CN1580496A - 涡轮叶片的锥形末梢覆环内圆角 - Google Patents

涡轮叶片的锥形末梢覆环内圆角 Download PDF

Info

Publication number
CN1580496A
CN1580496A CNA2004100566720A CN200410056672A CN1580496A CN 1580496 A CN1580496 A CN 1580496A CN A2004100566720 A CNA2004100566720 A CN A2004100566720A CN 200410056672 A CN200410056672 A CN 200410056672A CN 1580496 A CN1580496 A CN 1580496A
Authority
CN
China
Prior art keywords
mentioned
filleted corner
aerofoil
tip
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100566720A
Other languages
English (en)
Other versions
CN100406680C (zh
Inventor
S·E·汤伯格
M·L·尼利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1580496A publication Critical patent/CN1580496A/zh
Application granted granted Critical
Publication of CN100406680C publication Critical patent/CN100406680C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/14Two-dimensional elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/16Two-dimensional parabolic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/17Two-dimensional hyperbolic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/914Device to control boundary layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

一种涡轮叶片(20)具有一个沿按照表I所示坐标值X和Y、偏移值1、偏移值2和Rho的名义轮廓的翼面末梢(33)和末梢覆板(42)的交叉线的锥形内圆角(40)。形状参数即偏移值1、偏移值2和Rho用于确定内圆角的在其特定X和Y位置上的形状以形成适应高的局部应力的内圆角形状。内圆角形状可以是与每个X、Y位置上的形状参数比D1/D1+D2的值有关的抛物线、椭圆或双曲线,上述的D1是由偏移值O1和O2确定的边缘点(56,58)之间的弦线(60)的中点(59)与内圆角表面上的突肩点(62)之间的距离,而D2是突肩点(62)与翼面末梢与末梢覆板的交叉线上的顶点位置(52)之间的距离。

