CN1587738A - Inverse type magnetic flow damper - Google Patents

Inverse type magnetic flow damper Download PDF

Info

Publication number
CN1587738A
CN1587738A CNA2004100688535A CN200410068853A CN1587738A CN 1587738 A CN1587738 A CN 1587738A CN A2004100688535 A CNA2004100688535 A CN A2004100688535A CN 200410068853 A CN200410068853 A CN 200410068853A CN 1587738 A CN1587738 A CN 1587738A
Authority
CN
China
Prior art keywords
magnetic
cylinder
field coil
magnet case
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100688535A
Other languages
Chinese (zh)
Other versions
CN100356082C (en
Inventor
纪金豹
闫维明
周锡元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CNB2004100688535A priority Critical patent/CN100356082C/en
Publication of CN1587738A publication Critical patent/CN1587738A/en
Application granted granted Critical
Publication of CN100356082C publication Critical patent/CN100356082C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

A kind of inversion magnetic current alter amortisseur,which has application in the absorption of vibration of the building structure and the locomotive cars. It includes the cylinder body,the piston, the piston rod which connected to it, the confinement gasoline device of the both sides of the cylinder body and the cylinder cap, there has magnetic current alternative liquid in the void of the cylinder body, and institutes the magnetizer that generates the magnetic field and the energizing coil and the electromagnet magnetic circuit component which is unitized of the running void, the cylinder body is composed of the master cylinder, or the master cylinder and the set jar, or the master cylinder and bypass jar, its character is:Institutes both the energizing coil and the permanent magnet magnetic circuit, composes the compounded magnetic circuit with the energizing coil and the permanent magnetic field, and also institutes the administer void in the electromagnet circuit, and when the power is cut, the most of the permanent magnetic field that generated by the permanent magnet will pass through the running void, so the amortisseur can work at the great amortization condition. The component of the electromagnet circuit may set at the pertinent position in terms of the different cylinder body. This kind of amortisseur can joint with the controlled structure, fulfills the semiactivly controlled with the absorption of vibration.

