CN1587990A - Method for analyzing beta-cyclodextrin clathrate compound by Fourier infrared spectrum method - Google Patents
Method for analyzing beta-cyclodextrin clathrate compound by Fourier infrared spectrum method Download PDFInfo
- Publication number
- CN1587990A CN1587990A CNA2004100609181A CN200410060918A CN1587990A CN 1587990 A CN1587990 A CN 1587990A CN A2004100609181 A CNA2004100609181 A CN A2004100609181A CN 200410060918 A CN200410060918 A CN 200410060918A CN 1587990 A CN1587990 A CN 1587990A
- Authority
- CN
- China
- Prior art keywords
- inclusion
- infrared
- cyclodextrin
- intensity
- absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000858 Cyclodextrin Polymers 0.000 title claims abstract description 42
- 239000001116 FEMA 4028 Substances 0.000 title claims abstract description 40
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 title claims abstract description 40
- 235000011175 beta-cyclodextrine Nutrition 0.000 title claims abstract description 40
- 229960004853 betadex Drugs 0.000 title claims abstract description 40
- 150000001875 compounds Chemical class 0.000 title claims abstract description 36
- 238000002329 infrared spectrum Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000010521 absorption reaction Methods 0.000 claims abstract description 39
- 238000004458 analytical method Methods 0.000 claims abstract description 14
- 238000012545 processing Methods 0.000 claims abstract description 11
- 238000004566 IR spectroscopy Methods 0.000 claims abstract description 7
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 claims abstract description 6
- 230000007246 mechanism Effects 0.000 claims abstract description 6
- 238000001228 spectrum Methods 0.000 claims description 11
- 238000002835 absorbance Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000003993 interaction Effects 0.000 claims description 4
- 238000004445 quantitative analysis Methods 0.000 claims description 4
- 238000002834 transmittance Methods 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000009499 grossing Methods 0.000 claims description 2
- 230000008859 change Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 238000011160 research Methods 0.000 abstract description 4
- 230000007423 decrease Effects 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- UILPJVPSNHJFIK-UHFFFAOYSA-N Paeonol Chemical compound COC1=CC=C(C(C)=O)C(O)=C1 UILPJVPSNHJFIK-UHFFFAOYSA-N 0.000 description 18
- YLTGFGDODHXMFB-UHFFFAOYSA-N isoacetovanillon Natural products COC1=CC=C(C(C)=O)C=C1O YLTGFGDODHXMFB-UHFFFAOYSA-N 0.000 description 9
- MLIBGOFSXXWRIY-UHFFFAOYSA-N paeonol Natural products COC1=CC=C(O)C(C(C)=O)=C1 MLIBGOFSXXWRIY-UHFFFAOYSA-N 0.000 description 9
- 230000007704 transition Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 3
- 230000003313 weakening effect Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开一种付利叶红外光谱法分析β-环糊精包合物的方法,由分析原理、分析方法和步骤,结果处理三个主要部分组成。本发明发现β-环糊精包合物客体分子在包合后红外吸收强度明显下降、称之为包减弱红外效应,是运用FT-IR分析β-环糊精包合物的基础,通过测定包合物、未包合红外光谱并比较它们吸收峰的位置、形状、归属,特别是计算吸收强度的变化,即可定性或定量的分析测定包合物。本发明的优点在于:本发明简便快捷,明了直观,可定性或定量地分析测定包合已否,包合程度、包合机理,信息量大,是研究、分析β-环糊精包合物的新颖有力工具,不仅具有一定的学术价值、开拓了红外研究应用的新领域,而且在科研生产中具有实际应用价值。
The invention discloses a method for analyzing β-cyclodextrin inclusion compound by a Fourier infrared spectrometry, which consists of three main parts: analysis principle, analysis method and steps, and result processing. In the present invention, it is found that the infrared absorption intensity of the β-cyclodextrin inclusion complex guest molecules decreases significantly after inclusion, which is called the package weakened infrared effect, which is the basis for using FT-IR to analyze the β-cyclodextrin inclusion complex. Infrared spectra of inclusion compounds and non-inclusion compounds and comparing the positions, shapes and assignments of their absorption peaks, especially calculating the change of absorption intensity, can qualitatively or quantitatively analyze and determine inclusion compounds. The advantages of the present invention are: the present invention is simple and fast, clear and intuitive, can qualitatively or quantitatively analyze and determine whether the inclusion has been included, the degree of inclusion, the mechanism of inclusion, and a large amount of information. The novel and powerful tool not only has a certain academic value, opens up a new field of infrared research and application, but also has practical application value in scientific research and production.
Description
技术领域technical field
本发明涉及一种β-环糊精包合物的分析方法,尤其是一种付利叶红外光谱法分析β-环糊精包合物的方法。The invention relates to an analysis method of β-cyclodextrin inclusion compound, in particular to a method for analyzing β-cyclodextrin inclusion compound by Fourier infrared spectroscopy.