Description

涡轮叶片的锥形末梢覆环内圆角
技术领域
本发明涉及一种在涡轮叶片的翼面末梢与叶片末梢覆板之间的可变锥形内圆角,尤其涉及在形状和尺寸上可提高涡轮叶片的零件寿命、性能和制造工艺的锥形内圆角。
背景技术
涡轮叶片通常具有翼面、座、柄部和沿该叶片径向内端的榫头,并且常常具有位于翼面末梢与相邻叶片的末梢覆板成机械接合的末梢覆板。普通涡轮叶片的末梢覆板和翼面一般具有预定尺寸的简单内圆角形状,该内圆角通常在末梢覆板和翼面末梢的交叉点附近具有恒定的半径,就是说,由于在翼面末梢与末梢覆板交叉点附近采用了内圆角,该覆板内圆角具有大致均匀的半径。上述内圆角可减小翼面与末梢覆板之间的应力集中。
虽然采用恒定半径的内圆角可减小应力,但是发现,在翼面与末梢覆板之间的内圆角区内及其附近的各个部位或点上局部存在高的应力,并且发现,这种局部高应力会使叶片寿命显著缩短。因此,虽然采用恒定半径的内圆角降低了应力,但是在重要区域的局部高应力依然存在。这类应力可缩短末梢覆板的蠕变寿命而导致叶片的过早破坏。虽然,单个叶片破坏便要使涡轮脱离主机以便进行修理。这是一种耗费工时且费钱的停机作业,要使用户以及涡轮生产厂承担由于非生产性的劳动力开支、零件修理费用、停机工时损失以及涡轮复位所造成的更高的成本。因此,必需按规格改制叶片翼面末梢与末梢覆板之间的内圆角以使包括沿内圆角的高的局部应力在内的应力更加均匀地分布,并减小内圆角区的质量以延长末梢覆板的蠕变寿命。
发明概述
按照本发明的优选实施例,提出一种翼面末梢与末梢覆板之间的变化的锥形内圆角,通过改变与该内圆角的与翼面末梢和末梢覆板的交叉点附近高的局部应力有关的尺寸和形状使上述内圆角的蠕变以及质量最小化。上述的变化的锥形内圆角的形状与翼面末梢和末梢覆板交叉点附近的偏移值1、偏移值2、Rho和不连续的X、Y顶点位置有关。偏移值1是每个沿翼面表面投影的顶点位置上垂直于翼面表面的距离,偏移值2是在每个沿末梢覆板下表面投影的顶点位置上垂直于末梢覆板下表面延伸的距离。从偏移值1和2对翼面表面和末梢覆板下表面上投影的法线可确定边缘点,当沿相应的末梢覆板和翼面相连接时,上述边缘点便形成内圆角的边缘。上述的偏移值是通过有限之应力分析以使应力最小化而确定的。Rho是一个界定每个顶点位置上内圆角形状的形状参数。在沿翼面末梢与末梢覆板的交叉线上的各种X和Y位置上利用上述各参数可以使内圆角在每个位置上是有不同的形状,以使应力沿内圆角均匀分布,同时又使叶片内圆角处的质量最小化。因此,内圆角的形状被偏压向末梢覆板或偏压向翼面,如同在所考虑的具体位置进行应力分析所确定的那样,从而可适应高的局部应力,并可使内圆角的质量最小化。
具体地说,在一个优选实施例中,由沿末梢覆板与翼面末梢的交叉线上的15个点或者说15个位置来界定最佳的锥形末梢覆板内圆角,每个上述位置具有3个界定该位置上内圆角的大小和形状的参数即偏移值1、偏移值2和Rho。按照这些参数沿上述的交叉线改变内圆角可使末梢覆板获得最长的蠕变寿命,并使叶片在内圆角的质量最小化。下文的表I列出用于三级涡轮中具有92片涡轮叶片的第二级涡轮的叶片的末梢覆板/翼面末梢内圆角的具体位置和参数。可以看出,应用上述参数的位置的数值是可变化的,但同时又可使内圆角形状保持在一个足以达到蠕变寿命最长且叶片质量最小的目的的固定的包络面内。
在本发明的优选实施例中,提出一种涡轮叶片,该叶片具有翼面、翼面末梢、末梢覆板和在上述覆面末梢与末梢覆板的交叉点附近的内圆角,该内圆角的轮廓可随上述交叉点附近的局部应力而在该交叉点附近改变。
在本发明的又一个优选实施例中,提出一种涡轮叶片,该叶片具有翼面、翼面末梢、末梢覆板和上述翼面未梢与末梢覆板的交叉点附近的内圆角,该内圆角具有一个大致按表I列出的X和Y坐标值、偏移值1、偏移值2和Rho的名义轮廓,其中,X和Y(英寸)确定了翼面末梢与末梢覆板的交叉点附近的不连续的顶点位置,偏移值1和偏移值2分别是在每个沿翼面表面和末梢覆板下表面投影的相应的X和Y位置上垂直于翼面表面和末梢覆板下表面的距离,上述两个偏移值彼此相交,其交点分别在末梢覆板下表面和翼面表面上的法向投影便界定了边缘点,当该边缘点沿相应的末梢覆板和翼面被连接时便界定了内圆角的边缘。Rho是每个顶点位置上的无量纲形状参数比其中D1是沿内圆角边缘点之间的弦线中点与内圆角表面上的突肩点之间的距离,D2是突肩点与顶点位置之间的距离,内圆角在每个X、Y位置上的末梢覆板和翼面上的边缘点由一条按形状参数Rho穿过突肩点的平滑连续弧线连接之而界定每个顶点位置上的轮廓区段,将每个顶点位置上的轮廓区段彼此平滑地相连接便形成名义的内圆角轮廓。
附图简述
图1简单示出通过一种多级燃气涡轮的热燃气通道,并示出具有按本发明优选实施例的末梢覆板锥形内圆角的第二级涡轮叶片翼面;
图2和3是图1的第二级涡轮叶片的沿大致的圆周方向看去的相反的侧向正视图;
图4是图3所示涡轮叶片的局部放大的前视图;
图5是大致沿图3的5-5线切取的翼面和末梢覆板的剖视图;
图6是涡轮叶片末梢的末梢覆板锥形内圆角的放大侧视图;
图7和8是大致沿图5的7-7线切取的通过翼面和末梢覆板的剖视图;和
图9是沿径向向内看去的末梢覆板端视图,示出下文的表I中所列的X、Y和Z坐标的位置。
发明详述
下面参看附图尤其是图1,图中示出一种多级燃气涡轮(图中示出3级)12的热燃气通道,总的以标号10表示,例如,第一级涡轮具有多个沿圆周隔开安装的导向叶片14和涡轮叶片16,导向叶片14彼此沿圆周隔开并围绕转子轴线而安装固定。当然,第一级涡轮叶片16通过转子轮盘19安装在涡轮转子17上。图1中示出第二级涡轮12,它具有多个沿圆周隔开的导向叶片18和多个沿圆周隔开并通过转子轮盘21安装在涡轮转子17上的涡轮叶片20。图中示出的第三级涡轮也具有多个沿圆周隔开的导向叶片22和通过转子轮盘23安装在涡轮转子17上的涡轮叶片24。从图1可以看出,上述的导向叶片和涡轮叶片都处于热燃气通道10内。箭头26示出热燃气流过热燃气通道10的流动方向。
第二级涡轮的每个涡轮叶片20具有一个座20、一个柄部32和一个大致地或者说接近于沿轴向引入的用于与转子轮盘上形状互补匹配的燕尾榫槽(未示出)相连接的燕尾槽头21。还可以看出每个涡轮叶片20具有一个叶片翼面36(例如图2所示)。因此,每个涡轮叶片20按翼面形状而言从翼面根部31至叶片末梢33的任何横截面上都有一个翼面轮廓。
下面参看图2~6,涡轮叶片20具有一个位于翼面末梢33与末梢覆板42之间的内圆角40。如图2、3和8所示,末梢覆板42具有一个沿圆周方向延伸并带有用于与固定护罩形成密封的切齿44的末梢覆板密封件44。上述内圆角40沿翼面末梢与末梢覆板之间的交叉线延伸。按照本发明,上述内圆角40在末梢覆板与翼面末梢之间的交叉点附近的尺寸和形状设计要使该内圆角的蠕变量最小,并且使与交叉点附近的局部应力部位有关的内圆角质量也最小。这就是说,按照交叉点附近的每个部位的应力分析上述内圆角的形状向着末梢覆板或翼面偏压,以便适应高的局部应力,并使每个上述部位的内圆角质量减至最小。
在本发明的一个优选实施例中,末梢覆板内圆角40由X、Y坐标系统中在末梢覆板与翼面末梢的交叉点附近的15个点P1~P15(见图9)界定。在每个X、Y位置中,内圆角的形状由3个参数即偏移值1(O1)、偏移值2(O2)和Rho来确定。用这3个参数确定变化的锥形内圆角40,可使末梢覆板具有最长的蠕变寿命,同时又保持叶片的质量最小化。
具体地,参看图9,图中示出X、Y坐标系统,在图9中,X轴在Y=0沿水平方向延伸,Y轴在X=0沿垂直方向延伸,X、Y轴在原点48相交。该原点48沿翼面的层叠轴线沿径向方向延伸。上述的X、Y坐标系统和原点采用与2003年6月13日提出的未决专利申请No.10/460205(代理人文件,No.839-1460);(GE文件.134755)(其内容纳入本文作为参考)中所规定的相同的X、Y坐标系统。图9还示出多个在翼面36与末梢覆板42下表面的交叉点附近的位置,并以字母P加上所规定位置的编号来标注,在图7中,标号52标出交叉点的顶点位置。在下面的表I中,由表中列出的X、Y坐标确定P1~P15位置。
锥形内圆角40在每个X、Y位置上的形状取决于3个参数:偏移值1、偏移值2和Rho。图7所示的和以O1标注的偏移值1是在标以P的并沿翼面表面投影的每个X、Y位置上从翼面36沿法线方向延伸的距离(英寸)。偏移值O2是在标以P并沿末梢覆板下表面投影的每个X、Y位置上沿法线方向延伸的距离(英寸)。上述的偏移值O1和O2通过在末梢覆板与翼面末梢的交叉点附近每个位置上按迭代法的有限之应力分析来确定,从而使应力沿内圆角的分布更均匀,并使叶片内圆角区的质量最小。如图7所示,偏移值O1和O2在点54处相交。从交点54在末梢覆板和翼面上的法向投影分别得出边缘点56和58,在相应的末梢覆板和翼面相连接时上述边缘点56和58界定了上述内圆角的边缘。
Rho是每个位置P上的无量纲形状参数比。 Rho = D 1 D 1 + D 2 , 式中D1是边缘点56与58之间的弦线60的中点59与内圆角40表面上的突肩点61之间的距离(见图8),D2是突肩点62与顶点位置52之间的距离。因此,使用通过按形状参数Rho决定的突肩点62的光滑连续弧线连接由偏移值1和2界定的边缘点56和58,就可以确定应力最小的每个顶点位置P上的内圆角轮廓区段。可以看出,内圆角的表面形状,即在每个位置P上的内圆角轮廓区段64彼此圆滑地连接而形成在末梢覆板与翼面末梢的交叉点附近的名义内圆角轮廓。从图8可以看出,内圆角表面64的形状可根据Rho值而变化。例如,Rho值小时,其锥形表面便很平坦,Rho值大时其锥形很尖削。当Rho值为0.5时,得出具有抛物线形状的锥形内圆角,Rho值为0~0.5时,具有椭圆形状,Rho值为0.5~1.0时,具有双曲线形状。