Description

Inverse type magnetic flow damper
Technical field
The present invention relates to a kind of novel MR damper, the inverse type magnetic flow damper that is proposed can be applicable to control of building structure vibration damping and locomotive vibration damping.Also can be used for making the damper, break, clutch, hydrovalve in fields such as being used for space flight, electronics, chemical industry, the energy, instrument, medical treatment, health etc.
Background technique
MR damper is that a class is utilized the semi-automatic control device of magnetic flow liquid as working medium.Magnetic flow liquid be by tiny soft magnetic particles be scattered in form in the carrier fluid change suspension liquid with externally-applied magnetic field with controllable rheology characteristic; When magnetic flow liquid was subjected to the action of a magnetic field, its viscosity coefficient will increase thereupon, will become the state of similar " solid " when it is subjected to strong magnetic field action, and mobile the disappearance is in case after removing magnetic field, becoming again can flowing liquid.MR damper is utilized the rheological properties of magnetic flow liquid, the damp channel that has magnetic field is set on damper, when damper piston and cylinder body generation relative movement, magnetic flow liquid in then can extrusion cylinder, it is flow through from damp channel, and magnetic flow liquid does not show as viscous fluid when damp channel has the action of a magnetic field, if when applying magnetic field in the damp channel, sclerosis takes place and becomes visco-plastic body in the magnetic flow liquid in the damp channel, causes the damping force of piston motion to increase.Regulate magnetic intensity and can change the yield strength of magnetic flow liquid, thereby can regulate the size of the damping force of damper.
MR damper for prior art, no matter how complicated on the electromagnetic circuit component form, its structural representation can represent that all field coil 1 is wound on the permeability magnetic material 3 as Fig. 1, and the permeability magnetic material 3 with certain intensity constitutes the damp channel of air gap form in damper.When field coil 1 energising, will set up magnetic field at air gap 4, be in magnetic flow liquid in the air gap and " curing " will take place and similar phase change takes place and cause the change of MR damper damping.
A kind of typical structure of prior art MR damper as shown in figure 14; be filled with magnetic flow liquid 13 in the damper cylinder body 9; be wound with field coil 1 on the piston 8 of middle part grooving; field coil 1 outer installment have the protection coil not frayed every magnetic sheath 17, the lead-in wire of field coil 1 is drawn by the piston rod 7 of hollow.When field coil 1 has electric current to pass through, will produce magnetic field in the gap between piston 8 with certain magnetic conduction ability and cylinder body 9, thereby cause that the phase that is in the magnetic flow liquid in the gap 4 changes to change the damping of damper.Its deficiency is: damping increases during the damper galvanization, when causing damper to be operated in big damping state energy dependence is increased.For most engineering applicable cases, control is more favourable to big damping state to vibration damping, and keeping certain damping force is the important prerequisite that MR damper is brought into play its control ability.The supply of electrical energy of MR damper about big damping state needs 10~100W, though this energy demand in most of the cases is satisfiable, when but if MR damper provides certain rigidity and damping as similar passive frcition damper for controll plant in daily use, its energy consumption and safeguard and then become a restrictive factor of applying.Magnetic flow liquid also easily caused cohesion and sedimentation when MR damper was in zero magnetic field state for a long time in addition.
Summary of the invention
Technical problem to be solved by this invention is to overcome existing MR damper to need the electric current supply that continues in daily use, when losing efficacy, control law controls shortcomings such as effect deterioration, by being set, permanent magnet guarantees that to set up permanent magnetic field damper can be operated in big damping state when the supply disconnecton in MR damper, and, guarantee the controllability of damping by the size that field coil is regulated magnetic field in the magnetic air gap.By coil and permanent magnet reasonably are set, can improve the engineering practicability and the functional reliability of MR damper.
For solving the problems of the technologies described above, the present invention partly transforms the MR damper magnetic circuit, basic design is: in the magnetic circuit part field coil and permanent magnet are set simultaneously, form composite magnetic circuit by excitation field and permanent magnetic field, when the obstructed excess current of coil, the magnetic field of damping gap location is produced by permanent magnet, when coil electricity, coil is in order to produce and the permanent magnetic field opposing magnetic field, and the magnetic line of force forms closure by coil and permanent magnet, thereby causes damping gap location magnetic flux to reduce.The layout of permanent magnet and field coil is followed the principle of Fig. 2, constitutes damp channel by working gas gap 4, and permanent magnet 2 forms magnetic loop by permeability magnetic material 3 and working gas gap 4.Field coil 1 arranges and is provided with auxiliary air gap 5 with permanent magnet 2 parallel connections.When coil electricity, permanent magnet 2 forms magnetic loop with field coil 1 by auxiliary air gap 5.The magnetic circuit part of MR damper gives magnetic insulation with parts such as the piston rod of damper, cylinder caps with NULL and is connected.
Technological scheme of the present invention such as Fig. 3~shown in Figure 13, described inverse type magnetic flow damper, include the piston that is provided with in cylinder body, the cylinder body, connected piston rod, sealing guiding device and cylinder cap that the cylinder body two ends set gradually, inner chamber of cylinder block is filled with the magnetic flow liquid as resisting medium, is provided with the electromagnetic circuit parts that the magnet case that can produce magnetic field and field coil and working gas gap are formed in the cylinder body; Wherein cylinder body is by master cylinder, or master cylinder and secondary cylinder, or master cylinder and bypass cylinder composition, it is characterized in that: the magnetic circuit part at the electromagnetic circuit parts is provided with field coil and permanent magnet simultaneously, form composite magnetic circuit by excitation field and permanent magnetic field, and also be provided with auxiliary air gap 5 in the electromagnetic circuit, to guarantee when the supply disconnecton, the permanent magnetic field that permanent magnet 2 produces is passed through by working gas gap 4, and makes damper can be operated in big damping state.Because field coil 1 is arranged with permanent magnet 2 parallel connections, the magnetic flux that permanent magnet 2 produces when the obstructed electric current of coil forms the loop by air gap 4, excitation field that field coil 1 produces when coil electricity flows and permanent magnetic field form the loop by auxiliary air gap 5, the magnetism resistent ring that auxiliary air gap 5 is made for NULL.The part of the force of magnet case 3 is provided with the wear resistant metallic jacket 14 of protective action.
Described inverse type magnetic flow damper, it is characterized in that: when the piston 8 of the inverse type magnetic flow damper of selecting for use is the piston of middle part grooving, described electromagnetic circuit parts can be arranged in the grooving of piston 8, gap between piston and the cylinder body is for forming the working gas gap 4 of damp channel, piston 8 is connected to integral body by non-magnetic center rod 15, field coil 1 is wound on the magnet case iron core 3a of tubular, magnet case iron core 3a stage casing disconnects and to be provided with magnetism resistent ring that NULL makes to form auxiliary air gap 5, magnet case iron core 3a is enclosed within on the center rod 15 and with the magnet case 3 of field coil 1 end and is close to, the outer ring of field coil 1 and and the magnet case 3 of field coil 1 end between be provided with tubular every magnetic sheath 17, permanent magnet 2 evenly is flush-mounted in the inside every magnetic sheath 17.
