的影像融合,IHS融合方法无法使得融合影像的色调和原多光谱影像的色调保持一致,这种因为光谱信息的变换,导致了影像不能用于地物识别和反演。Te-Ming等人在IHS空间进行了数学上的证明,论述了IHS融合方法的缺陷,得到的结论是:尽管用于替换强度分量I0的高分辨率的全色影像Inew在替换前进行了影像的统计特性的匹配,但是匹配误差δ=Inew-I导致了彩色的畸变。The IHS fusion method first proposed by Haydn et al. is one of the classic practical algorithms. This method transforms the multispectral image from RGB (Red-Green-Green-Blue) space to IHS space through IHS transformation, and at the same time linearly stretches the high-resolution panchromatic image, so that the mean and variance of the stretched image coincides with the intensity component I 0 in the IHS space. Then, the stretched high-resolution image is used as a new intensity component, and together with the H and S components, it is transformed into the original RGB space according to the IHS inverse transformation formula. In this way, the fused image not only has a higher spatial resolution, but also maintains the same hue and saturation of the original low-resolution multispectral image. However, this classic IHS fusion method has certain defects. Because the data of different bands have different spectral characteristic curves, the IHS fusion method distorts the original spectral characteristics and produces different degrees of spectral degradation, which is not conducive to image The correct identification and classification, especially for the image fusion of multi-sensor remote sensing images of different time phases, the IHS fusion method cannot make the color tone of the fusion image consistent with the color tone of the original multispectral image, which is caused by the transformation of spectral information. Images cannot be used for object recognition and inversion. Te-Ming et al. conducted a mathematical proof in the IHS space, discussed the defects of the IHS fusion method, and concluded that: although the high-resolution panchromatic image I new used to replace the intensity component I 0 is performed before the replacement The matching of the statistical characteristics of the image is achieved, but the matching error δ=I new -I leads to color distortion.

当利用模糊测度表征对评价指标的重视程度后,引入模糊积分则可以有效的综合光谱信息指标和空间分辨率两个单因素指标,在IHS融合方法和小波变换融合的基础上,模糊积分可以方便快捷的进行图像优化融合。目前尚未见有关将模糊积分用于图像优化融合的方法报道。When the fuzzy measure is used to represent the emphasis on the evaluation index, the introduction of fuzzy integral can effectively synthesize the two single factor indexes of spectral information index and spatial resolution. On the basis of IHS fusion method and wavelet transform fusion, fuzzy integral can be convenient Fast image optimization fusion. At present, there is no report on the method of using fuzzy integral for image optimal fusion.

发明内容Contents of the invention

本发明的目的在于针对上述IHS变换融合技术的不足,提供一种遥感影像优化融合方法,引入模糊积分作为综合光谱信息指标和空间分辨率两个单因素指标,既能提高融合后影像的空间分辨率,又能降低彩色的畸变,有效改善融合影像的光谱信息指标。The purpose of the present invention is to address the shortcomings of the above-mentioned IHS transformation and fusion technology, to provide an optimal fusion method for remote sensing images, which introduces fuzzy integrals as two single-factor indicators of comprehensive spectral information index and spatial resolution, which can improve the spatial resolution of the fused image. It can reduce the color distortion and effectively improve the spectral information index of the fusion image.

为实现这样的目的,本发明在IHS空间,将多光谱影像的强度分量经小波多层分解得到的低频基带系数,与高分辨率影像经对应多层小波分解得到的低频基带系数进行以空间细节信息和光谱信息两项特征指标的模糊优化融合,对经小波分解后的高频子带系数进行高频细节特征融合,然后将小波系数进行对应的小波逆变换,得到新的强度分量,再进行IHS逆变换后得到融合后的影像。In order to achieve such a goal, the present invention combines the low-frequency baseband coefficients obtained by multi-layer wavelet decomposition of the intensity component of the multispectral image with the low-frequency baseband coefficients obtained by the corresponding multi-layer wavelet decomposition of the high-resolution image in the IHS space to obtain spatial details. The fuzzy optimization fusion of the two characteristic indicators of information and spectral information, the high-frequency detail feature fusion is performed on the high-frequency sub-band coefficients after wavelet decomposition, and then the corresponding wavelet inverse transform is performed on the wavelet coefficients to obtain new intensity components, and then The fused image is obtained after IHS inverse transformation.

由于小波变换在变换域具有良好的分频特性,小波系数的统计特性反映了遥感影像的边缘、线和区域等显著特征,本发明将小波变换的多分辨分析(Multi-resolution Analysis)方法引入高分辨率全色遥感影像和低分辨率的多光谱遥感影像的融合中。Because the wavelet transform has good frequency division characteristics in the transform domain, and the statistical characteristics of the wavelet coefficients reflect the significant features such as edges, lines and regions of the remote sensing image, the present invention introduces the multi-resolution analysis (Multi-resolution Analysis) method of the wavelet transform into high In the fusion of high-resolution panchromatic remote sensing images and low-resolution multispectral remote sensing images.

本发明的方法包括如下具体步骤:Method of the present invention comprises following specific steps:

1.对待融合的多光谱影像B进行IHS变换,分别得到在IHS彩色空间的色度H、饱和度S和强度分量I,然后对I分量进行小波分解,得到低频基带系数和高频子带系数。1. Perform IHS transformation on the multispectral image B to be fused to obtain the chroma H, saturation S, and intensity component I in the IHS color space, and then perform wavelet decomposition on the I component to obtain low-frequency baseband coefficients and high-frequency subband coefficients .