表I列出X、Y坐标值以及偏移值1(O1)、偏移值2(O2)、D1、D2和Rho等参数。
                                                            表I
X Y Z     Z′中点线   从翼面偏移1(O1)   从末梢覆板偏移2(O2) A B D1 D2 Rho
  P1   -0.793   1.272   10.669   34.769  0.070   0.070   0.085   0.083    0.031   0.031   0.50
  P2   -0.548   1.101   10.725   34.825  0.150   0.100   0.191   0.133    0.063   0.063   0.50
  P3   -0.349   0.907   10.769   34.869  0.200   0.175   0.238   0.220    0.088   0.088   0.50
  P4   -0.089   0.527   10.831   34.931  0.310   0.325   0.368   0.371    0.113   0.169   0.40
  P5    0.135   0.157   10.882   34.982  0.575   0.375   0.640   0.465    0.170   0.255   0.40
  P6    0.334  -0.178   10.924   35.024  0.475   0.340   0.522   0.411    0.160   0.195   0.45
  P7    0.459  -0.387   10.949   35.049  0.325   0.285   0.357   0.331    0.130   0.130   0.50
  P8    0.546  -0.522   10.965   35.065  0.225   0.230   0.243   0.250    0.095   0.095   0.50
  P9    0.717  -0.721   10.998   35.098  0.070   0.070   0.068   0.066    0.025   0.025   0.50
  P10   -0.595   1.346   10.705   34.805  0.400   0.275   0.370   0.225    0.090   0.110   0.45
  P11   -0.312   1.179   10.769   34.869  0.600   0.450   0.527   0.349    0.115   0.170   0.40
  P12   -0.074   0.875   10.828   34.928  0.500   0.400   0.448   0.330    0.103   0.155   0.40
  P13    0.140   0.541   10.880   34.980  0.250   0.300   0.213   0.267    0.070   0.085   0.45
  P14    0.345   0.164   10.927   35.027  0.150   0.175   0.122   0.157    0.045   0.045   0.50
  P15    0.646  -0.466   10.990   35.090  0.100   0.100   0.085   0.091    0.028   0.028   0.50
表I中的A和B值是边缘点至偏移O1与偏移O2的交点的距离。表I中的Z值是翼面的高度。Z′是转动轴线与翼面末梢之间的距离。垂直于X-Y平面延伸的径向X轴的位置相对于叶片的柄部34上预定的基准面来确定。具体参看图3和4,Z轴位于距前叶根68的前侧面66(图3)的沿X轴上1.866英寸处,并且距密封销72的外侧70(图4)沿垂直于柄部的方向0.517英寸处。请注意,两相应的密封销72、73的外侧之间的距离为1.153英寸(图4),因此,Z轴的位置也确定坐标X=0,Y=0。在Z轴上Z=0的位置(图3)位于距涡轮叶片安装在轮盘上时的转子中心线24.1英寸处。上述密封销72和73的直径为0.224英寸。
还要明白,表I给出的确定内圆角40的表面形状的值是用于名义内圆角的,因此,应当在从表I确定的内圆角表面形状64上添加上±通常的制造公差即包括任何涂层厚度的±值。所以,沿内圆角40的沿垂直于任何表面位置的方向的±0.160英寸的距离便界定这个具体的内圆角40的内圆角形状包络面,就是说,界定了上述表I给出的内圆角的理想轮廓与通常冷态或者说室温下的内圆角轮廓之间的变化范围。内圆角的轮廓符合上述变化范围而不削弱其力学的和气动学的功能,同时又保持沿内圆角区所需的均匀应力分布。
另外,表I界定了翼面末梢与末梢覆板的交叉点附近的内圆角轮廓。可用任何数值的X、Y位置来界定这个轮廓,因此,由表I的值所界定的内圆角轮廓包括居于给定的X、Y位置中间的内圆角轮廓,也包括当表I界定的轮廓被在表I的给定位置之间延伸的平滑曲线连接时用较少X、Y位置界定的内圆角形状。
另外,还要明白,按上述表I所确定的内圆角可以在几何上按比例放大或按比例缩小用于其他涡轮的其他类似的内圆角设计。例如,偏移值O1和O2以及X、Y坐标值可以通过由一个常数乘以或除以这些值而按比例放大或按比例缩小而产生一个按比例放大或按比例缩小的内圆角40的改型。由于Rho值是无量纲的值,故不能乘以或除以上述的常数。
还应当明白,内圆角还可以相对于翼面来界定,因为用于界定内圆角的笛卡儿坐标系统与界定上述翼面的坐标系统是通用的。因此,内圆角可相对于每个第二级涡轮叶片翼面36的刚好在内圆角径向向内的92%翼展上的翼面轮廓来界定。笛卡儿坐标系统X、Y、Z值(其中X、Y值由表II给出)界定涡轮叶片翼面在92%翼展上的轮廓。在92%翼展上的Z坐标值最好为10.410英寸,Z=0值最好在距转子中心线沿径向Z轴24.1英寸处。表II列出X、Y坐标轴的坐标值,但若将该值适当地转换,也可用其他的尺寸单位。笛卡儿坐标系统中,X、Y和Z轴是呈正交关系的,X轴平行于涡轮转子轴线即其转动轴线,正的X坐标值沿轴向向后亦即向涡轮排气端延伸,正的Y坐标值沿转子转动方向切向向后延伸,正的Z坐标值沿径向向个朝着叶片末梢。
以平滑而连续的弧线连接X值和Y值,便可固定92%翼展上的轮廓截面39。采用用于内圆角各点的X、Y坐标系统的通用Z轴原点和限定92%翼展上的翼面轮廓的点,就可根据92%翼展上的翼面轮廓来界定内圆角的表面形状。上述采用的92%翼展仅仅是示例性的,也可以用其他百分数的翼展来界定上述关系。上述的值是代表内圆角的,而92%翼展上的翼面轮廓是在常温下的非工作的或者说非热状态下的,并且是对未涂层的表面的。
与内圆角一样,翼面的真实轮廓必须考虑通常的制造公差以及表面涂层。因此,表II给出的92%翼展上的轮廓的值是对名义翼面而言的。所以显然要对下面表II给出的X和Y值加上±通常的制造公差即包括任何涂层厚度的±值。因此,沿92%翼展上的翼面轮廓的垂直于任何表面位置的方向的±0.160英寸的距离便界定了翼面轮廓包络面,即在正常冷态或者说室温下对真实翼面表面的测量点与同一温度下由表II给出的各点的理想位置之间的变化范围。92%翼展上的叶片翼面符合上述变化范围而不会降低力学的和气动学的功能。
因此,通过使用与界定内圆角40所用的相同笛卡儿坐标系统界定92%翼展上的翼面轮廓便可确定内圆角与翼面之间的关系。
                                                         表II
X Y Z′ X Y Z′ X Y Z′
   -0.815    1.203   10.410    0.308    -0.119   10.410    0.367    0.129   10.410
   -0.812    1.158   10.410    0.331    -0.157   10.410    0.346    0.168   10.410
   -0.783    1.126   10.410    0.354    -0.196   10.410    0.325    0.208   10.410
   -0.740    1.112   10.410    0.377    -0.234   10.410    0.304    0.247   10.410
   -0.697    1.100   10.410    0.400    -0.273   10.410    0.282    0.287   10.410