Electromagnetic circuit parts in the described inverse type magnetic flow damper can be arranged on an end sealing device inboard in the cylinder body; when the damper of selecting for use is provided with between inner casing 20 and outer shell by liquid-through hole 21 with the inner casing internal communication; the outside of electromagnetic circuit parts is discoid magnet case 3; core is magnet case iron core 3a; field coil 1 is wound on the magnet case iron core 3a; magnet case 3 extensions outside magnet case iron core 3a extension and the field coil 1 surround working gas gap 4; an end that is in the close seal arrangement of magnet case iron core 3a of field coil 1 inside is provided with auxiliary air gap 5; the other end is provided with the not frayed dish type of protection coil every magnetic sheath 17 between magnet case 3 and magnet case iron core 3a; permanent magnet 2 is embedded in magnetic sheath 17; a magnetic pole of permanent magnet 2 closely is connected with the magnet case iron core 3a of coil inside, and another magnetic pole closely is connected with the magnet case 3 of coil outside.
Described inverse type magnetic flow damper, it is characterized in that: when the damper of selecting for use is provided with the bypass cylinder 22 that links to each other by liquid-through hole 21 and its inside, described electromagnetic circuit parts can be positioned at bypass cylinder 22, the center of bypass cylinder 22 is the magnetic conduction mandrel 3b that permeability magnetic material constitutes, gap between the column magnet case of the L type of magnetic conduction mandrel 3b and parcel field coil 1 is the working gas gap 4 of the action of a magnetic field, be provided with every magnetic sheath 17 between working gas gap 4 and the field coil 1, permanent magnet 2 evenly is flush-mounted in tubular in magnetic sheath 17, and field coil 1 outer middle part is the auxiliary air gap 5 of annular that constitutes every magnet.
Electromagnetic circuit parts in the described inverse type magnetic flow damper can be in cylinder body between the both sides sealing device, inboard wall of cylinder block is provided with every magnetic sheath 17, permanent magnet 2 evenly is flush-mounted in tubular in magnetic sheath 17, field coil 1 is wound in the outside every magnetic sheath 17, the outside of field coil 1 and end are the magnet case 3 of high magnetic permeability, the gap that forms between magnet case 3 and the piston 8 is a working gas gap 4, and the medium position in field coil 1 outside is set to the auxiliary air gap 5 that annular NULL constitutes.
The inverse type magnetic flow damper that the present invention proposes is owing to taked to comprise the composite magnetic circuit of coil and permanent magnet, make MR damper have the little damping of big electric current, unique inversion performance of the big damping of little electric current, when energy deficiency, control system paralysis, still can work effectively, thereby have more functional reliability and use value than conventional MR damper.
Description of drawings:
The equivalent magnetic circuit schematic diagram of Fig. 1 prior art MR damper;
Fig. 2 is the inverse type magnetic flow damper magnetic circuit schematic diagram that the present invention proposes;
Fig. 3 is the inverse type magnetic flow damper sectional view of a kind of form of the present invention;
Fig. 4 is the partial enlarged drawing of magnetic circuit part among Fig. 3;
Fig. 5 is the A-A cross-sectional view of Fig. 4;
The inverse type magnetic flow damper sectional view of the another kind of form that Fig. 6 the present invention proposes;
Fig. 7 is the partial enlarged drawing of magnetic circuit part among Fig. 6;
Fig. 8 is the A-A cross-sectional view of Fig. 7;
The inverse type magnetic flow damper sectional view of the another kind of form that Fig. 9 the present invention proposes;
Figure 10 is the partial enlarged drawing of magnetic circuit part among Fig. 9;
Figure 11 is the A-A cross-sectional view of Figure 10;
The inverse type magnetic flow damper sectional view of the another kind of form that Figure 12 the present invention proposes;
Figure 13 is the A-A cross-sectional view of Figure 12;
The structure sectional view of Figure 14 prior art MR damper.
Among the figure:
1-field coil 11-seals guiding device
2-permanent magnet 12-connects earrings
3-magnet case 13-magnetic flow liquid
3a-conducting magnet core 14-Wear-resitsting pistons cover
3b-magnetic conduction mandrel 15-center rod
The secondary cylinder of 4-working gas gap 16-
The auxiliary air gap 17-of 5-is every the magnetic sheath
6-magnetic line of force 18-bypass tube
7-piston rod 19-volume compensation chamber
8-piston 20-inner casing
9-cylinder body 21-liquid-through hole
10-cylinder cap 22-bypass cylinder
23-end cap and sealing
Embodiment
The inverse type magnetic flow damper that the present invention proposes other structure except that the electromagnetic circuit part is identical with the MR damper of prior art design.Described electromagnetic circuit part as shown in Figure 2, be provided with auxiliary air gap 5 and permanent magnet 2 in the electromagnetic circuit, the size of auxiliary air gap 5 rationally is set, can guarantee when field coil 1 does not have electric current to pass through, the magnetic flux that is produced by permanent magnet 2 does not pass through auxiliary air gap 5 substantially, and mainly forms the loop by the working gas gap 4 that constitutes damp channel; When field coil 1 passes through the electric current of certain orientation, excitation field that field coil 1 produces and permanent magnetic field form the loop by auxiliary air gap 5, thereby the magnetic field that causes permanent magnet to produce does not pass through to constitute the working gas gap 4 of damp channel substantially, can think in theory also that perhaps excitation field has produced and the permanent magnet flux equal and opposite in direction at working gas gap 4, the magnetic flux that direction is opposite, thus make that working gas gap 4 equivalent Resultant magnetic fields are zero.This magnetic Circuit Design has been avoided the erasure effect of excitation field to permanent magnet, and can effectively realize the magnetic field inversion of working gas gap 4.Described permanent magnet can adopt the sintered NdFeB (Nd with high remanent magnetism and high energy product 2Fe 14B 1), hard magnetic ferrite or bore rare-earth permanent magnet etc.; Permeability magnetic material can adopt the good low carbon steel of electrician's soft iron, silicon steel, iron-nickel alloy or magnetic property; NULL can adopt bell metal or not have the magnetic high strength alumin ium alloy.
The MR damper of prior art can be divided into MR damper by the mode of operation difference and can be divided into mobile type (two-plate is fixed, and fluid flows; The valve formula), (pole plate has tangential relative movement to shearing type; Clutch-type), (pole plate has relative movement in opposite directions to extrusion pressing type; Compression type).At different mode of operations, four kinds of specific embodiments proposed by the invention such as Fig. 3~shown in Figure 13.