2.对待融合高分辨率影像A进行线性拉伸和直方图匹配,然后进行小波分解,得到低频基带系数和高频子带系数,分解层数与多光谱影像I分量的小波分解层数相同。2. Perform linear stretching and histogram matching on the high-resolution image A to be fused, and then perform wavelet decomposition to obtain low-frequency baseband coefficients and high-frequency sub-band coefficients. The number of decomposition layers is the same as that of the multispectral image I component.

3.确定一个3×3的空域窗口,分别求得影像B的I分量的高频子带系数和影像A的高频子带系数的均值μ(2j)和方差D(2j)。3. Determine a 3×3 spatial domain window, and obtain the mean value μ(2 j ) and variance D(2 j ) of the high-frequency sub-band coefficients of the I component of image B and the high-frequency sub-band coefficients of image A, respectively.

4.在对应分辨率层上,高频子带系数按照(1)式进行高频细节特征融合:4. On the corresponding resolution layer, the high-frequency sub-band coefficients are fused according to formula (1) for high-frequency detail features:

Figure A20041005420700061
Figure A20041005420700061

(1)式中,2j为小波分解层数,Wk(2j,x,y)为2j分辨率下得到的高频子带系数融合结果;WA K(2j,x,y)和WB K(2j,x,y)分别为影像A及影像B中I分量所对应的高频子带系数,DA K、DB K分别是以(x,y)为中心像元的3×3的空域窗口的方差。In formula (1), 2 j is the number of wavelet decomposition layers, W k (2 j , x, y) is the fusion result of high-frequency sub-band coefficients obtained at 2 j resolution; W A K (2j, x, y) and W B K (2 j , x, y) are the high-frequency sub-band coefficients corresponding to the I component in image A and image B respectively, and D A K and D B K are respectively centered on (x, y) The variance of the 3×3 spatial domain window.

5.对影像B的I分量和影像A的低频基带系数,按照(2)式进行优化的像素级融合,权系数的kopt按照光谱信息评价指标和空间分辨率评价指标进行求优,求优采用模糊积分综合光谱信息指标和空间分辨率两项单因素指标:5. For the I component of image B and the low-frequency baseband coefficient of image A, the pixel-level fusion is optimized according to formula (2), and the k opt of the weight coefficient is optimized according to the spectral information evaluation index and the spatial resolution evaluation index. Using fuzzy integral to synthesize spectral information index and two single factor indexes of spatial resolution:

A(2j,x,y)=k1AA(2j,x,y)+k2AB(2j,x,y)              (2)A(2 j , x, y)=k 1 A A (2 j , x, y)+k 2 A B (2 j , x, y) (2)

(2)式中,AA(2j,x,y)、AB(2j,x,y)分别为影像A及影像B中I分量对应的2j分辨率的低频基带数据,k1、k2为需要求优的权系数。按照归一化要求,k1、k2满足k1+k2=1,即求优权系数的确定可以归结为满足目标函数的kopt=k1=1-k2。优化融合迭代过程中的权系数满足0≤kopt≤1;In formula (2), A A (2 j , x, y), A B (2 j , x, y) are the low-frequency baseband data of 2 j resolution corresponding to the I component in image A and image B respectively, k 1 , k 2 is the weight coefficient that needs to be optimized. According to normalization requirements, k 1 and k 2 satisfy k 1 +k 2 =1, that is, the determination of the optimization coefficient can be attributed to k opt =k 1 =1-k 2 satisfying the objective function. The weight coefficient in the optimization fusion iteration process satisfies 0≤k opt ≤1;

按照式S=sup{min[e(u1),g(E1)],min[e(u2),g(E2)]}计算寻优评价指标确定的模糊积分值Ei,求得SKopt=max(Ei),SKopt对应的迭代值kopt即为最优权系数,式中,g(E1)、g(E2)为对光谱信息指标和空间分辨率两项指标的重视度,e(u1)为光谱信息指标,e(u2)为空间分辨率指标,根据e(u1),e(u2)的大小,u1和u2是对光谱信息和空间分辨率从小到大的排序位置。According to the formula S=sup{min[e(u 1 ), g(E 1 )], min[e(u 2 ), g(E 2 )]} to calculate the fuzzy integral value E i determined by the optimization evaluation index, find S Kopt = max(E i ), and the iterative value k opt corresponding to S Kopt is the optimal weight coefficient. In the formula, g(E 1 ) and g(E 2 ) are two items of spectral information index and spatial resolution The importance of indicators, e(u 1 ) is the spectral information index, e(u 2 ) is the spatial resolution index, according to the size of e(u 1 ), e(u 2 ), u 1 and u 2 are the spectral information and spatial resolution from small to large sorting positions.

6.对得到的像素级融合的小波系数的低频基带系数,以及各高频小波系数进行对应的小波逆变换,得到新的强度分量I’;6. Carry out corresponding wavelet inverse transform to the low-frequency baseband coefficients of the obtained pixel-level fused wavelet coefficients and the high-frequency wavelet coefficients to obtain a new intensity component I';

7.将I’、H、S进行IHS逆变换,得到融合后的影像C。7. Perform IHS inverse transformation on I', H, and S to obtain the fused image C.

本发明引入模糊积分对光谱信息指标和空间分辨率两项单因素指标进行象素级优化融合时:When the present invention introduces fuzzy integrals to perform pixel-level optimization and fusion of the two single-factor indexes of spectral information index and spatial resolution:

定义:设X为论域,e是从X到[0,1]的可测函数,A∈P(X),则e关于模糊测度g在集A上的模糊积分S定义如(3)式:Definition: Let X be the domain of discourse, e is a measurable function from X to [0, 1], A∈P(X), then the fuzzy integral S of e with respect to the fuzzy measure g on the set A is defined as (3) :

SS == ∫∫ AA ee (( xx )) ·&Center Dot; gg (( xx )) == supsup minmin αα ∈∈ [[ 0,10,1 ]] [[ αα ,, gg (( AA ∩∩ EE. αα )) ]]

== maxmax αα ∈∈ [[ 0,10,1 ]] [[ minmin (( αα ,, gg (( AA ∩∩ EE. αα )) )) ]] -- -- (( 33 ))

其中,Eα={x|e(x)≥α},P(x)是X的幂集。g(·)是模糊测度。利用模糊积分进行优化融合时,模糊测度可以表征重视程度。Wherein, E α ={x|e(x)≥α}, P(x) is a power set of X. g(·) is the fuzzy measure. When fuzzy integral is used for optimal fusion, fuzzy measure can represent the degree of importance.