   -0.655    1.086   10.410    0.424    -0.311   10.410    0.260    0.326   10.410
   -0.613    1.070   10.410    0.447    -0.349   10.410    0.239    0.365   10.410
   -0.573    1.050   10.410    0.470    -0.387   10.410    0.216    0.404   10.410
   -0.534    1.028   10.410    0.494    -0.425   10.410    0.194    0.442   10.410
   -0.497    1.003   10.410    0.517    -0.463   10.410    0.171    0.481   10.410
   -0.462    0.975   10.410    0.541    -0.501   10.410    0.148    0.519   10.410
   -0.428    0.946   10.410    0.565    -0.539   10.410    0.125    0.558   10.410
   -0.396    0.915   10.410    0.589    -0.577   10.410    0.101    0.596   10.410
   -0.365    0.883   10.410    0.613    -0.614   10.410    0.077    0.633   10.410
   -0.335    0.849   10.410    0.637    -0.652   10.410    0.053    0.671   10.410
   -0.305    0.815   10.410    0.661    -0.690   10.410    0.028    0.708   10.410
   -0.277    0.781   10.410    0.685    -0.728   10.410    0.003    0.745   10.410
   -0.249    0.746   10.410    0.715    -0.761   10.410   -0.022    0.782   10.410
   -0.222    0.710   10.410    0.757    -0.757   10.410   -0.048    0.819   10.410
   -0.195    0.674   10.410    0.774    -0.718   10.410   -0.075    0.855   10.410
      X      Y     Z′      X      Y       Z′       X      Y     Z′
   -0.169    0.638   10.410    0.758    -0.676    10.410    -0.102    0.891   10.410
   -0.143    0.602   10.410    0.739    -0.636    10.410    -0.129    0.926   10.410
   -0.118    0.565   10.410    0.720    -0.595    10.410    -0.157    0.961   10.410
   -0.093    0.528   10.410    0.701    -0.554    10.410    -0.186    0.995   10.410
   -0.068    0.490   10.410    0.683    -0.514    10.410    -0.216    1.028   10.410
   -0.044    0.453   10.410    0.664    -0.473    10.410    -0.247    1.061   10.410
   -0.019    0.415   10.410    0.645    -0.433    10.410    -0.278    1.092   10.410
    0.005    0.377   10.410    0.626    -0.392    10.410    -0.311    1.123   10.410
    0.029    0.340   10.410    0.607    -0.352    10.410    -0.345    1.152   10.410
    0.052    0.302   10.410    0.587    -0.311    10.410    -0.380    1.179   10.410
    0.076    0.264   10.410    0.568    -0.271    10.410    -0.417    1.204   10.410
    0.099    0.226   10.410    0.548    -0.231    10.410    -0.456    1.227   10.410
    0.123    0.187   10.410    0.529    -0.191    10.410    -0.496    1.247   10.410
    0.146    0.149   10.410    0.509    -0.151    10.410    -0.538    1.263   10.410
    0.169    0.111   10.410    0.489    -0.110    10.410    -0.581    1.276   10.410
    0.193    0.073   10.410    0.469    -0.070    10.410.    -0.625    1.284   10.410
    0.216    0.034   10.410    0.449    -0.030    10.410    -0.669    1.286   10.410
    0.239    -0.004   10.410    0.428     0.010    10.410    -0.714    1.281   10.410
    0.262    -0.042   10.410    0.408     0.049    10.410    -0.756    1.266   10.410
    0.285    -0.081   10.410    0.387     0.089    10.410    -0.792    1.240   10.410
虽然上面已结合目前认为是最实用的和优选的实施例说明了本发明,但是,应当理解,本发明不限于所述的实施例,而是相反,本发明要包括符合所附权利要求的精神和范围的各种改型和等同的结构方案。
                                 零部件一览表
10                热燃气通道         44        切齿
12                燃气涡轮           P1~P5    翼面末梢与末梢覆板交叉
                                               线上的点
14、18、22        导向叶片           48        原点
16、20、24        涡轮叶片           54        交叉点
17                涡轮转子           56、58    边缘点
19                转子轮盘           59        弦线中点
21、23            转子轮盘           60        弦线
26                气流方向           62        突肩点
30                座                 52        顶点位置
32                柄部               64        内圆角表面
33                叶片末梢           66        前侧面
34                燕尾榫头           68        前叶根
31                翼面根部           70        外侧
36                叶片的翼面         72、73    密封销
39                翼面轮廓截面
40                内圆角
42                末梢覆板
44                密封件

