CN1583564A - Inorganic microporous nickle and cobalt phosphate molecular sieves materials and their synthesis - Google Patents

Inorganic microporous nickle and cobalt phosphate molecular sieves materials and their synthesis Download PDF

Info

Publication number
CN1583564A
CN1583564A CN 200410025030 CN200410025030A CN1583564A CN 1583564 A CN1583564 A CN 1583564A CN 200410025030 CN200410025030 CN 200410025030 CN 200410025030 A CN200410025030 A CN 200410025030A CN 1583564 A CN1583564 A CN 1583564A
Authority
CN
China
Prior art keywords
cobalt
molecular sieve
nickel
source
sieve analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410025030
Other languages
Chinese (zh)
Other versions
CN1304291C (en
Inventor
高秋明
解丽丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CNB2004100250304A priority Critical patent/CN1304291C/en
Publication of CN1583564A publication Critical patent/CN1583564A/en
Application granted granted Critical
Publication of CN1304291C publication Critical patent/CN1304291C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

An inorganic millipore nickel cabolt phosphate molecular sieve is prepared through proportionally mixing the inorganic or organic metal salts of Ni and Co, ethyldiamine, ammonia water, phosphoric acid and hydrofluorie acid, crystallizing, separation, washing and drying.

Description

A kind of inorganic micropore nickel phosphates cobalt molecular sieve analog material and synthetic method thereof
Technical field
The invention provides a kind of inorganic micropore nickel phosphates cobalt molecular sieve analog material and synthetic method thereof, belong to the molecular screen material field.
Background technology
Other metal ion is introduced skeleton carry out isomorphous substitution, can change the acidic character and the redox catalysis character of aluminum phosphate equimolecular sieve.1986, U.S. Pat 4,567,029 reported first metal phosphate MeAPO/MeAPSO synthetic, after this this field causes extensive studies interest.Chinese patent 99127147.5,99127145.9,99127144.0 five equilibriums have supplied metal tripolyphosphate aluminum molecular screen or the metal-silicon aluminium phosphate molecular sieve and the synthetic method thereof of different types of structure indescribably.
VSB-1 is a kind of inorganic micropore nickelous phosphate molecular sieve analog functional materials, has character such as ion-exchange, absorption, catalysis and Chu Qing (people such as A.K.Cheetham, G.Ferey, Gao Qiuming, C.R.Acad.Sci.Paris II, C 2:387 (1999); Chem.Commun.859 (2001); J.Am.Chem.Soc.125:1309 (2003)).The VSB-1 of bibliographical information is that crystallization temperature is higher in its preparation process at 144 hours hydro-thermal synthetic of 180 ℃ of crystallization, and crystallization time is long, is unfavorable for realizing suitability for industrialized production.Up to the present, doping of transition metal system and the correlative study of VSB-1 are not reported.
Summary of the invention
The object of the present invention is to provide a kind of novel inorganic micropore nickel phosphates cobalt molecular sieve analog material and synthetic method thereof, we claim that this material is CoVSB-1.
The inorganic micropore nickel phosphates cobalt of CoVSB-1 provided by the invention molecular sieve analog material is by CoO 6, NiO 6Octahedron and PO 4Tetrahedroid becomes skeleton structure, has 24 membered ring channel structures, and the aperture is 8-13 .Belong to hexagonal system, unit cell parameters is: a=b=19.876 ~19.960 ; C=5.0429 ~5.053 ; V=1725.29 3~1743.49 3Its chemical constitution formula can be expressed as: Co 18xNi (18-18x)(HPO 4) 14(OH) 3F 9(H 3O +, NH 4 +) 4, x is the molar fraction (n of Co Co/ (n Co+ n Ni)), and x=0.10~0.60.This material is a kind of molecular sieve analog, has the essential property of molecular sieve.
The method of the inorganic micropore nickel phosphates cobalt of synthetic CoVSB-1 provided by the invention molecular sieve analog material, its preparation process is as follows:
(1) inorganic, the organic metal salt with nickel is the nickel source, and preferably, the nickel source is nickelous chloride or nickel acetate;
Inorganic, organic metal salt with cobalt are the cobalt source, and preferably, the Co source is cobalt chloride or Cobaltous diacetate;
With quadrol, ammoniacal liquor is template, and preferably, template is a quadrol;
With ortho-phosphoric acid is the phosphorus source, is mineralizer with hydrofluoric acid.
(2) with nickel source material, cobalt source material, phosphorus source material, template, mineralizer and water be: yCoO: (5-y) NiO: 200H by the oxide molecule ratio 2O: (4~4.5) P 2O 5: (5~6) HF: (4~5) H 2NCH 2CH 2NH 2Proportioning under agitation mix, initial collosol and gel mixture, wherein y=0.5~2.5.