Be illustrated in figure 3 as the structural drawing of a kind of shearing inverse type magnetic flow damper of the present invention's proposition.Damper is as good as with the MR damper of prior art except that the electromagnetic circuit parts.Be provided with secondary cylinder 16 between the cylinder cap 10 of cylinder body 9 one ends and sealing guiding device 11, an end of the piston rod 7 at piston 8 two ends stretches in the secondary cylinder 16 by sealing guiding device 11, and the other end passes cylinder cap by seal arrangement.The electromagnetic circuit parts are positioned at the piston 8 of middle part grooving, and as Fig. 4, shown in Figure 5, the damp channel of MR damper is the gap between piston and the cylinder body, the working clearance 4 in the just basic magnetic circuit.When piston and cylinder body generation relative movement, be in magnetic flow liquid between piston and cylinder body and can produce the property sheared and flow.The piston middle part adopts the NULL with sufficient intensity to process for the center rod 15 of contact each parts of piston and piston rod, center rod 15; The high conducting magnet core 3 that the centre hollows out aBe placed in center rod 15 outsides, and be provided with auxiliary air gap 5 in the piston middle part, auxiliary air gap is the magnetism resistent ring that NULL is made; At conducting magnet core 3 aBe wound with field coil 1 in the circular groove at middle part, coil 1 outer ring is the tubular sheath 17 that is embedded with the NULL processing of bar-shaped permanent magnet 2, and the permanent magnet 2 of clavate evenly is flush-mounted in every magnetic sheath 17 middle parts.At the two ends of piston 8 is the Wear-resitsting pistons sleeve 14 with certain intensity, is used to protect the lower permeability magnetic material of intensity not to be subjected to the abrasion of magnetic flow liquid.The lead-out mode of field coil lead-in wire is identical with the MR damper of prior art.
Be illustrated in figure 6 as the another kind of flowing type implementation of the inverse type magnetic flow damper of the present invention's proposition.Damper is as good as with the MR damper of prior art except that the electromagnetic circuit parts.The damper cylinder body is made up of inner casing 20 and outer shell 9 two-part, and outer shell 9 is provided with volume compensation chamber 19, and damper one end makes gap and interior cylinder interior conducting between inner casing 20 and the outer shell 9 by being arranged at liquid-through hole 21 on the inner casing.The other end makes gap and interior cylinder interior conducting between inner casing 20 and the outer shell 9 via working gas gap 4.The electromagnetic circuit parts are positioned at cylinder body one end sealing device inboard, and as Fig. 7, shown in Figure 8, its outside is discoid magnet case 3, and core is a magnet case iron core 3 a, field coil 1 is wound in magnet case iron core 3 aOn, magnet case iron core 3 a Magnet case 3 extensions outside extension and the field coil 1 surround working gas gap 4, when piston and cylinder body generation relative movement, can oppress magnetic flow liquid and make it to flow through the working gas gap 4 that is arranged at damper one end and produce damping forces via the gap between inner casing 20 and the outer shell 9.An end that is in the conducting magnet core of coil inside is provided with auxiliary air gap 5, one ends that NULL constitutes and is provided with radial permanent magnet 2, and permanent magnet 2 is embedded in magnetic sheath 17 to avoid stressed wearing and tearing.The magnetic pole of permanent magnet 2 and the magnet case iron core 3 of coil inside aClosely connect, another magnetic pole closely is connected with the magnet case 3 of coil outside.Magnet case 3 is working gas gap 4 and liquid-through hole 21 with inner casing and outer shell connection part, and the size of the gap length and the auxiliary air gap 5 of working gas gap 4 rationally is set, and the magnetic field major part that permanent magnet 2 excites in the time of can guaranteeing the obstructed electric current of coil is passed through by working gas gap 4.
Be illustrated in figure 9 as the implementation of the another kind of flowing type inverse type damper of the present invention's proposition.Damper is as good as with the MR damper of prior art except that the electromagnetic circuit parts.Be provided with secondary cylinder 16 between the cylinder cap 10 of cylinder body 9 one ends and sealing guiding device 11, an end of the piston rod 7 at piston 8 two ends stretches in the secondary cylinder 16 by sealing guiding device 11, and the other end passes cylinder cap by seal arrangement.The damper cylinder body 9 inner liquid-through holes 21 that pass through link to each other with bypass cylinder 22, and the electromagnetic circuit parts in the damper are arranged in the bypass cylinder 22, as Figure 10, shown in Figure 11.The middle part of bypass cylinder 22 is the magnetic conduction mandrel 3 that permeability magnetic material constitutes b, the gap between the column magnet case 3 of the L type of mandrel and parcel field coil 1 is the working gas gap 4 of the action of a magnetic field.When the piston 8 of damper moved in cylinder body, the magnetic flow liquid in can extrusion cylinder made it from liquid-through hole 21 working gas gap 4 of flowing through.Working gas gap 4 internal magnetic fields will cause when changing that the magnetic flow liquid generation phase that is positioned at it changes and the damping of change damper.Be provided with every magnetic sheath 17 between working gas gap 4 and the field coil 1, the permanent magnet 2 of clavate evenly is flush-mounted in tubular in magnetic sheath 17, and field coil 1 outer middle part is the auxiliary air gap 5 of annular that constitutes every magnet.
The implementation of a kind of extruding type inverse type damper that proposes for the present invention as shown in figure 12.Damper is as good as with the MR damper of prior art except that the electromagnetic circuit parts.The cylinder body two ends are end cap and seal arrangement 23, piston 8 with permeability magnetic material making of certain intensity is positioned at the cylinder body middle part, two ends connect passes the piston rod 7 that cylinder cap stretches out cylinder body, in the inner chamber of cylinder block of electromagnetic circuit parts between seal arrangement, as shown in figure 13, working gas gap 4 is the gap that forms between permeability magnetic material 3 and the piston 8, when damper piston 8 takes place can push the magnetic flow liquid that is in the working gas gap 4 when moving by a small margin, make it to take place the diffusivity extruding and flow and cause that damping exerts oneself.The inwall of cylinder body for evenly be embedded with clavate permanent magnet 2 every magnetic sheath 17, field coil 1 is wound in every magnetic sheath 17 outsides, the outside of field coil and end are the permeability magnetic material 3 of high magnetic permeability, and at the medium position of coil the auxiliary air gap 5 that annular NULL constitutes are set.
Other universal accessories of aforesaid each inverse type magnetic flow damper adopts known technology to determine, the viscosity of the cylinder diameter of damper, diameter of piston rod, magnetic conduction section length, magnetic conduction gap length, damper stroke, coil turn, permanent magnet consumption, magnetic flow liquid, magnetic flow liquid saturation intensity, cylinder body wall thickness etc. calculate according to known design of Hydraulic System method and magnetic circuit design method to be determined.
This inverse type magnetic flow damper can equally with common MR damper be installed in building structure by connection set and produce the position of relative displacement or be used for suspension vibration damping and speed controlling as vehicle shock absorber, clutch.When for example it being installed on the interlayer of frame-shear structure or building structure beam column node place, its working mechanism is: when earthquake does not take place, it is stressed that damper is similar to the collaborative building structure of friction energy dissipation device, when earthquake takes place, the movable information that sensor acquisition structural vibrations information and ground are arranged, and calculate the required current value that applies of MR damper according to half certain ACTIVE CONTROL algorithm, and damper is applied control command by power amplifier device by controller.When between the piston of damper and cylinder body relative displacement trend being arranged, damper can produce counter-force to act on structure, because damper reduces the vibration of building to the retardation of motion, thereby realizes the purpose of building structure vibration damping control.
The MR damper magnetic Circuit Design that the present invention proposes also can have many modification, all belongs to technological scheme proposed by the invention.