Claims (10)

1.一种涡轮叶片(20),它具有翼面(36)、一个翼面末梢(33)、一个末梢覆板(42)和一个在上述翼面末梢与上述末梢覆板的交叉点附近的内圆角(40),该内圆角的轮廓随着在上述交叉点附近的局部应力而变化。
2.根据权利要求1的涡轮叶片,其特征在于,在交叉线的一个点上的内圆角轮廓是抛物线、椭圆和双曲线中的一种。
3.根据权利要求2的涡轮叶片,其特征在于,在交叉线的另一个点上的内圆角轮廓是不同于交叉线上的上述的一个点上的上述抛物线、椭圆和双曲线之一的曲线。
4.一种涡轮叶片(20),它具有一个翼面(36)、一个翼面末梢(33)、一个末梢覆板(42)和一个在上述翼面末梢与上述末梢覆板的交叉线附近的内圆角,该内圆角的名义轮廓基本上符合表I列出的X和Y坐标值、偏移值1、偏移值2和Rho值来,其特征在于,以英寸表示的X和Y值界定在翼面末梢与末梢覆板的交叉线附近的不连续的顶点位置,偏移值1和2分别是在每个沿翼面表面和末梢覆板下表面投影的相应X、Y位置上垂直于翼面表面和末梢覆板下表面的以英寸表示的距离,上述两偏移线彼此相交(54),使得从上述的两偏移线的交点分别在该末梢覆板下表面和翼面表面上的法向投影界定了边缘点(56、58),当在相应的末梢覆板和翼面附近相连接时,上述边缘点便界定了该内圆角的边缘,上述的Rho是在每个顶点位置(52)上的无量纲形状参数比 其中D1是沿上述内圆角边缘点(56、58)之间的弦线(60)的中点(59)与上述内圆角的表面上的突肩点(62)之间的距离,D2是上述突肩点与顶点位置之间的距离,上述的在每个X、Y位置上的上述末梢覆板和上述翼面上的上述内圆角边缘点由一条按照该形状参数Rho穿过上述突肩点的平滑连续弧线来连接,以便在每个顶点位置上界定一个轮廓区段,每个顶点位置上的上述轮廓区段互相平滑连接,以构成名义的内圆角轮廓。
5.根据权利要求4的涡轮叶片,其特征在于,上述的内圆角(40)包含有表I所给出的从每个相应的顶点位置(52)分别至沿末梢覆板和翼面的上述边缘点(56、58)的以英寸表示的线性距离A和B。
6.根据权利要求4的一种涡轮叶片,其特征在于构成第二级涡轮的一部分。
7.根据权利要求4的涡轮叶片,其特征在于,上述的内圆角轮廓处于沿垂直于任何内圆角表面位置的方向上±0.160英寸的包络面内。
8.根据权利要求4的涡轮叶片,其特征在于,上述的X和Y距离和偏移值1和2可作为同一常数或数值的函数而按比例改变以形成按比例放大或缩小的内圆角轮廓。
9.根据权利要求4的涡轮叶片,其特征在于,上述内圆角包含表I所给出的从每个相应的顶点位置分别至沿末梢覆板和翼面的上述边缘点的以英寸表示的线性距离A和B,上述的内圆角轮廓处于沿垂直于任何内圆角表面位置的方向上±0.160英寸的包络面内。
10.根据权利要求4的涡轮叶片,其特征在于,上述的X和Y值组成具有Z轴的笛卡儿坐标系统,上述的叶片翼面具有一个翼面形状,该翼面具有大致符合表II所给出的笛卡儿坐标X、Y和Z值的名义轮廓,其中Z值位于翼面的92%翼展上,并且其中,表II中的X和Y值是当用平滑而连续的弧线连接时是以英寸表示的距离,它界定在92%翼展处的翼面轮廓区段(39),内圆角和翼面轮廓的X、Y和Z笛卡儿坐标是一致的。
CNB2004100566720A 2003-08-13 2004-08-13 涡轮叶片的锥形末梢覆环内圆角 Expired - Fee Related CN100406680C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/639,473 US6857853B1 (en) 2003-08-13 2003-08-13 Conical tip shroud fillet for a turbine bucket
US10/639473 2003-08-13