背景技术Background technique
β-环糊精(β-Cyslodextrin,缩写β-环糊精)具有特殊的笼型结构,使得它可以作为宿主包合各种大小相当的客体分子。包合作用能改变客体分子的状态、稳定性等理化特征,加之β-环糊精无毒,因此β-环糊精与药物及香料分子形成的包合物日益广泛应用在制药、食品等工业中。β-环糊精包合物的分析测定是改进生产工艺、保证产品质量的重要环节。目前,一般采用热分析技术DTA(差热)、DSC(差示),分光光度法及化学分析等方法。DTA方法受诸多因素影响,重现性较差,难于定量分析,且耗时;如以升温速率5-10℃/每分钟至350℃,需35-70分钟。此外,在1994-2004年间,国内未发现独立运用红外光谱而是与其它方法共同分析验证β-环糊精包合物的报导,与本发明的原理、方法完全不同。β-cyclodextrin (β-Cyslodextrin, abbreviated as β-cyclodextrin) has a special cage structure, so that it can be used as a host to include various guest molecules of comparable size. Inclusion can change the physical and chemical characteristics of the state and stability of the guest molecule, and β-cyclodextrin is non-toxic, so the inclusion complex formed by β-cyclodextrin and drug and spice molecules is increasingly widely used in pharmaceutical, food and other industries middle. The analysis and determination of β-cyclodextrin inclusion complex is an important link to improve the production process and ensure product quality. At present, methods such as thermal analysis techniques DTA (differential heat), DSC (differential display), spectrophotometry and chemical analysis are generally used. The DTA method is affected by many factors, has poor reproducibility, is difficult to quantitatively analyze, and is time-consuming; for example, it takes 35-70 minutes to reach 350°C at a heating rate of 5-10°C/min. In addition, during 1994-2004, there was no domestic report on the use of infrared spectroscopy independently but in conjunction with other methods to analyze and verify the β-cyclodextrin inclusion compound, which is completely different from the principle and method of the present invention.
发明内容Contents of the invention
本发明的目的在于提供一种付利叶红外光谱法分析β-环糊精包合物的方法,该分析方法,重现性好。The object of the present invention is to provide a method for analyzing β-cyclodextrin inclusion compound by Fourier infrared spectroscopy, the analysis method has good reproducibility.
本发明的技术方案为:一种付利叶红外光谱法分析β-环糊精包合物的方法,由分析原理、分析方法和步骤,结果处理三个主要部分组成。本发明发现β-环糊精包合物客体分子在包合后红外吸收强度明显下降的现象、称之为包减弱红外效应,是运用FT-IR分析β-环糊精包合物的基础,通过测定包合物、未包合红外光谱并比较它们吸收峰的位置、形状、归属,特别是计算吸收强度的变化,即可定性或定量的分析测定包合物。The technical scheme of the present invention is: a method for analyzing β-cyclodextrin inclusion compound by Fourier infrared spectroscopy, which consists of three main parts: analysis principle, analysis method and steps, and result processing. The present invention finds that the infrared absorption intensity of the β-cyclodextrin inclusion complex guest molecule significantly decreases after inclusion, which is called the infrared effect of the package weakening, which is the basis for using FT-IR to analyze the β-cyclodextrin inclusion compound. Qualitative or quantitative analysis and determination of clathrates can be achieved by measuring the infrared spectra of clathrates and unclad complexes and comparing the positions, shapes, and assignments of their absorption peaks, especially by calculating the changes in absorption intensity.
该方法由以下步骤:仪器:付利叶转换红外光谱仪:参数:波长范围:4000cm-1-450cm-1,分辨率:4cm-1,扫描次数:1次/秒,扫描时间:1分钟。红外试样制备:用天平准确称量1.0-3.0mg范围内的β-环糊精包合物,120.0mg KBr,研磨,压片,测红外;用天平准确称量与包合物等重的未包合物,同上法,测红外;取大约2mgβ-环糊精,大约120mg KBr,研磨,压片,测红外;同上,测客体物红外。图谱处理及数据:将原始图谱经过软件的归一化、自动基线校正、自动平滑校正处理、并打印图谱;通过软件收集波数、透射率或吸光度数据。结果处理:吸收峰波数、形状鉴定:对比包合物,未包合物红外图谱的吸收峰位置、形状,是否基本一致;检查是否出现有别于β-环糊精或客体分子的吸收峰,以便定性分析是否符合包合机理、出现杂质或非包合作用的其它反应等;吸收峰强度计算:在数据表中选取客体分子包合前后在伸展振动区的吸收峰透射率或吸光度数据,按下式之一计算:将未包合物强度定为100%,包合物相应峰相对强度为:相应强度=[(100-T包)/(100-T未)]×100%(T为透射值)或者:相对强度=(A包/A未)×100%(A为吸收值)。在实际分析中,可作影响包合的因素(例如包合时间、摩尔比等)与吸收强度的工作曲线,从中选取最佳值作为定量分析的标准。