利用模糊积分进行优化融合的关键是模糊测度g(x)的定义,可以采用gλ测度。在论域X={x1,x2,x3,…xn}(因素集)为有限的情况下,在λ=0时,只要确定了单点集(单因素集){xi}的gλ模糊测度gλ(xi),则可以得到任意AX的测度。对于多光谱、高分辨图像融合问题,论域X={x1,x2},评价因素有两个,x1=光谱信息,x2=空间分辨率。重视度为gλ(x1),gλ(x2),简单表示为g1、g2,则g({x1})=g1,g({x2})=g2,g({x1,x2})=g({x1})+g({x2})=1。e(x)表示光谱信息评价指标和分辨率评价指标。论域X相应的评价指标为e(x1)=ESP,e(x2)=EHF简单表示为e1,e2。按照模糊积分的定义,可以得到(4)式:The key to optimal fusion using fuzzy integral is the definition of fuzzy measure g(x), which can be measured by gλ. In the case that the domain of discourse X={x 1 , x 2 , x 3 ,...x n } (factor set) is limited, when λ=0, as long as the single point set (single factor set) { xi } gλ fuzzy measure gλ( xi ) of gλ, then the measure of any AX can be obtained. For multi-spectral and high-resolution image fusion, domain X={x 1 , x 2 }, there are two evaluation factors, x 1 =spectral information, x 2 =spatial resolution. The degree of importance is gλ(x 1 ), gλ(x 2 ), simply expressed as g 1 , g 2 , then g({x 1 })=g 1 , g({x 2 })=g 2 , g({ x 1 , x 2 })=g({x 1 })+g({x 2 })=1. e(x) represents the spectral information evaluation index and the resolution evaluation index. The corresponding evaluation index of domain X is e(x 1 )=E SP , e(x 2 )=E HF is simply expressed as e 1 , e 2 . According to the definition of fuzzy integral, formula (4) can be obtained:

∫∫ Xx ee (( xx )) ·· gg (( xx )) == supsup minmin αα ∈∈ [[ 0,10,1 ]] [[ αα ,, gg (( Xx ∩∩ EE. αα )) ]] -- -- (( 44 ))

== maxmax αα ∈∈ [[ 0,10,1 ]] [[ minmin (( αα ,, gg (( EE. αα )) )) ]]

根据e1,e2的大小,对x1和x2排序,按从小到大的排序位置记为u1和u2。此时α的取值有两种情况:当α=e(u1)时,Eα=E1={u1,u2},则g(E1)=1;当α=e(u2)时,Eε=E2={u2},则g(E2)=g({u2})。According to the size of e 1 and e 2 , sort x 1 and x 2 and record them as u 1 and u 2 in ascending order. At this time, there are two situations for the value of α: when α=e(u 1 ), E α =E 1 ={u 1 , u 2 }, then g(E 1 )=1; when α=e(u 2 ), E ε =E 2 ={u 2 }, then g(E 2 )=g({u 2 }).

按照模糊积分的定义,可表示为(5)式:According to the definition of fuzzy integral, it can be expressed as formula (5):

S=sup{min[e(u1),g(E1)],min[e(u2),g(E2)]}             (5)S=sup{min[e(u 1 ), g(E 1 )], min[e(u 2 ), g(E 2 )]} (5)

当e1>e2时,x1和x2从小到大的排序位置为u1=x2,u2=x1,相应地e(u1)=e2,g(E1)=1,e(u2)=e1,g(E2)=g({u2})=g({x1})=g1,则模糊积分S=max(e1·g1,e2)。When e 1 >e 2 , the sorting position of x 1 and x 2 from small to large is u 1 = x 2 , u 2 = x 1 , correspondingly e(u 1 )=e 2 , g(E 1 )=1 , e(u 2 )=e 1 , g(E 2 )=g({u 2 })=g({x 1 })=g 1 , then the fuzzy integral S=max(e 1 ·g 1 , e 2 ).

当e1<e2时,x1和x2从小到大的排序位置为u1=x1,u2=x2,相应地e(u1)=e1,g(E1)=1,e(u2)=e2,g(E2)=g({u2})=g({x2})=g2,则模糊积分S=max(e1,e2·g2)。When e 1 < e 2 , the sorting position of x 1 and x 2 from small to large is u 1 = x 1 , u 2 = x 2 , correspondingly e(u 1 )=e 1 , g(E 1 )=1 , e(u 2 )=e 2 , g(E 2 )=g({u 2 })=g({x 2 })=g 2 , then the fuzzy integral S=max(e 1 , e 2 ·g 2 ).

当e1=e2时,S可取上面两个值中的任意一个。When e 1 =e 2 , S can take any one of the above two values.

在优化融合迭代求取权系数kopt的过程中,利用(5)式求得关于光谱信息指标和空间分辨率两项单因素指标的模糊积分值,再求得SKopt=max(Ei),SKopt对应的迭代值kopt即为最优权系数,这样即可方便快捷的确定最优权值koptIn the process of optimizing the fusion iteratively obtaining the weight coefficient k opt , the fuzzy integral value of the two single-factor indexes of spectral information index and spatial resolution is obtained by using formula (5), and then S Kopt =max(E i ) , the iteration value k opt corresponding to S Kopt is the optimal weight coefficient, so that the optimal weight k opt can be determined conveniently and quickly.