Publications (2)

Publication Number Publication Date
CN1580496A true CN1580496A (zh) 2005-02-16
CN100406680C CN100406680C (zh) 2008-07-30

Family

ID=33565237

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100566720A Expired - Fee Related CN100406680C (zh) 2003-08-13 2004-08-13 涡轮叶片的锥形末梢覆环内圆角

Country Status (4)

Country Link
US (1) US6857853B1 (zh)
EP (1) EP1507064B1 (zh)
JP (1) JP2005061414A (zh)
CN (1) CN100406680C (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220882A (zh) * 2010-04-14 2011-10-19 通用电气公司 用于减少带护罩的翼型件中的晶粒边界的系统和方法
CN103084780A (zh) * 2011-10-28 2013-05-08 通用电气公司 用于维修涡轮叶片顶部的方法
CN103133043A (zh) * 2011-11-29 2013-06-05 通用电气公司 叶片边缘
CN103850717A (zh) * 2012-11-30 2014-06-11 通用电气公司 用于涡轮机转子叶片尖端护罩的倒角
WO2014160215A1 (en) * 2013-03-13 2014-10-02 United Technologies Corporation Rotor blade with a conic spline fillet at an intersection between a platform and a neck
CN105829652A (zh) * 2013-12-18 2016-08-03 斯奈克玛 涡轮机叶轮的叶片及其建模方法
US9411016B2 (en) 2010-12-17 2016-08-09 Ge Aviation Systems Limited Testing of a transient voltage protection device
US9915206B2 (en) 2013-03-15 2018-03-13 United Technologies Corporation Compact aero-thermo model real time linearization based state estimator
CN112282864A (zh) * 2020-11-16 2021-01-29 兰州长城机械工程有限公司 一种烟气轮机转子长柄动叶片叶根保护技术