The method consists of the following steps: instrument: Fourier transform infrared spectrometer: parameters: wavelength range: 4000cm -1 -450cm -1 , resolution: 4cm -1 , scanning times: 1 time/second, scanning time: 1 minute. Infrared sample preparation: use a balance to accurately weigh β-cyclodextrin inclusion complex within the range of 1.0-3.0mg, 120.0mg KBr, grind, tablet, and measure infrared; use a balance to accurately weigh the inclusion compound with the same weight For non-inclusion complexes, use the same method as above to measure infrared; take about 2mg of β-cyclodextrin and about 120mg of KBr, grind, press into tablets, and measure infrared; as above, measure infrared of objects. Spectrum processing and data: The original spectrum is normalized by software, automatic baseline correction, automatic smoothing correction processing, and the spectrum is printed; wave number, transmittance or absorbance data are collected through the software. Result processing: absorption peak wave number and shape identification: compare the inclusion compound, whether the absorption peak position and shape of the infrared spectrum of the non-inclusion compound are basically the same; check whether there is an absorption peak different from β-cyclodextrin or guest molecules, In order to qualitatively analyze whether it conforms to the inclusion mechanism, impurities or other non-inclusion reactions, etc.; calculation of absorption peak intensity: select the absorption peak transmittance or absorbance data in the stretching vibration region before and after inclusion of the guest molecule in the data table, press One of the following calculations: the intensity of the non-inclusion complex is set as 100%, and the relative intensity of the corresponding peak of the inclusion compound is: corresponding intensity = [(100-T package )/(100-T not )] × 100% (T is transmission value) or: relative intensity = (A packet /A not ) × 100% (A is the absorption value). In actual analysis, the working curve of factors affecting inclusion (such as inclusion time, molar ratio, etc.) and absorption intensity can be made, and the best value can be selected as the standard of quantitative analysis.
本发明的优点在于:本发明简便快捷,明了直观,可定性或定量地分析测定包合已否,包合程度、包合机理,信息量大,是研究、分析β-环糊精包合物的新颖有力工具,不仅具有一定的学术价值、开拓了红外研究应用的新领域,而且在科研生产中具有实际应用价值。The advantages of the present invention are: the present invention is simple and fast, clear and intuitive, can qualitatively or quantitatively analyze and determine whether the inclusion has been included, the degree of inclusion, the inclusion mechanism, and a large amount of information. The novel and powerful tool not only has a certain academic value, opens up a new field of infrared research and application, but also has practical application value in scientific research and production.
附图说明Description of drawings
图1为β-环糊精红外图谱及波数,T%值图;Fig. 1 is β-cyclodextrin infrared spectrum and wave number, T% value figure;
图2为丹皮酚红外图谱及波数,T%值图;Fig. 2 is paeonol infrared spectrum and wave number, T% value figure;
图3为1.0mgβ-环糊精和丹皮酚包合物、1.0mgβ-环糊精和丹皮酚未包合物红外图谱及波数,T%值。Fig. 3 is the infrared spectrum, wave number and T% value of 1.0mgβ-cyclodextrin and paeonol inclusion complex, 1.0mgβ-cyclodextrin and paeonol non-inclusion complex.
图1中的数据为:The data in Figure 1 are:
2004-03-27-1.002 3551 4000.00 400.00 11.22 100.40 4.00 %T 1 1.002004-03-27-1.002 3551 4000.00 400.00 11.22 100.40 4.00 %
REF 4000 99.12 2000 98.67 600REF 4000 99.12 2000 98.67 600
3392.32 22.40 2928.35 63.15 2346.21 98.98 2061.86 97.13 1639.33 75.383392.32 22.40 2928.35 63.15 2346.21 98.98 2061.86 97.13 1639.33 75.38
1414.47 62.40 1368.26 64.13 1335.46 64.29 1302.52 71.13 1243.05 73.701414.47 62.40 1368.26 64.13 1335.46 64.29 1302.52 71.13 1243.05 73.70
1157.02 25.48 1079.42 21.66 1028.20 11.21 946.86 71.17 888.85 98.291157.02 25.48 1079.42 21.66 1028.20 11.21 946.86 71.17 888.85 98.29
858.32 87.78 756.47 78.31 707.79 75.31 652.18 80.63 609.52 69.99858.32 87.78 756.47 78.31 707.79 75.31 652.18 80.63 609.52 69.99
578.34 62.56 530.85 78.92578.34 62.56 530.85 78.92
END 22 PEAK(S)FOUNDEND 22 PEAK(S)FOUND