Claims (7)

1, a kind of inverse type magnetic flow damper, include the piston that is provided with in cylinder body, the cylinder body, connected piston rod, sealing guiding device and cylinder cap that the cylinder body two ends set gradually, inner chamber of cylinder block is filled with the magnetic flow liquid as resisting medium, is used to form the magnet case of magnetic circuit and can produces the field coil in magnetic field and the electromagnetic circuit parts that working gas gap is formed; Wherein cylinder body is by master cylinder, or master cylinder and secondary cylinder, or master cylinder and bypass cylinder composition, the invention is characterized in: the magnetic circuit part at the electromagnetic circuit parts is provided with field coil (1) and permanent magnet (2) simultaneously, form composite magnetic circuit by excitation field and permanent magnetic field, and also be provided with auxiliary air gap (5) in the electromagnetic circuit, and make damper can be operated in big damping state.
2, inverse type magnetic flow damper according to claim 1, it is characterized in that: the damper magnetic circuit is furnished with permanent magnet (2) and field coil (1) simultaneously, the magnetic flux that permanent magnet (2) produces when the coil no electric circuit forms the loop by working gas gap (4), and excitation field that field coil when coil electricity (1) produces and permanent magnetic field form the loop by auxiliary air gap (5); The magnetism resistent ring that auxiliary air gap (5) is made for NULL, the damp channel that working gas gap (4) is flowed through for magnetic flow liquid.
3, inverse type magnetic flow damper according to claim 1 is characterized in that: the outside of magnet case (3) is provided with protection magnet case (3) but stressed magnetic conduction wear resistant metallic jacket (14).
4, inverse type magnetic flow damper according to claim 1 and 2, it is characterized in that: when the piston (8) of the inverse type magnetic flow damper of selecting for use is the piston of middle part grooving, described electromagnetic circuit parts can be arranged in the grooving of piston (8), gap between piston and the cylinder body is for forming the working gas gap (4) of damp channel, piston (8) is connected to integral body by non-magnetic center rod (15), and field coil (1) is wound on the magnet case iron core (3 of tubular a) on, magnet case iron core (3 a) stage casing disconnects and to be provided with magnetism resistent ring that NULL makes to form auxiliary air gap (5), magnet case iron core (3 a) be enclosed within on the center rod (15) and with the magnet case (3) of field coil (1) end and be close to, the outer ring of field coil (1) and and the magnet case (3) of field coil (1) end between be provided with tubular every magnetic sheath (17), permanent magnet (2) evenly is flush-mounted in the inside every magnetic sheath (17).
5, inverse type magnetic flow damper according to claim 1 and 2, it is characterized in that: when the damper of selecting for use is provided with between inner casing (20) and outer shell by liquid-through hole (21) with the inner casing internal communication, the electromagnetic circuit parts can be arranged on the seal arrangement inboard of inner chamber of cylinder block end, its outside is discoid magnet case (3), and core is a magnet case iron core (3 a), field coil (1) is wound in magnet case iron core (3 a) on, magnet case iron core (3 a) outer magnet case (3) extension of extension and field coil (1) surrounds working gas gap (4), is in the inner magnet case iron core (3 of field coil (1) a) being provided with auxiliary air gap (5) near an end of seal arrangement, the other end is at magnet case (3) and magnet case iron core (3 a) between be provided with the not frayed dish type of protection coil every magnetic sheath (17), permanent magnet (2) is embedded in magnetic sheath (17), the magnetic pole of permanent magnet (2) and the magnet case iron core (3 of coil inside a) closely connect, another magnetic pole closely is connected with the magnet case (3) of coil outside.
6, inverse type magnetic flow damper according to claim 1 and 2, it is characterized in that: when the damper of selecting for use is provided with the bypass cylinder (22) that links to each other by liquid-through hole (21) and its inside, described electromagnetic circuit parts can be positioned at bypass cylinder (22), and the center of bypass cylinder (22) is the magnetic conduction mandrel (3 that permeability magnetic material constitutes b), magnetic conduction mandrel (3 b) and the column magnet case of L type of parcel field coil (1) between the gap be the working gas gap (4) of the action of a magnetic field, be provided with every magnetic sheath (17) between working gas gap (4) and the field coil (1), permanent magnet (2) evenly is flush-mounted in tubular in magnetic sheath (17), and the outer middle part of field coil (1) is the auxiliary air gap (5) of annular that constitutes every magnet.
7, inverse type magnetic flow damper according to claim 1 and 2, it is characterized in that: described electromagnetic circuit parts can be between cylinder interior both sides sealing device, inboard wall of cylinder block is provided with every magnetic sheath (17), permanent magnet (2) evenly is flush-mounted in tubular in magnetic sheath (17), field coil (1) is wound in the outside every magnetic sheath (17), the outside of field coil (1) and end are the magnet case (3) of high magnetic permeability, the gap that forms between magnet case (3) and the piston (8) is working gas gap (4), and the medium position in field coil (1) outside is set to the auxiliary air gap (5) that annular NULL constitutes.
CNB2004100688535A 2004-07-09 2004-07-09 Inverse type magnetic flow damper Expired - Fee Related CN100356082C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100688535A CN100356082C (en) 2004-07-09 2004-07-09 Inverse type magnetic flow damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100688535A CN100356082C (en) 2004-07-09 2004-07-09 Inverse type magnetic flow damper