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254352B2 (ja) * 2003-06-04 2009-04-15 株式会社Ihi タービンブレード
US7396205B2 (en) * 2004-01-31 2008-07-08 United Technologies Corporation Rotor blade for a rotary machine
US7134838B2 (en) * 2004-01-31 2006-11-14 United Technologies Corporation Rotor blade for a rotary machine
US7066713B2 (en) * 2004-01-31 2006-06-27 United Technologies Corporation Rotor blade for a rotary machine
JP2005214205A (ja) * 2004-01-31 2005-08-11 United Technol Corp <Utc> 回転機械用のロータブレード
US7094032B2 (en) * 2004-02-26 2006-08-22 Richard Seleski Turbine blade shroud cutter tip
US7371046B2 (en) * 2005-06-06 2008-05-13 General Electric Company Turbine airfoil with variable and compound fillet
ITMI20060341A1 (it) * 2006-02-27 2007-08-28 Nuovo Pignone Spa Pala di un rotore di un non stadio di un compressore
ITMI20060340A1 (it) * 2006-02-27 2007-08-28 Nuovo Pignone Spa Pala di un rotore di un secondo stadio di un compressore
US7887295B2 (en) * 2007-11-08 2011-02-15 General Electric Company Z-Notch shape for a turbine blade
US7976280B2 (en) * 2007-11-28 2011-07-12 General Electric Company Turbine bucket shroud internal core profile
US8057186B2 (en) * 2008-04-22 2011-11-15 General Electric Company Shape for a turbine bucket tip shroud
JP5308077B2 (ja) * 2008-06-10 2013-10-09 三菱重工業株式会社 タービンおよびタービン動翼
US8206095B2 (en) * 2008-11-19 2012-06-26 Alstom Technology Ltd Compound variable elliptical airfoil fillet
US20110097205A1 (en) * 2009-10-28 2011-04-28 General Electric Company Turbine airfoil-sidewall integration
KR101411177B1 (ko) 2009-12-07 2014-06-23 미츠비시 쥬고교 가부시키가이샤 터빈 및 터빈 동익
WO2011090083A1 (ja) 2010-01-20 2011-07-28 三菱重工業株式会社 タービン動翼及びターボ機械
CH702980A1 (de) * 2010-03-31 2011-10-14 Alstom Technology Ltd Dichtstruktur an einem Deckband einer Turbinenlaufschaufel.
EP2663254B1 (en) 2011-01-13 2020-07-29 Align Technology, Inc. Methods, systems and accessories useful for procedures relating to dental implants
US8905715B2 (en) 2011-03-17 2014-12-09 General Electric Company Damper and seal pin arrangement for a turbine blade
US8807928B2 (en) 2011-10-04 2014-08-19 General Electric Company Tip shroud assembly with contoured seal rail fillet
US9267386B2 (en) 2012-06-29 2016-02-23 United Technologies Corporation Fairing assembly
EP2885506B8 (en) 2012-08-17 2021-03-31 Raytheon Technologies Corporation Contoured flowpath surface
EP2971565B1 (en) * 2013-03-15 2024-09-04 RTX Corporation Airfoil with thickened root and fan and engine incorporating same
US9828858B2 (en) 2013-05-21 2017-11-28 Siemens Energy, Inc. Turbine blade airfoil and tip shroud
US9903210B2 (en) * 2013-05-21 2018-02-27 Siemens Energy, Inc. Turbine blade tip shroud
US10233758B2 (en) 2013-10-08 2019-03-19 United Technologies Corporation Detuning trailing edge compound lean contour
US9879550B2 (en) 2014-07-31 2018-01-30 Pratt & Whitney Canada Corp. Outer shroud with gusset
EP2987956A1 (en) * 2014-08-18 2016-02-24 Siemens Aktiengesellschaft Compressor aerofoil
EP3034798B1 (en) * 2014-12-18 2018-03-07 Ansaldo Energia Switzerland AG Gas turbine vane
US9920633B2 (en) 2015-03-02 2018-03-20 United Technologies Corporation Compound fillet for a gas turbine airfoil
CN107849926A (zh) * 2015-07-24 2018-03-27 西门子公司 具有轮廓尖端罩的涡轮动叶片
DE102015224151A1 (de) * 2015-12-03 2017-06-08 MTU Aero Engines AG Schwerpunktsfädelung von Laufschaufeln
US10301945B2 (en) * 2015-12-18 2019-05-28 General Electric Company Interior cooling configurations in turbine rotor blades
US10125623B2 (en) 2016-02-09 2018-11-13 General Electric Company Turbine nozzle profile
US10190417B2 (en) 2016-02-09 2019-01-29 General Electric Company Turbine bucket having non-axisymmetric endwall contour and profile
US10161255B2 (en) 2016-02-09 2018-12-25 General Electric Company Turbine nozzle having non-axisymmetric endwall contour (EWC)
US10190421B2 (en) * 2016-02-09 2019-01-29 General Electric Company Turbine bucket having tip shroud fillet, tip shroud cross-drilled apertures and profile
US10221710B2 (en) 2016-02-09 2019-03-05 General Electric Company Turbine nozzle having non-axisymmetric endwall contour (EWC) and profile
US10196908B2 (en) 2016-02-09 2019-02-05 General Electric Company Turbine bucket having part-span connector and profile
US10001014B2 (en) 2016-02-09 2018-06-19 General Electric Company Turbine bucket profile
US10156149B2 (en) 2016-02-09 2018-12-18 General Electric Company Turbine nozzle having fillet, pinbank, throat region and profile
DE102016120346A1 (de) * 2016-10-25 2018-04-26 Rolls-Royce Deutschland Ltd & Co Kg Verdichterrotor einer Strömungsmaschine
US10526899B2 (en) * 2017-02-14 2020-01-07 General Electric Company Turbine blade having a tip shroud
US10400610B2 (en) 2017-02-14 2019-09-03 General Electric Company Turbine blade having a tip shroud notch
JP6982482B2 (ja) * 2017-12-11 2021-12-17 三菱パワー株式会社 可変静翼、及び圧縮機
US10704392B2 (en) * 2018-03-23 2020-07-07 General Electric Company Tip shroud fillets for turbine rotor blades
DE102018215728A1 (de) * 2018-09-17 2020-03-19 MTU Aero Engines AG Gasturbinen-Laufschaufel
JP2021110291A (ja) * 2020-01-10 2021-08-02 三菱重工業株式会社 動翼、及び軸流回転機械
US11578607B2 (en) 2020-12-15 2023-02-14 Pratt & Whitney Canada Corp. Airfoil having a spline fillet
US11236628B1 (en) * 2020-12-16 2022-02-01 General Electric Company Turbine nozzle airfoil profile
US11459892B1 (en) * 2021-04-30 2022-10-04 General Electric Company Compressor stator vane airfoils