本发明结合了IHS融合方法和小波融合方法的特点,通过分别对小波基带系数的权系数进行了像素级求优融合和高频子带系数的高频细节特征融合,其有益效果体现为:使得融合后的影像既达到最高的空间分辨率,同时又最大限度的降低了彩色的畸变。均衡了融合结果中空间细节信息和光谱信息两项特征指标,有效的改善了融合影像的光谱信息指标。同时,引入了模糊积分方法,有效的综合光谱信息和空间分辨率两个单因素指标,方便快捷的确定像素级求优融合过程中的最优权值,其结果更加符合人对融合影像的主观感受。The present invention combines the characteristics of the IHS fusion method and the wavelet fusion method, and performs pixel-level optimal fusion and high-frequency detail feature fusion of the high-frequency sub-band coefficients on the weight coefficients of the wavelet baseband coefficients respectively, and its beneficial effects are embodied as follows: The fused image not only achieves the highest spatial resolution, but also minimizes color distortion. The two feature indexes of spatial detail information and spectral information in the fusion result are balanced, and the spectral information index of the fusion image is effectively improved. At the same time, the fuzzy integral method is introduced to effectively integrate the two single-factor indicators of spectral information and spatial resolution, and it is convenient and quick to determine the optimal weight value in the process of pixel-level optimal fusion, and the result is more in line with human subjective perception of fused images. feel.

附图说明Description of drawings

图1为本发明-基于模糊积分的图像优化融合方法流程图。Fig. 1 is the flow chart of the present invention - image optimization and fusion method based on fuzzy integral.

图2为本发明遥感影像融合结果和IHS、WT(小波)方法的对比。其中,图2(a)为多光谱遥感影像(256×256);图2(b)为高空间分辨率全色遥感影像(256×256);图2(c)为IHS方法的融合结果,图2(d)为WT方法的融合结果,图2(e)本发明的优化融合结果。Fig. 2 is the comparison between the remote sensing image fusion results of the present invention and the IHS and WT (wavelet) methods. Among them, Figure 2(a) is the multispectral remote sensing image (256×256); Figure 2(b) is the high spatial resolution panchromatic remote sensing image (256×256); Figure 2(c) is the fusion result of the IHS method, Fig. 2(d) is the fusion result of the WT method, and Fig. 2(e) is the optimized fusion result of the present invention.

图3为本发明的性能评价指标曲线。Fig. 3 is the performance evaluation index curve of the present invention.

具体实施方式Detailed ways

为了更好地理解本发明的技术方案,以下结合附图作进一步描述。In order to better understand the technical solution of the present invention, further description will be made below in conjunction with the accompanying drawings.

本发明方法的详细流程如图1所示。本发明选取一多光谱遥感影像B(256×256)如图2(a),高分辨率全色遥感影像A(256×256)如图2(b),A、B严格配准后,实施如下步骤:The detailed process of the method of the present invention is shown in Figure 1. The present invention selects a multi-spectral remote sensing image B (256×256) as shown in Figure 2(a), and a high-resolution panchromatic remote sensing image A (256×256) as shown in Figure 2(b). After A and B are strictly registered, the implementation Follow the steps below:

1、对多光谱影像B进行IHS变换,分别得到在IHS彩色空间的色度H、饱和度S和强度分量I,然后对I分量进行3层小波分解,得到低频基带系数和高频子带系数。1. Perform IHS transformation on the multispectral image B to obtain the chroma H, saturation S and intensity component I in the IHS color space respectively, and then perform three-level wavelet decomposition on the I component to obtain the low-frequency baseband coefficient and high-frequency sub-band coefficient .

2、对高分辨率影像A进行线性拉伸和直方图匹配,然后进行小波分解,分解层数也为3层,得到低频基带系数和高频子带系数。2. Perform linear stretching and histogram matching on the high-resolution image A, and then perform wavelet decomposition. The number of decomposition layers is also 3 layers, and the low-frequency baseband coefficients and high-frequency sub-band coefficients are obtained.

3、确定一个3×3的空域窗口,分别求得影像B中I分量的高频子带系数和影像A的高频小波系数的均值μ(2j)和方差D(2j)。3. Determine a 3×3 spatial domain window, and obtain the mean value μ(2 j ) and variance D(2 j ) of the high-frequency subband coefficients of the I component in image B and the high-frequency wavelet coefficients of image A respectively.

4、按照下式确定对应分辨率层的高频子带系数,进行高频细节特征融合,可以得到对应分辨率层的高频细节特征融合结果。4. Determine the high-frequency sub-band coefficients of the corresponding resolution layer according to the following formula, and perform high-frequency detail feature fusion to obtain the high-frequency detail feature fusion result of the corresponding resolution layer.

5、引入模糊积分对光谱信息指标和空间分辨率两项单因素指标进行综合的方法如下:按照下式5. The method of introducing fuzzy integral to synthesize the two single factor indicators of spectral information index and spatial resolution is as follows: according to the following formula

S=sup{min[e(u1),g(E1)],min[e(u2),g(E2)]}S=sup{min[e(u 1 ), g(E 1 )], min[e(u 2 ), g(E 2 )]}

计算寻优评价指标确定的模糊积分值Ei,求得SKopt=max(Ei),SKopt对应的迭代值kopt即为最优权系数。Calculate the fuzzy integral value E i determined by the optimization evaluation index, obtain S Kopt =max(E i ), and the iteration value k opt corresponding to S Kopt is the optimal weight coefficient.