(3) initial collosol and gel mixture moves in the stainless steel synthesis reactor and seals, and 130~180 ℃ of crystallization, crystallization time is 2~200 hours;
(4) solid crystallized product is separated with mother liquor, use deionized water wash 3 times, after drying under 60~100 ℃ of air conditionses, obtain the former powder of CoVSB-1 molecular sieve analog of the present invention.
In above-mentioned synthetic method, crystallization pressure is its autogenous pressure.
The inventive method synthetic CoVSB-1 material can be more synthetic in low temperature and the shorter time than the VSB-1 of the Co that do not mix, and can improve synthesis condition by adjusting the molar weight that adds cobalt salt, shortens its generated time greatly.
Description of drawings
Fig. 1 is the XRD diffractogram of the VSB-1 of 170 ℃ of crystallization preparation in 144 hours, and is consistent with the XRD diffractogram of bibliographical information.
Fig. 2 is that the Co content of 170 ℃ of crystallization preparation in 2 hours is the XRD diffractogram of the CoVSB-1 of 31mol%; Similar to the XRD diffractogram of VSB-1 among Fig. 1, illustrate that the structure of this material and VSB-1 are consistent.
Embodiment
Below by Comparative Examples and embodiment in detail the present invention is described in detail, but the present invention only is confined to embodiment by no means.
Comparative Examples 1
The 4.62g nickelous chloride is dissolved in the 14mL distilled water, dropwise adds 2.24mL ortho-phosphoric acid under the stirring state; Then, add hydrofluoric acid 0.97mL; Add 1.18mL quadrol template at last, stir mixed in 0.5 hour after, this mixture is moved in the stainless steel synthesis reactor of teflon lined and seals, loading level is 70% (V).Crystallization is 2 hours under 170 ℃ and autogenous pressure, no VSB-1 product.
Comparative Examples 2 VSB-1
In Comparative Examples 1, reaction mixture components and all the other synthesis steps are constant, and crystallization temperature is constant, changes crystallization time into 144 hours, solid matter with deionized water washing 3 times, and behind 60 ℃ of air dryings, through XRD analysis, product is VSB-1.As shown in Figure 1.
Embodiment 1 Co molar fraction is 31% CoVSB-1
3.23g nickelous chloride and 1.38g cobalt chloride are dissolved in the 14mL distilled water, dropwise add 2.24mL ortho-phosphoric acid under the stirring state; Then, add hydrofluoric acid 0.97mL; Add 1.18mL quadrol template at last, stir mixed in 0.5 hour after, this mixture is moved in the stainless steel synthesis reactor of teflon lined and seals, loading level is 70% (V).Crystallization is 2 hours under 170 ℃ and autogenous pressure, and solid matter with deionized water washing 3 times obtains CoVSB-1 at 60 ℃ of air dryings, XRD analysis such as Fig. 2.Its unit cell parameters is: a=b=19.935 (3) ; C=5.0476 (1) ; V=1737.28 3Unit cell parameters a=b=19.834 (1) with the VSB-1 of bibliographical information; C=5.0379 (1) ; V=1716.33 3Compare increase to some extent, illustrate that cobalt atom enters skeleton.This product main component content is: Co (12.70wt%), and Ni (28.30 wt%), P (14.40wt%) calculates its cobalt molar fraction [n Co/ (n Co+ n Ni)] be 31%.
Embodiment 2 Co molar fractions are 52% CoVSB-1
In embodiment 1, with (3.23g NiCl 26H 2O+1.38g CoCl 26H 2O) change (2.31g NiCl into 26H 2O+2.30g CoCl 26H 2O), all the other synthesis conditions and synthesis step are constant, and the unit cell parameters of the CoVSB-1 product that obtains is: a=b=19.960 (2) ; C=5.053 (1) ; V=1743.49 3This product main component content is: Co (22.06wt%), and Ni (20.34wt%), P (14.32wt%) calculates its cobalt molar fraction [n Co/ (n Co+ n Ni)] be 52%.
Embodiment 3 Co molar fractions are 52% CoVSB-1
In embodiment 2, reaction mixture components and all the other synthesis steps are constant, change crystallization temperature into 150 ℃, and crystallization time changes 4 hours into, also can prepare the product of embodiment 2.
Embodiment 4 Co molar fractions are 11% CoVSB-1
In embodiment 1, with (3.23g NiCl 26H 2O+1.38g CoCl 26H 2O) change (4.14g NiCl into 26H 2O+0.46g CoCl 26H 2O), all the other synthesis steps are the same, and crystallization temperature is constant, change crystallization time into 8 hours, and the unit cell parameters of the CoVSB-1 product that obtains is: a=b=19.876 (2) ; C=5.0429 (7) ; V=1725.29 3This product main component content is: Co (4.68wt%), and Ni (36.77wt%), P (14.54wt%) calculates its cobalt molar fraction [n Co/ (n Co+ n Ni)] be 11%.