Publications (2)

Publication Number Publication Date
CN1587738A true CN1587738A (en) 2005-03-02
CN100356082C CN100356082C (en) 2007-12-19

Family

ID=34604185

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100688535A Expired - Fee Related CN100356082C (en) 2004-07-09 2004-07-09 Inverse type magnetic flow damper

Country Status (1)

Country Link
CN (1) CN100356082C (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100363643C (en) * 2006-06-21 2008-01-23 天津大学 Multistep assemblied anti-settle magnetic rheological damper
CN100455843C (en) * 2007-06-04 2009-01-28 湖南大学 Magnetic-fluid change type regulation-liquid column damper
CN101215860B (en) * 2007-12-28 2010-05-19 天津大学 High output MR damper
CN101825146A (en) * 2010-04-27 2010-09-08 谭和平 Self-adaptive magnetorheological clutch
CN101832355A (en) * 2010-03-30 2010-09-15 谭和平 Double-out-rod adaptive double-control magneto-rheological damper
CN101215861B (en) * 2007-12-28 2010-09-29 天津大学 Damping force bidirectionally regulating MR damper
CN101915283A (en) * 2010-08-06 2010-12-15 浙江大学 Magneto-rheological combined damping control method and device
CN101989803A (en) * 2009-07-30 2011-03-23 北京京西重工有限公司 Magnetorheological fluid-based device comprising magnetorheological piston component
CN101709761B (en) * 2009-12-23 2011-07-06 重庆仪表材料研究所 Single outstretch pole magnetorheological damper
CN102135154A (en) * 2011-03-18 2011-07-27 谭和平 Alnico piston-type magneto-rheological damper with single piston rod
CN101761146B (en) * 2010-01-04 2011-08-10 湖南大学 Permanent-magnet type eddy current tuned mass damper
CN102155515A (en) * 2011-04-19 2011-08-17 谭和平 Magnetorheological damper with external electromagnet
CN102177348A (en) * 2008-08-08 2011-09-07 罗伯特·博世有限公司 Control device, and valve arrangement having such a control device
CN102182785A (en) * 2011-03-18 2011-09-14 谭晓婧 Magnetic steel piston type magneto-rheological damper with double ejection rods
CN102242791A (en) * 2011-04-19 2011-11-16 谭和平 Magneto-rheological damper of synchronous sliding external electromagnet
CN102374330A (en) * 2011-10-19 2012-03-14 昆明理工大学 Magnetorheological valve
WO2012155394A1 (en) * 2011-05-17 2012-11-22 Beijingwest Industries Co., Ltd. Magneto-rheological damping assembly
CN103089906A (en) * 2013-02-04 2013-05-08 谢宁 Crack cylinder single-out rod magneto-rheological damper
CN103512624A (en) * 2013-08-27 2014-01-15 黑龙江科技大学 Coal cutter cutting resistance sensing method based on magnetorheological elastomer and sensor
CN103562591A (en) * 2011-06-13 2014-02-05 萱场工业株式会社 Magnetic viscous damper
CN103953679A (en) * 2014-04-28 2014-07-30 浙大新剑(上海)智能技术有限公司 Double-rod magnetorheological damper piston assembly and manufacturing method thereof
CN104747649A (en) * 2015-04-20 2015-07-01 中国人民解放军装甲兵工程学院 Magneto-rheological damper
CN104763703A (en) * 2015-02-09 2015-07-08 浙江大学 Energy feedback type magneto-rheological-air floating combined performing device
CN105003585A (en) * 2015-06-12 2015-10-28 重庆材料研究院有限公司 Variable-section piston type magnetorheological vibration reducer
CN105156568A (en) * 2015-07-20 2015-12-16 常州大学 Double-rod variable-cylinder-body passive double-control variable-damping magnetorheological damper
CN105240444A (en) * 2015-11-05 2016-01-13 重庆材料研究院有限公司 Magneto-rheological shock absorber based on parallel structure
CN105735507A (en) * 2016-03-10 2016-07-06 苏州科技学院 Tension-compression type magnetic shape memory alloy multi-mode intelligent damper
CN106641081A (en) * 2016-12-29 2017-05-10 中国农业大学 Magnetorheological damper with electromagnetic active sedimentation and aggregation eliminating function and sedimentation and aggregation eliminating method
CN106838005A (en) * 2017-04-11 2017-06-13 华中科技大学 A kind of heteropolarity permanent magnetic offset mixed radial magnetic bearing
CN107084221A (en) * 2017-05-04 2017-08-22 西北工业大学 It is a kind of to remember magnetic structure for magneto-rheological vibration damper
CN107327533A (en) * 2017-07-12 2017-11-07 东南大学 A kind of magnetorheological mud damper
CN108561486A (en) * 2018-04-23 2018-09-21 福州大学 A kind of novel anti-settling magnetic rheological liquid damper
CN112324837A (en) * 2020-11-24 2021-02-05 清华大学 Electromagnetic piston and magnetorheological damper
CN112696451A (en) * 2020-01-09 2021-04-23 北京京西重工有限公司 Rotary damper assembly
CN114135619A (en) * 2021-11-13 2022-03-04 安徽工程大学 Damping type energy dissipation device repairing device based on magnetic control principle
CN114135620A (en) * 2021-11-13 2022-03-04 安徽工程大学 Damper gain device based on magnetic control principle and use method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101749358B (en) * 2010-02-24 2011-11-30 谭晓婧 Damping force adjustable permanent magnet type magnetic current variable damper
WO2013007138A1 (en) * 2011-07-12 2013-01-17 Beijingwest Industries Co., Ltd. A double pumper magneto-rheological hydraulic tie bar assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253625A (en) * 1988-08-17 1990-02-22 Kayaba Ind Co Ltd Electro-magnetic attenuating valve of damper
DE4433056C2 (en) * 1994-09-16 1998-01-29 Mannesmann Sachs Ag Vibration dampers for motor vehicles
US5492312A (en) * 1995-04-17 1996-02-20 Lord Corporation Multi-degree of freedom magnetorheological devices and system for using same
JPH10304649A (en) * 1997-04-22 1998-11-13 Ogura Clutch Co Ltd Electromagnetic hysteresis brake and tension adjusting device using the brake
CN1108467C (en) * 1997-08-04 2003-05-14 劳德公司 Magnetroheological fluid device exhibiting settling stability
DE10214357A1 (en) * 2002-03-28 2003-10-16 Bock Healthcare Gmbh Prosthetic knee joint with a hydraulic damping cylinder
CN2725625Y (en) * 2004-07-09 2005-09-14 北京工业大学 Contravariance magnetic rheological damper