其中,融合图像寻优评价指标分别定义如下:Among them, the fusion image optimization evaluation index is defined as follows:

(i)光谱信息评价指标(i) Spectral information evaluation index

利用融合图像与多光谱图像的相关程度来定义光谱信息的评价指标。The evaluation index of spectral information is defined by the degree of correlation between fusion image and multispectral image.

令f为融合后图像,f0为多光谱图像。定义光谱信息评价ESP指标如(6)式。Let f be the fused image and f 0 be the multispectral image. Define spectral information evaluation E SP index as (6) formula.

EE. SPSP == CorrCorr (( ff ,, ff 00 )) == -- &Sigma;&Sigma; jj == 11 npixnpix (( ff jj -- ff &OverBar;&OverBar; )) (( ff 00 jj -- ff &OverBar;&OverBar; 00 )) &Sigma;&Sigma; jj == 11 npixnpix (( ff jj -- ff &OverBar;&OverBar; )) 22 &Sigma;&Sigma; jj == 00 npixnpix (( ff 00 jj -- ff &OverBar;&OverBar; 00 )) 22 -- -- -- (( 66 ))

其中,npix是图像中像素点的个数,f和f0表示图像的灰度均值,相关程度Corr(f,f0)反映了影像f和f0的相似程度。Among them, npix is the number of pixels in the image, f and f 0 represent the average gray value of the image, and the degree of correlation Corr(f, f 0 ) reflects the degree of similarity between images f and f 0 .

(ii)空间分辨率评价指标(ii) Spatial resolution evaluation index

利用融合图像对应的灰度的高频分量与高分辨率图像高频分量之间的相关程度来定义空间分辨率指标。令fH为高分辨率全色影像。首先将融合的图像转化为灰度图像,然后进行小波分解,得到融合图像的四个分量(fa,fh,fv,fd),分别表示融合图像的低频分量、水平方向的高频分量、垂直方向的高频分量和对角线方向的高频分量。同样也可以得到高分辨率图像小波分解的四个分量(fH a,fH h,fH v,fH d)。定义空间分辨率评价指标如(7)式所示:The spatial resolution index is defined by the degree of correlation between the high-frequency component of the grayscale corresponding to the fused image and the high-frequency component of the high-resolution image. Let f H be a high-resolution panchromatic image. First convert the fused image into a grayscale image, and then perform wavelet decomposition to obtain four components (f a , f h , f v , f d ) of the fused image, which respectively represent the low frequency component of the fused image and the high frequency in the horizontal direction component, the high-frequency component in the vertical direction, and the high-frequency component in the diagonal direction. Similarly, four components (f H a , f H h , f H v , f H d ) of the high-resolution image wavelet decomposition can be obtained. Define the spatial resolution evaluation index as shown in formula (7):

EE. HFHF == CorrCorr (( ff hh ,, ff Hh hh )) ++ CorrCorr (( ff vv ,, ff Hh vv )) ++ CorrCorr (( ff dd ,, ff Hh dd )) 33 -- -- (( 77 ))

为了验证基于模糊积分计算得到的最优权值的有效性,可以按照(8)式进行像素级融合,权系数kopt按照(8)式所示的目标函数求优:In order to verify the effectiveness of the optimal weight calculated based on the fuzzy integral, pixel-level fusion can be performed according to formula (8), and the weight coefficient k opt is optimized according to the objective function shown in formula (8):

依据融合图像的寻优评价指标修正融合准则中的基带数据融合的权系数k1、k2。随着高分辨率影像低频基带系数的融合权值k1的增加,空间分辨率评价指标EHF随之增大,光谱信息评价指标ESP减小。因此,(6)式中的kopt是使得目标函数达到最大的权系数,即使得ESP、EHF达到同时最大的权系数。kopt取值范围为[0,1]。The weight coefficients k 1 and k 2 of the baseband data fusion in the fusion criterion are corrected according to the optimization evaluation index of the fusion image. With the increase of the fusion weight k 1 of low-frequency baseband coefficients of high-resolution images, the spatial resolution evaluation index E HF increases, and the spectral information evaluation index E SP decreases. Therefore, k opt in formula (6) is the weight coefficient that maximizes the objective function, that is, the weight coefficient that maximizes E SP and E HF at the same time. The value range of k opt is [0, 1].

根据权系数kopt的求优目标函数,在取值区间[0,1]内,随着权系数融合权值k1的增加,按(9)式得到空间分辨率评价指标EHF和光谱信息评价指标ESP的曲线,曲线交点即为最优权系数的kopt,如图3所示。According to the optimization objective function of the weight coefficient k opt , in the value interval [0, 1], with the increase of the weight coefficient fusion weight k 1 , the spatial resolution evaluation index E HF and spectral information can be obtained according to formula (9) The curve of the evaluation index E SP , the intersection point of the curve is the k opt of the optimal weight coefficient, as shown in Figure 3 .

EE. (( ii )) == EE. (( ii )) -- MinEMinE (( ii )) MaxMax [[ EE. (( ii )) -- MinMin (( EE. (( ii )) ]] (( 99 ))

(9)式中,E(i)为评价指标,i为权系数k1寻优的次数。图3所示为在[0,1]以寻优步长0.001得到的ESP、EHF曲线。可以看到,归一化后的ESP、EHF都呈非线性。满足求优目标函数的权系数kopt是ESP和EHF的交点kopt=0.424(收敛精度δ≤0.001)。In the formula (9), E(i) is the evaluation index, and i is the optimization times of weight coefficient k1 . Figure 3 shows the curves of E SP and E HF obtained at [0, 1] with an optimal step size of 0.001. It can be seen that both E SP and E HF after normalization are nonlinear. The weight coefficient k opt satisfying the optimization objective function is the intersection point of E SP and E HF k opt =0.424 (convergence accuracy δ≤0.001).