Claims (8)

1, a kind of inorganic micropore nickel phosphates cobalt molecular sieve analog material is characterized in that chemical constitution formula can be expressed as Co 18xNi (18-18x)(HPO 4) 14(OH) 3F 9(H 3O +, NH 4 +) 4, x is the molar fraction (n of Co Co/ (n Co+ n Ni)), and x=0.10~0.60.
2, by the described inorganic micropore nickel phosphates cobalt molecular sieve analog material of claim 1, it is characterized in that it being by CoO 6, NiO 6Octahedron and PO 4Tetrahedroid becomes skeleton structure, has 24 membered ring channel structures, and the aperture is 8-13 .
3, by the synthetic method of claim 1 or 2 described inorganic micropore nickel phosphates cobalt molecular sieve analog materials, comprise the steps:
(1) inorganic, the organic metal salt with nickel is the nickel source, is the cobalt source with inorganic, the organic metal salt of cobalt, is template with quadrol, ammoniacal liquor, is the phosphorus source with ortho-phosphoric acid, is mineralizer with hydrofluoric acid;
(2) with nickel source material, cobalt source material, phosphorus source material, template, mineralizer and water be: yCoO: (5-y) NiO: 200H by the oxide molecule ratio 2O: (4~4.5) P 2O 5: (5~6) HF: (4~5) H 2NCH 2CH 2NH 2Proportioning under agitation mix, obtain initial collosol and gel mixture, wherein y=0.5~2.5;
(3) initial collosol and gel mixture moves in the synthesis reactor and seals, and 130~180 ℃ of crystallization, crystallization time is 2~120 hours;
(4) solid crystallized product is separated with mother liquor, use deionized water wash, dry under 60~100 ℃ of air conditionses.
4, press the synthetic method of the described inorganic micropore nickel phosphates cobalt molecular sieve analog material of claim 3.It is characterized in that the nickel source is nickelous chloride or nickel acetate.
5, press the synthetic method of the described inorganic micropore nickel phosphates cobalt molecular sieve analog material of claim 3.It is characterized in that the cobalt source is cobalt chloride or Cobaltous diacetate.
6, press the synthetic method of the described inorganic micropore nickel phosphates cobalt molecular sieve analog material of claim 3.It is characterized in that template is a quadrol.
7, press the synthetic method of the described inorganic micropore nickel phosphates cobalt molecular sieve analog material of claim 3.It is characterized in that described synthesis reactor is the stainless steel synthesis reactor.
8, press the synthetic method of the described inorganic micropore nickel phosphates cobalt molecular sieve analog material of claim 3.Pressure when it is characterized in that crystallization is its autogenous pressure.
CNB2004100250304A 2004-06-09 2004-06-09 Inorganic microporous nickle and cobalt phosphate molecular sieves materials and their synthesis Expired - Fee Related CN1304291C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100250304A CN1304291C (en) 2004-06-09 2004-06-09 Inorganic microporous nickle and cobalt phosphate molecular sieves materials and their synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100250304A CN1304291C (en) 2004-06-09 2004-06-09 Inorganic microporous nickle and cobalt phosphate molecular sieves materials and their synthesis

Publications (2)

Publication Number Publication Date
CN1583564A true CN1583564A (en) 2005-02-23
CN1304291C CN1304291C (en) 2007-03-14

Family

ID=34601106

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100250304A Expired - Fee Related CN1304291C (en) 2004-06-09 2004-06-09 Inorganic microporous nickle and cobalt phosphate molecular sieves materials and their synthesis

Country Status (1)