图2中的数据为:The data in Figure 2 are:
2004-03-27-2.002 3551 4000.00 400.00 10.06 100.83 4.00 %T 1 1.002004-03-27-2.002 3551 4000.00 400.00 10.06 100.83 4.00 %
3225.63 92.91 3091.02 83.38 3071.98 84.29 3020.91 77.74 2975.04 72.553225.63 92.91 3091.02 83.38 3071.98 84.29 3020.91 77.74 2975.04 72.55
2937.94 76.24 2916.61 78.26 2847.35 78.10 2711.30 86.10 2624.80 87.242937.94 76.24 2916.61 78.26 2847.35 78.10 2711.30 86.10 2624.80 87.24
2414.86 94.84 2089.24 97.35 2039.07 95.74 1944.16 97.58 1914.05 93.452414.86 94.84 2089.24 97.35 2039.07 95.74 1944.16 97.58 1914.05 93.45
1619.58 15.89 1576.13 32.78 1524.42 70.07 1504.46 39.48 1465.05 50.931619.58 15.89 1576.13 32.78 1524.42 70.07 1504.46 39.48 1465.05 50.93
1439.74 50.68 1429.90 54.12 1408.03 67.98 1369.70 15.22 1333.65 33.601439.74 50.68 1429.90 54.12 1408.03 67.98 1369.70 15.22 1333.65 33.60
1255.00 10.06 1230.02 42.16 1207.92 17.84 1175.04 70.53 1139.93 20.831255.00 10.06 1230.02 42.16 1207.92 17.84 1175.04 70.53 1139.93 20.83
1070.82 46.99 1022.20 37.78 977.04 56.61 949.59 38.60 859.14 42.151070.82 46.99 1022.20 37.78 977.04 56.61 949.59 38.60 859.14 42.15
814.23 34.34 736.40 86.82 705.55 69.40 659.95 85.68 589.90 69.17814.23 34.34 736.40 86.82 705.55 69.40 659.95 85.68 589.90 69.17
573.34 40.21 515.35 86.36 459.28 90.67573.34 40.21 515.35 86.36 459.28 90.67
END 43 PEAK(S)FOUNDEND 43 PEAK(S)FOUND
图3中的数据为:The data in Figure 3 are:
未包合物(重量比1∶1混合物)1.0mg 3551 4000.00 400.00 12.06 100.87 4.00 %T 1 1.00Unincluded compound (1:1 mixture by weight) 1.0mg 3551 4000.00 400.00 12.06 100.87 4.00 %
REF 4000 99.88 2000 99.38 600REF 4000 99.88 2000 99.38 600
3369.57 27.73 3020.96 76.93 2973.88 70.51 2923.84 58.75 2626.08 91.943369.57 27.73 3020.96 76.93 2973.88 70.51 2923.84 58.75 2626.08 91.94
2347.03 99.43 2089.25 97.09 2039.61 96.32 1914.42 96.27 1631.06 21.342347.03 99.43 2089.25 97.09 2039.61 96.32 1914.42 96.27 1631.06 21.34
1577.42 43.62 1504.82 51.15 1464.86 51.98 1439.67 48.67 1429.42 48.521577.42 43.62 1504.82 51.15 1464.86 51.98 1439.67 48.67 1429.42 48.52
1410.18 54.60 1370.18 21.50 1333.86 36.59 1256.13 18.72 1230.50 47.451410.18 54.60 1370.18 21.50 1333.86 36.59 1256.13 18.72 1230.50 47.45
1207.70 30.69 1156.53 28.46 1140.03 27.36 1103.11 40.46 1071.23 27.641207.70 30.69 1156.53 28.46 1140.03 27.36 1103.11 40.46 1071.23 27.64
1025.17 12.06 977.32 55.53 948.88 49.23 859.34 60.64 813.88 53.281025.17 12.06 977.32 55.53 948.88 49.23 859.34 60.64 813.88 53.28
758.90 77.76 736.06 82.28 705.62 64.72 659.69 77.84 608.66 75.90758.90 77.76 736.06 82.28 705.62 64.72 659.69 77.84 608.66 75.90
589.44 63.86 573.53 47.14 531.81 82.92 515.80 85.23 459.09 95.87589.44 63.86 573.53 47.14 531.81 82.92 515.80 85.23 459.09 95.87
END 40 PEAK(S)FOUNDEND 40 PEAK(S)FOUND
包合物1.0mg 3551 4000.00 400.00 11.47 99.54 4.00 %T 1 1.00Inclusion complex 1.0mg 3551 4000.00 400.00 11.47 99.54 4.00 %
REF 4000 98.68 2000 97.49 600REF 4000 98.68 2000 97.49 600
3391.96 18.91 2927.37 68.75 2049.99 96.58 1639.47 56.55 1507.93 84.233391.96 18.91 2927.37 68.75 2049.99 96.58 1639.47 56.55 1507.93 84.23
1409.15 70.95 1371.10 63.25 1333.22 66.63 1301.78 73.87 1274.88 62.261409.15 70.95 1371.10 63.25 1333.22 66.63 1301.78 73.87 1274.88 62.26
1255.96 66.33 1204.90 75.68 1155.76 33.01 1078.73 30.77 1029.15 11.471255.96 66.33 1204.90 75.68 1155.76 33.01 1078.73 30.77 1029.15 11.47
946.31 76.88 860.15 90.37 757.00 84.57 704.98 77.19 654.53 82.44946.31 76.88 860.15 90.37 757.00 84.57 704.98 77.19 654.53 82.44
608.80 76.89 577.54 71.29 531.33 83.95608.80 76.89 577.54 71.29 531.33 83.95
END 23 PEAK(S)FOUNDEND 23 PEAK(S)FOUND
具体实施方式Detailed ways
1、分析原理1. Analysis principle
β-环糊精是7个葡萄糖基以1,4糖苷键连成的中空筒状化合物,有特殊的笼形结构,笼内具有非极性的疏水空穴,使得它可以作为宿主包合各种尺寸相当的客体分子。β-cyclodextrin is a hollow cylindrical compound composed of 7 glucose groups connected by 1, 4 glycosidic bonds. A guest molecule of comparable size.