如图3所示,显然,引入模糊积分对光谱信息指标和空间分辨率两项单因素指标进行综合评价,计算求得SKopt(SKopt=max(Ei))所对应的迭代值kopt即为按(9)式求得的EHF、ESP的曲线交点,即为最优权系数的koptAs shown in Figure 3, it is obvious that fuzzy integral is introduced to comprehensively evaluate the two single-factor indicators of spectral information index and spatial resolution, and the iterative value k opt corresponding to S Kopt (S Kopt = max(E i )) is calculated and obtained That is, the intersection point of the curves of E HF and E SP calculated according to formula (9), which is the k opt of the optimal weight coefficient.

6、对得到的像素级优化融合的小波系数的低频基带系数,以及进行的特征级融合的各高频小波系数进行对应的小波逆变换,得到新的强度分量I’。6. Perform corresponding wavelet inverse transform on the low-frequency baseband coefficients of the obtained pixel-level optimally fused wavelet coefficients and the high-frequency wavelet coefficients of the feature-level fusion to obtain a new intensity component I'.

7、将I’、H、S进行IHS逆变换,得到融合后的影像C。7. Perform IHS inverse transformation on I', H, and S to obtain the fused image C.

融合结果比较:图2(c)为IHS方法的融合结果(256×256),图2(d)为WT方法的融合结果(256×256),图2(e)本发明的优化融合结果(256×256)。Fusion result comparison: Fig. 2 (c) is the fusion result (256 * 256) of IHS method, Fig. 2 (d) is the fusion result (256 * 256) of WT method, Fig. 2 (e) optimization fusion result of the present invention ( 256×256).

在寻优过程中,根据(4)~(5)式定义的两项特征评价指标,代入(5)式,按照每100个步长计算模糊积分S的值,结果如表1所示(重视度g1=0.7,g2=0.3)。同时将模糊积分值S绘制如图3所示。显然,模糊积分值S呈现一个非线性的变化过程,具有一个峰值点,这个峰值点即是将两项特征指标归一化后得到的指标曲线的交点-最优权系数kopt,其使得融合后的影像既达到最高的空间分辨率,同时又最大限度的降低了彩色的畸变。In the process of optimization, according to the two feature evaluation indexes defined in formulas (4)~(5), they are substituted into formula (5), and the value of fuzzy integral S is calculated according to every 100 steps. The results are shown in Table 1 (note that degrees g 1 =0.7, g 2 =0.3). At the same time, the fuzzy integral value S is drawn as shown in Figure 3. Obviously, the fuzzy integral value S presents a non-linear change process with a peak point, which is the intersection point of the index curve obtained after normalizing the two characteristic indexes - the optimal weight coefficient k opt , which makes the fusion The final image not only achieves the highest spatial resolution, but also minimizes color distortion.

         表1融合结果的评价指标比较 求优步长 光谱信息ESP 空间分辨率EHF 模糊积分S     K1   0.99323   0.8869   0.70000     K2   0.99159   0.90191   0.69077     K3   0.98812   0.91298   0.67116     K4   0.98237   0.92122   0.6998     K5   0.97384   0.92718   0.82135     K6   0.96197   0.93127   0.74776     K7   0.94615   0.93389   0.62011     K8   0.92579   0.93535   0.45575     K9   0.90032   0.93594   0.30000     K10   0.86932   0.93589   0.29965 Table 1 Comparison of evaluation indicators of fusion results Find Uber step length Spectral Information E SP Spatial resolution E HF Fuzzy integral S K 1 0.99323 0.8869 0.70000 K 2 0.99159 0.90191 0.69077 K 3 0.98812 0.91298 0.67116 K 4 0.98237 0.92122 0.6998 K 5 0.97384 0.92718 0.82135 K 6 0.96197 0.93127 0.74776 K 7 0.94615 0.93389 0.62011 K 8 0.92579 0.93535 0.45575 K 9 0.90032 0.93594 0.30000 K 10 0.86932 0.93589 0.29965

表1所示的光谱信息和空间分辨率信息这两种因素评价值的变化符合人的主观评价感受。换言之,采用基于模糊积分图像优化融合方法得到的图2(e)符合人的主观评价习惯和主观感受。The changes in the evaluation values of the two factors, spectral information and spatial resolution information shown in Table 1, are in line with human subjective evaluation feelings. In other words, Figure 2(e) obtained by using the image fusion method based on fuzzy integral conforms to people's subjective evaluation habits and subjective feelings.

表2不同融合方法结果的评价指标比较   波段     相关系数     平均梯度   IHS     R     0.5624     10.6146     G     0.4644     11.3663     B     0.5060     9.5875   WT     R     0.6457     11.0157     G     0.5512     13.5479     B     0.5714     10.5447  本文方法     R     0.8488     10.5142     G     0.7691     11.1475     B     0.8247     9.2163 Table 2 Comparison of evaluation indicators for the results of different fusion methods band correlation coefficient mean gradient IHS R 0.5624 10.6146 G 0.4644 11.3663 B 0.5060 9.5875 WT R 0.6457 11.0157 G 0.5512 13.5479 B 0.5714 10.5447 Method in this paper R 0.8488 10.5142 G 0.7691 11.1475 B 0.8247 9.2163

表2为采用相关系数和平均梯度两项指标定量对不同融合方法得到的融合影像进行评价的结果。从表2可知,采用本发明基于模糊积分的图像优化融合方法可以使得融合后影像在影像的光谱信息保留性能得到很大提高,但在空间分辨率的提高方面略差于小波变换(WT)方法,而与IHS方法获得的融合影像的空间分辨率指标基本相同。因此,本发明方法是在达到最高的空间分辨率的同时,又最大限度的降低了彩色的畸变。Table 2 shows the quantitative evaluation results of the fused images obtained by different fusion methods using the two indicators of correlation coefficient and average gradient. As can be seen from Table 2, the fuzzy integral-based image optimization fusion method of the present invention can greatly improve the spectral information retention performance of the fused image, but it is slightly worse than the wavelet transform (WT) method in improving the spatial resolution. , and the spatial resolution index of the fused image obtained by the IHS method is basically the same. Therefore, the method of the present invention minimizes color distortion while achieving the highest spatial resolution.