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100363643C (en) * 2006-06-21 2008-01-23 天津大学 Multistep assemblied anti-settle magnetic rheological damper
CN100455843C (en) * 2007-06-04 2009-01-28 湖南大学 Magnetic-fluid change type regulation-liquid column damper
CN101215860B (en) * 2007-12-28 2010-05-19 天津大学 High output MR damper
CN101215861B (en) * 2007-12-28 2010-09-29 天津大学 Damping force bidirectionally regulating MR damper
CN102177348B (en) * 2008-08-08 2015-05-13 罗伯特·博世有限公司 Control device, and valve arrangement having such a control device
CN102177348A (en) * 2008-08-08 2011-09-07 罗伯特·博世有限公司 Control device, and valve arrangement having such a control device
CN101989803B (en) * 2009-07-30 2013-11-13 北京京西重工有限公司 Magnetorheological fluid-based device comprising magnetorheological piston component
CN101989803A (en) * 2009-07-30 2011-03-23 北京京西重工有限公司 Magnetorheological fluid-based device comprising magnetorheological piston component
CN101709761B (en) * 2009-12-23 2011-07-06 重庆仪表材料研究所 Single outstretch pole magnetorheological damper
CN101761146B (en) * 2010-01-04 2011-08-10 湖南大学 Permanent-magnet type eddy current tuned mass damper
CN101832355A (en) * 2010-03-30 2010-09-15 谭和平 Double-out-rod adaptive double-control magneto-rheological damper
CN101825146A (en) * 2010-04-27 2010-09-08 谭和平 Self-adaptive magnetorheological clutch
CN101915283A (en) * 2010-08-06 2010-12-15 浙江大学 Magneto-rheological combined damping control method and device
CN102135154A (en) * 2011-03-18 2011-07-27 谭和平 Alnico piston-type magneto-rheological damper with single piston rod
CN102182785A (en) * 2011-03-18 2011-09-14 谭晓婧 Magnetic steel piston type magneto-rheological damper with double ejection rods
CN102155515A (en) * 2011-04-19 2011-08-17 谭和平 Magnetorheological damper with external electromagnet
CN102242791A (en) * 2011-04-19 2011-11-16 谭和平 Magneto-rheological damper of synchronous sliding external electromagnet
US9004243B2 (en) 2011-05-17 2015-04-14 Beijing West Industries Co., Ltd. Magneto-rheological damping assembly
CN103534508B (en) * 2011-05-17 2015-02-18 北京京西重工有限公司 Magneto-rheological damping assembly
CN103534508A (en) * 2011-05-17 2014-01-22 北京京西重工有限公司 Magneto-rheological damping assembly
WO2012155394A1 (en) * 2011-05-17 2012-11-22 Beijingwest Industries Co., Ltd. Magneto-rheological damping assembly
CN103562591B (en) * 2011-06-13 2016-06-15 Kyb株式会社 Magnetic viscosity fluid buffer
CN103562591A (en) * 2011-06-13 2014-02-05 萱场工业株式会社 Magnetic viscous damper
CN102374330A (en) * 2011-10-19 2012-03-14 昆明理工大学 Magnetorheological valve
CN103089906A (en) * 2013-02-04 2013-05-08 谢宁 Crack cylinder single-out rod magneto-rheological damper
CN103512624B (en) * 2013-08-27 2016-04-27 黑龙江科技大学 Based on coalcutter cutting resistance method for sensing and the sensor of magnetic rheology elastic body
CN103512624A (en) * 2013-08-27 2014-01-15 黑龙江科技大学 Coal cutter cutting resistance sensing method based on magnetorheological elastomer and sensor
CN103953679A (en) * 2014-04-28 2014-07-30 浙大新剑(上海)智能技术有限公司 Double-rod magnetorheological damper piston assembly and manufacturing method thereof
CN104763703A (en) * 2015-02-09 2015-07-08 浙江大学 Energy feedback type magneto-rheological-air floating combined performing device
CN104747649A (en) * 2015-04-20 2015-07-01 中国人民解放军装甲兵工程学院 Magneto-rheological damper
CN105003585B (en) * 2015-06-12 2017-03-01 重庆材料研究院有限公司 Variable cross-section piston magneto-rheological vibroshock
CN105003585A (en) * 2015-06-12 2015-10-28 重庆材料研究院有限公司 Variable-section piston type magnetorheological vibration reducer
CN105156568A (en) * 2015-07-20 2015-12-16 常州大学 Double-rod variable-cylinder-body passive double-control variable-damping magnetorheological damper
CN105240444A (en) * 2015-11-05 2016-01-13 重庆材料研究院有限公司 Magneto-rheological shock absorber based on parallel structure
CN105240444B (en) * 2015-11-05 2017-09-05 重庆材料研究院有限公司 Magneto-rheological vibration damper based on parallel-connection structure
CN105735507A (en) * 2016-03-10 2016-07-06 苏州科技学院 Tension-compression type magnetic shape memory alloy multi-mode intelligent damper
CN106641081A (en) * 2016-12-29 2017-05-10 中国农业大学 Magnetorheological damper with electromagnetic active sedimentation and aggregation eliminating function and sedimentation and aggregation eliminating method
CN106838005A (en) * 2017-04-11 2017-06-13 华中科技大学 A kind of heteropolarity permanent magnetic offset mixed radial magnetic bearing
CN106838005B (en) * 2017-04-11 2019-02-05 华中科技大学 A kind of heteropolarity permanent magnetic offset mixed radial magnetic bearing
CN107084221A (en) * 2017-05-04 2017-08-22 西北工业大学 It is a kind of to remember magnetic structure for magneto-rheological vibration damper
CN107327533A (en) * 2017-07-12 2017-11-07 东南大学 A kind of magnetorheological mud damper
CN107327533B (en) * 2017-07-12 2019-12-10 东南大学 Magneto-rheological mud damper
CN108561486A (en) * 2018-04-23 2018-09-21 福州大学 A kind of novel anti-settling magnetic rheological liquid damper
CN112696451A (en) * 2020-01-09 2021-04-23 北京京西重工有限公司 Rotary damper assembly
US11585407B2 (en) 2020-01-09 2023-02-21 Beijingwest Industries Co., Ltd. Rotary damper assembly
CN112324837A (en) * 2020-11-24 2021-02-05 清华大学 Electromagnetic piston and magnetorheological damper
CN114135619A (en) * 2021-11-13 2022-03-04 安徽工程大学 Damping type energy dissipation device repairing device based on magnetic control principle
CN114135620A (en) * 2021-11-13 2022-03-04 安徽工程大学 Damper gain device based on magnetic control principle and use method