客体分子经包合作用填充空穴,空穴对客体分子也产生空间束缚,阻碍其自由振动。根据红外光谱原理,当分子振动伴随偶极矩改变时,偶极子的振动会产生电磁波,它和入射的电磁波作用,产生光的吸收。红外吸收强度正比跃迁几率,实质上取决于振动时偶极矩变化的大小:The guest molecules fill the holes through inclusion, and the holes also produce steric constraints on the guest molecules, hindering their free vibration. According to the principle of infrared spectroscopy, when the molecular vibration is accompanied by the change of the dipole moment, the vibration of the dipole will generate electromagnetic waves, which interact with the incident electromagnetic waves to produce light absorption. The infrared absorption intensity is proportional to the transition probability, which essentially depends on the change of the dipole moment during vibration:
跃迁几率∝|μab|2Eo2 Transition probability ∝|μ ab | 2 Eo 2
式中Eo为红外电磁波的电场矢量;In the formula, Eo is the electric field vector of the infrared electromagnetic wave;
μab为跃迁偶极矩,反映振动时偶极矩变化的大小,不同于分子的永久偶极矩μo。客体分子包合前因未进入β-环糊精空穴中,自由振动,令其跃迁偶极矩为|μab|,包合后因进入β-环糊精空穴,自由振动受阻,伸展振动及弯曲振动减弱,令其跃迁偶极矩为|μ′ab|,因|μab|>|μ′ab|,则|μab|2>|μ′ab|2,有:μ ab is the transition dipole moment, which reflects the change of dipole moment during vibration, which is different from the permanent dipole moment μ o of molecules. Before the inclusion, the guest molecule does not enter the β-cyclodextrin cavity and vibrates freely, so that its transition dipole moment is |μ ab |. The vibration and bending vibration are weakened, so that the transition dipole moment is |μ′ ab |, because |μ ab |>|μ′ ab |, then |μ ab | 2 >|μ′ ab | 2 , we have:
跃迁几率∝|μab|2Eo2>跃迁几率′∝|μ′ab|2Eo2 Transition probability ∝|μ ab | 2 Eo 2 >Transition probability ′∝|μ′ ab | 2 Eo 2
该式说明包合物客体分子红外光谱强度小于包合前相应红外光谱强度。这种因β-环糊精具有空穴,经包合作用使进入空穴中的客体分子振动受阻而导致红外吸收强度减弱的现象,称之为“包合减弱红外效应”,反映了客体分子在包合前后吸收强度的变化。因此,可作为依据判断包合是否发生,定性或定量地表示包合已否及包合程度。一个包合较好的β-环糊精包合物,客体分子包合后的伸展振动吸收峰强度下降幅度,实际分析中测得在20%-80%之间,大部分在50%-70%之间,一些弱峰因此可能消失。This formula shows that the infrared spectrum intensity of the inclusion compound guest molecule is less than the corresponding infrared spectrum intensity before inclusion. Because β-cyclodextrin has a hole, the phenomenon that the vibration of the guest molecule entering the hole is hindered by the inclusion action and the infrared absorption intensity is weakened is called "inclusion weakening infrared effect", which reflects the phenomenon that the guest molecule Changes in absorption strength before and after inclusion. Therefore, it can be used as a basis to judge whether inclusion occurs, and qualitatively or quantitatively indicate whether inclusion has occurred and the degree of inclusion. For a well-included β-cyclodextrin inclusion compound, the decrease in the intensity of the extensional vibration absorption peak after inclusion of the guest molecule is measured in the actual analysis between 20% and 80%, most of which are between 50% and 70%. %, some weak peaks may thus disappear.
包合物、未包合物红外光谱中的吸收峰均由β-环糊精和客体分子原有峰贡献或相互作用组成,从中可指认其归属。包合物与未包合物红外图谱比较,除峰的数量减少,因“包合减弱红外效应”使客体分子吸收峰强度显著下降外,两者相应吸收峰的位置(波数),形状基本一致,两图谱在外观上基本相同。其原因在于β-环糊精与客体分子间的包合作用主要靠范德华力结合而非形成化学键,因此不可能出现代表其的特征峰。如若不然,在>1300cm-1的官能团区,包合物图谱中出现了有别于β-环糊精或客体分子基团特征峰,则说明在包合过程中引入了杂质或者已发生了非包合作用的反应。The absorption peaks in the infrared spectra of inclusion complexes and non-inclusion complexes are all composed of the original peak contributions or interactions between β-cyclodextrin and guest molecules, from which their attribution can be identified. Comparing the infrared spectra of inclusion complexes and non-inclusion complexes, except that the number of peaks is reduced, and the absorption peak intensity of guest molecules is significantly reduced due to the "inclusion weakening infrared effect", the position (wave number) and shape of the corresponding absorption peaks of the two are basically the same , the two graphs are basically the same in appearance. The reason is that the inclusion interaction between β-cyclodextrin and guest molecules is mainly due to the combination of van der Waals force rather than the formation of chemical bonds, so it is impossible to appear the characteristic peaks representing it. If not, in the functional group area of >1300cm -1 , there appear in the clathrate spectrum a characteristic peak different from that of β-cyclodextrin or the guest molecular group, which means that impurities have been introduced during the clathrate process or abnormal occurrences have occurred. Inclusion reactions.