Claims (1)

1、一种基于模糊积分的图像优化融合方法,其特征在于包括如下具体步骤:1, a kind of image optimization fusion method based on fuzzy integral, it is characterized in that comprising following concrete steps: (1)对待融合的多光谱影像B进行IHS变换,分别得到在IHS彩色空间的色度H、饱和度S和强度分量I,然后对I分量进行小波分解,得到低频基带系数和高频子带系数;(1) Perform IHS transformation on the multispectral image B to be fused to obtain the chroma H, saturation S and intensity component I in the IHS color space, and then perform wavelet decomposition on the I component to obtain the low-frequency baseband coefficients and high-frequency subbands coefficient; (2)对待融合高分辨率影像A进行线性拉伸和直方图匹配,然后进行小波分解,得到低频基带系数和高频子带系数,分解层数与多光谱影像I分量的小波分解层数相同;(2) Perform linear stretching and histogram matching on the high-resolution image A to be fused, and then perform wavelet decomposition to obtain low-frequency baseband coefficients and high-frequency sub-band coefficients. The number of decomposition layers is the same as that of the multispectral image I component. ; (3)确定一个3×3的空域窗口,分别求得影像B的I分量的高频子带系数和影像A的高频子带系数的均值μ(2j)和方差D(2j);(3) Determine a 3×3 spatial domain window, and obtain the mean value μ(2 j ) and variance D(2 j ) of the high-frequency sub-band coefficients of the I component of image B and the high-frequency sub-band coefficients of image A respectively; (4)对应分辨率层的高频子带系数按照下式(4) The high-frequency sub-band coefficients corresponding to the resolution layer follow the following formula
Figure A2004100542070002C1
Figure A2004100542070002C1
进行高频细节特征融合,式中,2j为小波分解层数,Wk(2j,x,y)为2j分辨率下得到的高频子带系数融合结果,WA k(2j,x,y)和WB k(2j,x,y)分别为影像A及影像B中I分量的对应高频子带系数,DA k、DB k分别是以(x,y)为中心像元的3×3的空域窗口的方差;Perform high-frequency detail feature fusion, where 2 j is the number of wavelet decomposition layers, W k (2 j , x, y) is the high-frequency sub-band coefficient fusion result obtained at 2 j resolution, W A k (2 j , x, y) and W B k (2 j , x, y) are the corresponding high-frequency sub-band coefficients of the I component in image A and image B respectively, and D A k and D B k are respectively (x, y) is the variance of the 3×3 airspace window of the central pixel; (5)对影像B的I分量和影像A的低频基带系数,按照下式(5) For the I component of image B and the low-frequency baseband coefficient of image A, according to the following formula        A(2j,x,y)=k1AA(2j,x,y)+k2AB(2j,x,y)进行优化的像素级融合,式中,AA(2j,x,y)、AB(2j,x,y)分别为影像A及影像B中I分量对应的2j分辨率的低频基带数据,k1、k2为需要求优的权系数,k1+k2=1;引入模糊积分对光谱信息指标和空间分辨率两项单因素指标进行综合,优化融合迭代过程中的权系数kopt=k1=1-k2,满足0≤kopt≤1;按照式S=sup{min[e(u1),g(E1)],min[e(u2),g(E2)]}计算寻优评价指标确定的模糊积分值Ei,求得SKopt=max(Ei),SKopt对应的迭代值kopt即为最优权系数,式中,g(E1)、g(E2)为对光谱信息指标和空间分辨率两项指标的重视度,e(u1)为光谱信息指标,e(u2)为空间分辨率指标,根据e(u1),e(u2)的大小,u1和u2是对光谱信息和空间分辨率从小到大的排序位置;A(2 j , x, y)=k 1 A A (2 j , x, y)+k 2 A B (2 j , x, y) for optimized pixel-level fusion, where A A (2 j , x, y), A B (2 j , x, y) are the low-frequency baseband data of 2 j resolution corresponding to the I component in image A and image B respectively, k 1 , k 2 are the weight coefficients that need to be optimized, k 1 +k 2 =1; Introduce fuzzy integral to synthesize the two single factor indicators of spectral information index and spatial resolution, and optimize the weight coefficient k opt =k 1 =1-k 2 in the process of fusion iteration, satisfying 0≤k opt ≤1; according to the formula S=sup{min[e(u 1 ), g(E 1 )], min[e(u 2 ), g(E 2 )]} to calculate the fuzzy integral value determined by the optimal evaluation index E i , get S Kopt = max(E i ), and the iterative value k opt corresponding to S Kopt is the optimal weight coefficient, where g(E 1 ) and g(E 2 ) are the spectral information index and spatial The importance of the two indicators of resolution, e(u 1 ) is the spectral information indicator, e(u 2 ) is the spatial resolution indicator, according to the size of e(u 1 ), e(u 2 ), u 1 and u 2 is the sorting position of spectral information and spatial resolution from small to large; (6)对得到的像素级优化融合的小波系数的低频基带系数,以及进行的特征级融合的各高频小波系数进行对应的小波逆变换,得到新的强度分量I’;(6) Carry out corresponding wavelet inverse transform to the low-frequency baseband coefficients of the wavelet coefficients of the pixel-level optimization fusion obtained, and each high-frequency wavelet coefficient of the feature-level fusion carried out, to obtain a new intensity component I '; (7)将I’、H、S进行IHS逆变换,得到融合后的影像C。(7) Perform IHS inverse transformation on I', H, and S to obtain the fused image C.
CNB2004100542073A 2004-09-02 2004-09-02 Image optimum fusing method based on fuzzy integral Expired - Fee Related CN1303571C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100542073A CN1303571C (en) 2004-09-02 2004-09-02 Image optimum fusing method based on fuzzy integral