Also Published As

Publication number Publication date
CN100356082C (en) 2007-12-19

Similar Documents

Publication Publication Date Title
CN1587738A (en) Inverse type magnetic flow damper
CN2725625Y (en) Contravariance magnetic rheological damper
CN205260715U (en) Adopt annular permanent magnet and excitation coil to carry out compound control's magneto rheological damper
US6019201A (en) Magneto-rheological fluid damper
US7225905B2 (en) Magnetorheological fluid damper
US6637556B1 (en) Magneto-rheological damper with grooved fluid passages
CN206904139U (en) A kind of MR damper with multiple road conditions vibration control
CN109973580B (en) Magneto-rheological damper suitable for high-speed impact
CN2752541Y (en) Magnetic flow variable liquid damper
CN205118105U (en) Magneto rheological damper with parallel flow channel
AU2020101328A4 (en) Shear mode magnetorheological (MR) damper
CN108518444A (en) Permanent magnet and the hybrid MR damper of magnet exciting coil and its damping adjusting method
CN104963986A (en) Magneto-rheological damper with mixed flow type fluid flowing channel
CN111089136A (en) Magnetic circuit adjustable magnetorheological damper
CN205118106U (en) Magneto rheological damper with serial -type flow channel
CN200949632Y (en) Rotary shearing type magnetic flow changeable damper
CN108302152B (en) Magnetorheological damper with complex liquid flow channel structure
CN108591343A (en) A kind of externally-wound type MR damper of cylinder barrel positioning
WO2023279748A1 (en) Hybrid damping mode-based high-output-force vibration isolation mount
CN102364154B (en) Passive damping adjustable magneto-rheological fluid shock absorber
CN105805217B (en) A kind of magneto-rheological vibration damper of toroid
CN208474391U (en) A kind of externally-wound type MR damper of cylinder barrel positioning
CN112413031A (en) Electric control damping adjustable shock absorber and adjusting method thereof
RU2084721C1 (en) Hydraulic shock-absorber
CN114838082B (en) Multistage variable damping variable stiffness shock absorber based on magnetorheological material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071219