2.分析方法和步骤(以付利叶红外光谱仪为例)2. Analysis methods and steps (taking Fourier infrared spectrometer as an example)
2.1仪器2.1 Instrument
付利叶转换红外光谱仪:Spectrum One FT-IR Spectrometer,美国,PE公司。Fourier transform infrared spectrometer: Spectrum One FT-IR Spectrometer, USA, PE company.
2.1.1参数2.1.1 Parameters
Range:start 4000cm-1,End 450cm-1 Range: start 4000cm -1 , end 450cm -1
Resolution:4cm-1 Resolution: 4cm -1
Scan mumber:1/secScan number: 1/sec
Scan time:1 minuteScan time: 1 minute
2.2红外试样制备2.2 Infrared sample preparation
2.2.1用天平准确称量1.0-3.0mg范围内的β-环糊精包合物,120.0mg KBr,研磨,压片,测红外。2.2.1 Use a balance to accurately weigh the β-cyclodextrin inclusion complex within the range of 1.0-3.0mg, 120.0mg KBr, grind, press into tablets, and measure infrared.
2.2.2用天平准确称量与包合物等重的未包合物(混合物),同上法,测红外。2.2.2 Accurately weigh the non-inclusion compound (mixture) with the same weight as the inclusion compound with a balance, measure the infrared in the same way as above.
如有必要,测以下试样:If necessary, test the following samples:
2.2.3取大约2mg β-环糊精,大约120mg KBr,研磨,压片,测红外。2.2.3 Take about 2mg of β-cyclodextrin and about 120mg of KBr, grind, press into tablets, and measure infrared.
2.2.4同上,测客体物红外。2.2.4 Same as above, measure object infrared.
2.3图谱处理及数据2.3 Spectrum processing and data
2.3.1将原始图谱在“process”中经“Normalize”(ordinate limit=1.0A),“Baseline correction”(Automatic),“Smooth”(Automatic)处理。2.3.1 The original map is processed by "Normalize" (ordinate limit=1.0A), "Baseline correction" (Automatic) and "Smooth" (Automatic) in "process".
2.3.2打印图谱及“peak table”收集cm-1、T%数据。2.3.2 Print atlas and "peak table" to collect cm -1 and T% data.
2.3.3或在2.3.1之后选择“Absorbance”在“parameters”中取“Threshold=0.0088A”,打印图谱及“peak table”收集cm-1、A%数据。2.3.3 or after 2.3.1, select "Absorbance" and set "Threshold=0.0088A" in "parameters", print the spectrum and "peak table" to collect cm -1 and A% data.
2.3.4包合物、未包合物图谱的同座标迭加处理。2.3.4 Coordinate superposition processing of clathrate and non-clathrate spectra.
3.结果处理3. Result processing
3.1吸收峰位置(波数)、形状鉴定3.1 Absorption peak position (wave number), shape identification
对比包合物,未包合物红外图谱的吸收峰位置、形状,是否基本一致;检查是否出现有别于β-环糊精或客体分子的吸收峰,以便定性分析是否符合包合机理、出现杂质或非包合作用的其它反应等。Comparing the clathrate, whether the absorption peak position and shape of the infrared spectrum of the non-clathrate are basically the same; check whether there is an absorption peak different from that of the β-cyclodextrin or the guest molecule, so as to qualitatively analyze whether it conforms to the clathrate mechanism, the presence of Impurities or other reactions of non-inclusion interactions, etc.
3.2吸收峰强度计算3.2 Calculation of absorption peak intensity
在“peak table”中选取客体分子包合前后的吸收峰T%或A%(主要在伸展振动区)按下式之一计算:Select the absorption peak T% or A% (mainly in the stretching vibration region) of the guest molecules before and after inclusion in the "peak table" to calculate according to one of the following formulas:
3.2.1将未包合物强度定为100%,包合物相应峰相对强度为:3.2.1 Set the intensity of the non-inclusion complex as 100%, and the relative intensity of the corresponding peak of the inclusion compound is:
相应强度=[(100-T包)/(100-T未)]×100%(T为透射值)Corresponding intensity = [(100-T bag )/(100-T not )]×100% (T is the transmission value)
或者or
3.2.2相对强度=(A包/A未)×100%(A为吸收值)3.2.2 Relative strength = (A package / A not ) × 100% (A is the absorption value)
在实际分析中,可作影响包合的因素(例如包合时间、摩尔比等)与吸收强度的工作曲线,从中选取最佳值作为定量分析的标准。In actual analysis, the working curve of factors affecting inclusion (such as inclusion time, molar ratio, etc.) and absorption intensity can be made, and the best value can be selected as the standard of quantitative analysis.