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100542073A CN1303571C (en) 2004-09-02 2004-09-02 Image optimum fusing method based on fuzzy integral

Publications (2)

Publication Number Publication Date
CN1588448A true CN1588448A (en) 2005-03-02
CN1303571C CN1303571C (en) 2007-03-07

Family

ID=34603078

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100542073A Expired - Fee Related CN1303571C (en) 2004-09-02 2004-09-02 Image optimum fusing method based on fuzzy integral

Country Status (1)

Country Link
CN (1) CN1303571C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101329765B (en) * 2008-07-31 2010-04-14 上海交通大学 Multi-camera target matching feature fusion method
CN101334892B (en) * 2008-06-24 2010-06-02 裴继红 Image pixel-class integrated processing method and device
CN101799915A (en) * 2010-02-26 2010-08-11 中北大学 Bicolor medium wave infrared image fusion method
CN101540045B (en) * 2009-03-25 2011-07-27 湖南大学 Multi-source image fusion method based on synchronous orthogonal matching pursuit
CN102203826A (en) * 2008-12-25 2011-09-28 梅迪奇视觉成像解决方案有限公司 Denoising medical images
CN101568908B (en) * 2006-02-14 2012-10-03 德萨拉技术爱尔兰有限公司 Image blurring
CN105469364A (en) * 2015-10-26 2016-04-06 厦门理工学院 Medical image fusion method combined with wavelet transformation domain and spatial domain

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034229A (en) * 2010-11-03 2011-04-27 中国科学院长春光学精密机械与物理研究所 Real-time image fusion method for high-resolution multispectral space optical remote sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7715591B2 (en) * 2002-04-24 2010-05-11 Hrl Laboratories, Llc High-performance sensor fusion architecture
CN1303432C (en) * 2003-06-05 2007-03-07 上海交通大学 Remote sensing image picture element and characteristic combination optimizing mixing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101568908B (en) * 2006-02-14 2012-10-03 德萨拉技术爱尔兰有限公司 Image blurring
CN101334892B (en) * 2008-06-24 2010-06-02 裴继红 Image pixel-class integrated processing method and device
CN101329765B (en) * 2008-07-31 2010-04-14 上海交通大学 Multi-camera target matching feature fusion method
CN102203826A (en) * 2008-12-25 2011-09-28 梅迪奇视觉成像解决方案有限公司 Denoising medical images
CN102203826B (en) * 2008-12-25 2015-02-18 梅迪奇视觉成像解决方案有限公司 Denoising medical images
CN101540045B (en) * 2009-03-25 2011-07-27 湖南大学 Multi-source image fusion method based on synchronous orthogonal matching pursuit
CN101799915A (en) * 2010-02-26 2010-08-11 中北大学 Bicolor medium wave infrared image fusion method
CN105469364A (en) * 2015-10-26 2016-04-06 厦门理工学院 Medical image fusion method combined with wavelet transformation domain and spatial domain

Also Published As

Publication number Publication date
CN1303571C (en) 2007-03-07

Similar Documents

Publication Publication Date Title
CN102063713B (en) Neighborhood normalized gradient and neighborhood standard deviation-based multi-focus image fusion method
CN101950414B (en) Non-local mean de-noising method for natural image
CN101697231B (en) Wavelet transformation and multi-channel PCNN-based hyperspectral image fusion method
CN109886908B (en) Infrared image and visible light image fusion method
CN1897035A (en) Visible-light and infrared imaging merging method based on Contourlet conversion
CN1303571C (en) Image optimum fusing method based on fuzzy integral
CN106981058A (en) A kind of optics based on sparse dictionary and infrared image fusion method and system
CN1489111A (en) Remote Sensing Image Fusion Method Based on Local Statistical Characteristics and Color Space Transformation
CN1472544A (en) Combined Optimal Fusion Method of Remote Sensing Image Pixels and Features
CN1770201A (en) An Adjustable Remote Sensing Image Fusion Method Based on Wavelet Transform
CN118247145A (en) Super-resolution reconstruction method and system for hyperspectral image
CN105912739B (en) A kind of similar pictures searching system and its method
CN1581230A (en) Remote-senstive image interfusion method based on image local spectrum characteristic
CN1790374A (en) Face recognition method based on template matching
CN106504208A (en) Based on orderly minima and the high-spectrum image width destriping method of wavelet filtering
CN104240208A (en) Uncooled infrared focal plane detector image detail enhancement method
CN112348749B (en) Image defogging method based on self-adaptive Gamma function and improved CLAHE
CN101656880B (en) Image encoding method and image encoding device
Pai et al. Medical color image enhancement using wavelet transform and contrast stretching technique
CN108460736A (en) A kind of low-light (level) power equipment image song wave zone Enhancement Method
CN111539894A (en) Novel image enhancement method
CN109447952B (en) Semi-reference image quality evaluation method based on Gabor differential box weighting dimension
CN117788322A (en) Hyperspectral image denoising method based on sparse TRANSFORMER structure
CN1256704C (en) Spectral Feature Extraction and Comparison Method of Remote Sensing Image
CN101267557A (en) A Method of Image Compression Using Composite Vector Quantization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070307

Termination date: 20091009