Country Link
CN (1) CN1304291C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101112994B (en) * 2006-07-27 2010-05-12 中国科学院大连化学物理研究所 Inorganic phosphate and uses thereof
CN101920210B (en) * 2009-06-12 2012-01-25 中国科学院上海硅酸盐研究所 Efficient nanocatalyst Au-VSB-5 for CO catalytic oxidation
CN103007974A (en) * 2012-12-28 2013-04-03 清华大学 Porous catalyst used for photo-electrolysis water oxygen evolution reaction and preparation method of porous catalyst
CN105439111A (en) * 2015-12-09 2016-03-30 燕山大学 Honeycomb mesoporous phosphoric acid cobalt-nickel electrode material and preparation method thereof
CN113003555A (en) * 2021-03-12 2021-06-22 江南大学 Mesoporous carbon-nitrogen co-doped cobalt-based phosphate material and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO318680B1 (en) * 2001-11-07 2005-04-25 Polymers Holding As Method of preparing crystalline microporost metalloaluminophosphate from a solid body and use thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101112994B (en) * 2006-07-27 2010-05-12 中国科学院大连化学物理研究所 Inorganic phosphate and uses thereof
CN101920210B (en) * 2009-06-12 2012-01-25 中国科学院上海硅酸盐研究所 Efficient nanocatalyst Au-VSB-5 for CO catalytic oxidation
CN103007974A (en) * 2012-12-28 2013-04-03 清华大学 Porous catalyst used for photo-electrolysis water oxygen evolution reaction and preparation method of porous catalyst
CN105439111A (en) * 2015-12-09 2016-03-30 燕山大学 Honeycomb mesoporous phosphoric acid cobalt-nickel electrode material and preparation method thereof
CN113003555A (en) * 2021-03-12 2021-06-22 江南大学 Mesoporous carbon-nitrogen co-doped cobalt-based phosphate material and preparation method and application thereof
CN113003555B (en) * 2021-03-12 2023-05-26 江南大学 Mesoporous carbon-nitrogen co-doped cobalt-based phosphate material, and preparation method and application thereof

Also Published As

Publication number Publication date
CN1304291C (en) 2007-03-14

Similar Documents

Publication Publication Date Title
CN105984876B (en) A kind of preparation method of metal-modified SAPO molecular sieve
WO2012163900A2 (en) Process for preparing lithium sulfide
CN104986785A (en) Large-specific-surface-area mesoporous divalent metal aluminum base spinel and preparing method and application thereof
CN107445820B (en) Method for rapidly synthesizing high-yield metal organic framework material MIL-100(Fe) without fluorine and solvent
CN109264787B (en) ZnFe2O4Preparation method of cubic block structure and obtained product
CN109761243A (en) A kind of preparation of low silicon small grain SAPO-34 molecular sieve and application method
CN101962193A (en) Method for preparing ZSM-34 and heteroatom substituted molecular sieve thereof by using crystal seed synthesis method
CN1304291C (en) Inorganic microporous nickle and cobalt phosphate molecular sieves materials and their synthesis
CN106607080A (en) Catalyst for preparing arene through adopting methyl alcohol as raw material and preparation and application methods thereof
Sánchez-Cantú et al. Innovative method for hydrocalumite-like compounds' preparation and their evaluation in the transesterification reaction
CN104445244A (en) Aluminophosphate molecular sieve AlPO4-34 and fluoride-free preparation method thereof
Huang et al. Preparation of large and well-shaped LTA-type AlPO4 crystals by using crown ether Kryptofix 222 as structure directing agent
CN103601212A (en) Method for preparing chiral polymorph A-shaped excessive Beta zeolite molecular sieve
Sanyal et al. Calcite growth in Cissus quadrangularis plant extract, a traditional Indian bone-healing aid
CN109574036A (en) A kind of preparation method of DNL-1 molecular sieve
Zhang et al. The first two-dimensional organic–inorganic hybrid constructed by oxalate-bridging scandium-substituted Keggin-type silicotungstate and [Cu (en) 2] 2+ coordination cations
CN107915233B (en) A kind of synthetic method of AEN structure aluminium silicophosphate molecular sieve and the application of the AEN structure aluminium silicophosphate molecular sieve
CN102584902A (en) Microporous cobalt coordination polymer and preparation method and application thereof
CN109081363B (en) Crystal guiding fluorine-free synthesis AlPO4Method of (2) to (34)
CN114933710A (en) Aluminum metal organic framework material with MIL-101 structure and preparation method thereof
CN111099605B (en) Phosphate molecular sieve with AFX structure and preparation method thereof
CN103482647A (en) Synthetic method of MgSAPO-31 molecular sieve
Liu et al. Template control in ionothermal synthesis of aluminophosphate microporous materials
CN111099631B (en) Transition metal phosphorus-aluminum molecular sieve and preparation method thereof
CN109019630A (en) A kind of EDI type molecular sieve and its synthetic method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070314

Termination date: 20130609