4.实例4. Examples
按发明方法分析测定了β-环糊精与丹皮酚的包合物、未包合物,结合其图谱、数据、结果处理如下:According to the method of the invention, the inclusion compound and non-inclusion compound of β-cyclodextrin and paeonol are analyzed and measured, and the combined spectrum, data and results are processed as follows:
综合以上红外图谱作以下讨论:Based on the above infrared spectra, the following discussion is made:
1)未包合物红外光谱的各吸收峰由β-环糊精、丹皮酚共同构成。其中归属于β-环糊精的有:3392cm-1(被3369.57cm-1宽峰掩盖)、2923.84cm-1,1639.33cm-1(被1631.05cm-1掩盖),1156.53cm-1,1025.17cm-1,948.88cm-1,608.66cm-1等。归属于丹皮酚的有:1619.58cm-1(被1631.05cm-1掩盖),1504.82cm-1,1370.18cm-1,1333.86cm-1,1256.13cm-1,1207.70cm-1,859.34cm-1,573.53cm-1等。包合物红外光谱吸收峰亦由β-环糊精、丹皮酚共同构成,从图1、图2所列数据可详查。1) The absorption peaks of the infrared spectrum of the non-inclusion compound are jointly composed of β-cyclodextrin and paeonol. Which belong to β-cyclodextrin: 3392cm -1 (covered by 3369.57cm -1 broad peak), 2923.84cm -1 , 1639.33cm -1 (covered by 1631.05cm -1 ), 1156.53cm -1 , 1025.17cm -1 , 948.88cm -1 , 608.66cm -1 , etc. Attributed to paeonol are: 1619.58cm -1 (covered by 1631.05cm -1 ), 1504.82cm -1 , 1370.18cm -1 , 1333.86cm -1 , 1256.13cm -1 , 1207.70cm -1 , 859.34cm -1 , 573.53cm -1 etc. Infrared spectrum absorption peak of inclusion complex is also composed of β-cyclodextrin and paeonol, which can be checked in detail from the data listed in Figure 1 and Figure 2.
2)在等量试样条件下,包合物红外光谱吸收峰强度明显低于未包合物相应峰强度,以1.0mg试样量为例,详见表1。2) Under the condition of the same amount of sample, the intensity of the infrared spectrum absorption peak of the inclusion compound is obviously lower than that of the corresponding peak intensity of the non-inclusion compound. Take 1.0mg sample amount as an example, see Table 1 for details.
表1 包合物与未包合物吸收峰cm-1,T%,相对强度对比表Table 1 Comparison table of absorption peak cm -1 , T%, and relative intensity of inclusion complex and non-inclusion complex
相对强度 相对强度Relative Strength Relative Strength
cm-1 T% *(%) cm-1 T% *(%)cm -1 T% *(%) cm -1 T% *(%)
包合物 1639.47 56.55 55.2 1507.93 84.23 32.3Inclusion complex 1639.47 56.55 55.2 1507.93 84.23 32.3
未包合物 1631.05 21.34 100 1504.82 51.25 100Unincluded 1631.05 21.34 100 1504.82 51.25 100
包合物 1371.10 63.25 46.8 1333.22 66.63 52.6Inclusion complex 1371.10 63.25 46.8 1333.22 66.63 52.6
未包合物 1370.18 21.50 100 1333.86 36.59 100Unincluded 1370.18 21.50 100 1333.86 36.59 100
包合物 1255.96 66.33 41.4 1204.90 75.68 35Inclusion complex 1255.96 66.33 41.4 1204.90 75.68 35
未包会物 1256.13 18.72 100 1207.20 30.69 100Unpacked 1256.13 18.72 100 1207.20 30.69 100
包合物 860.15 90.37 24.5Clathrate 860.15 90.37 24.5
未包合物 859.34 60.64 100Unincluded 859.34 60.64 100
*:将未包合物强度定为100%,包合物相应峰相对强度由下式计算出:*: The intensity of the non-inclusion compound is set as 100%, and the relative intensity of the corresponding peak of the inclusion compound is calculated by the following formula:
相应强度=[(100-T包)/(100-T未)]×100%(T为透射值)Corresponding intensity = [(100-T bag )/(100-T not )]×100% (T is the transmission value)
3)包合物与未包合物红外图谱比较,峰形、波数基本一致。在波数>1300cm-1的官能团区,包合物的红外图谱中没有新的基团特征峰出现,说明了β-环糊精与丹皮酚形成包合物并没有形成化学键,即包合作用不是以生成化学键的形式完成,符合包合机理。3) Comparing the infrared spectra of inclusion compound and non-inclusion compound, the peak shape and wave number are basically the same. In the functional group region with a wave number > 1300cm -1 , no new group characteristic peaks appear in the infrared spectrum of the clathrate, indicating that the clathrate between β-cyclodextrin and paeonol does not form a chemical bond, that is, clathrate It is not completed in the form of forming chemical bonds, which conforms to the inclusion mechanism.
综合上述,可作如下结论:Based on the above, the following conclusions can be made:
β-环糊精的丹皮酚包合物与未包合物(混合物)红外图谱比较,相应峰位置(波数)、形状基本一致,未见异常峰,证明无杂质或没有发生非包合反应,强度明显下降,说明已包合;吸收强度下降45%-75%,说明包合程度完好。Comparing the infrared spectra of paeonol inclusion complex and non-inclusion complex (mixture) of β-cyclodextrin, the corresponding peak positions (wave numbers) and shapes are basically the same, and no abnormal peaks are seen, which proves that there is no impurity or non-inclusion reaction , the intensity decreased obviously, indicating inclusion; the absorption strength decreased by 45%-75%, indicating that the inclusion degree was intact.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100609181A CN1266466C (en) | 2004-09-24 | 2004-09-24 | Method for analyzing beta-cyclodextrin clathrate compound by Fourier infrared spectrum method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100609181A CN1266466C (en) | 2004-09-24 | 2004-09-24 | Method for analyzing beta-cyclodextrin clathrate compound by Fourier infrared spectrum method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1587990A true CN1587990A (en) | 2005-03-02 |
CN1266466C CN1266466C (en) | 2006-07-26 |
Family
ID=34603626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100609181A Expired - Fee Related CN1266466C (en) | 2004-09-24 | 2004-09-24 | Method for analyzing beta-cyclodextrin clathrate compound by Fourier infrared spectrum method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1266466C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103185702A (en) * | 2011-12-28 | 2013-07-03 | 深圳市格林美高新技术股份有限公司 | Detection method for paraffin content in powder for cemented carbide |
-
2004
- 2004-09-24 CN CNB2004100609181A patent/CN1266466C/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103185702A (en) * | 2011-12-28 | 2013-07-03 | 深圳市格林美高新技术股份有限公司 | Detection method for paraffin content in powder for cemented carbide |
CN103185702B (en) * | 2011-12-28 | 2015-12-16 | 格林美股份有限公司 | The detection method of paraffin content in a kind of wimet powder |
Also Published As
Publication number | Publication date |
---|---|
CN1266466C (en) | 2006-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xie et al. | Comparative studies by IR, Raman, and surface-enhanced Raman spectroscopy of azodicarbonamide, biurea and semicarbazide hydrochloride | |
US8891081B1 (en) | Raman spectroscopy method of measuring melamine contents in dairy products having different matrixes | |
CN113049568B (en) | Dual-mode method for rapidly detecting histamine in food | |
WO2016177002A1 (en) | Raman spectroscopy-based method for detecting addition of western medicines into healthcare product | |
CN104101591A (en) | Fast detection method for surface enhanced Raman scattering of trace pesticide residues in oranges | |
CN1125331C (en) | Method for measuring contents of components in oil residue | |
CN112179871B (en) | A method for nondestructive detection of caprolactam content in sauce food | |
CN108318421B (en) | A kind of magnetic graphene molecularly imprinted Raman enhanced substrate and preparation method and application | |
CN106872433B (en) | Beta-cyclodextrin functionalization carbon dots material and its applied to detection testosterone method | |
CN102998298A (en) | Method for rapidly detecting nitrite by using surface enhanced Raman spectrum and application thereof | |
CN110646407A (en) | A rapid detection method for phosphorus content in aquatic products based on laser-induced breakdown spectroscopy | |
WO2023207168A1 (en) | Method for simultaneously detecting sibutramine and fenfluramine in weight-loss health-care products | |
JP2016538536A5 (en) | ||
CN106153561A (en) | The many metal ion inspections of uv-vis spectra based on wavelength screening | |
CN104330396A (en) | Method for rapidly detecting rhodamine B in food | |
CN1587990A (en) | Method for analyzing beta-cyclodextrin clathrate compound by Fourier infrared spectrum method | |
CN1125329C (en) | Method for measuring contents of components in oil residue | |
Jarvis et al. | Towards quantitatively reproducible substrates for SERS | |
CN1796979A (en) | Method for measuring content of dialkene in gasoline through spectrum of near infrared light | |
CN1534292A (en) | A Method for Predicting Oil Properties by Chromatography-Mass Spectrometry | |
CN1847828A (en) | Method and device for identifying drugs using near-infrared spectroscopy | |
EP3446099B1 (en) | Method for sequencing oligosaccharides | |
CN116879224A (en) | A method to quickly screen effective spectral preprocessing solutions for near-infrared calibration models and its application | |
CN1152245C (en) | Fast test method of ethylene-propylene rubber content in ethylene-propylene copolymer | |
CN114942239A (en) | Composition, kit and method for rapidly detecting synthetic cannabinoid in tobacco tar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060726 |