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1605335A (en) * 1975-08-23 1991-12-18 Rolls Royce A rotor blade for a gas turbine engine
US4156582A (en) * 1976-12-13 1979-05-29 General Electric Company Liquid cooled gas turbine buckets
US4259037A (en) * 1976-12-13 1981-03-31 General Electric Company Liquid cooled gas turbine buckets
JPS61149504A (ja) * 1984-12-21 1986-07-08 Nissan Motor Co Ltd 空気機械の翼車構造
DE4015206C1 (zh) * 1990-05-11 1991-10-17 Mtu Muenchen Gmbh
GB2251897B (en) * 1991-01-15 1994-11-30 Rolls Royce Plc A rotor
US5397215A (en) * 1993-06-14 1995-03-14 United Technologies Corporation Flow directing assembly for the compression section of a rotary machine
JP3150526B2 (ja) * 1994-02-23 2001-03-26 三菱重工業株式会社 ガスタービン動翼のシュラウド
DE19650656C1 (de) * 1996-12-06 1998-06-10 Mtu Muenchen Gmbh Turbomaschine mit transsonischer Verdichterstufe
GB9823840D0 (en) * 1998-10-30 1998-12-23 Rolls Royce Plc Bladed ducting for turbomachinery
US6524070B1 (en) * 2000-08-21 2003-02-25 General Electric Company Method and apparatus for reducing rotor assembly circumferential rim stress

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220882B (zh) * 2010-04-14 2015-09-23 通用电气公司 用于减少带护罩的翼型件中的晶粒边界的系统和方法
CN102220882A (zh) * 2010-04-14 2011-10-19 通用电气公司 用于减少带护罩的翼型件中的晶粒边界的系统和方法
US9411016B2 (en) 2010-12-17 2016-08-09 Ge Aviation Systems Limited Testing of a transient voltage protection device
CN103084780A (zh) * 2011-10-28 2013-05-08 通用电气公司 用于维修涡轮叶片顶部的方法
CN103133043A (zh) * 2011-11-29 2013-06-05 通用电气公司 叶片边缘
US9039382B2 (en) 2011-11-29 2015-05-26 General Electric Company Blade skirt
CN103133043B (zh) * 2011-11-29 2016-06-08 通用电气公司 叶片边缘
CN103850717A (zh) * 2012-11-30 2014-06-11 通用电气公司 用于涡轮机转子叶片尖端护罩的倒角
US9932834B2 (en) 2013-03-13 2018-04-03 United Technologies Corporation Rotor blade with a conic spline fillet at an intersection between a platform and a neck
WO2014160215A1 (en) * 2013-03-13 2014-10-02 United Technologies Corporation Rotor blade with a conic spline fillet at an intersection between a platform and a neck
US10107203B2 (en) 2013-03-15 2018-10-23 United Technologies Corporation Compact aero-thermo model based engine power control
US10400677B2 (en) 2013-03-15 2019-09-03 United Technologies Corporation Compact aero-thermo model stabilization with compressible flow function transform
US10087846B2 (en) 2013-03-15 2018-10-02 United Technologies Corporation Compact aero-thermo model stabilization with compressible flow function transform
US10107204B2 (en) 2013-03-15 2018-10-23 United Technologies Corporation Compact aero-thermo model base point linear system based state estimator
US11078849B2 (en) 2013-03-15 2021-08-03 Raytheon Technologies Corporation Compact aero-thermo model based engine power control
US10145307B2 (en) 2013-03-15 2018-12-04 United Technologies Corporation Compact aero-thermo model based control system
US10161313B2 (en) 2013-03-15 2018-12-25 United Technologies Corporation Compact aero-thermo model based engine material temperature control
US10190503B2 (en) 2013-03-15 2019-01-29 United Technologies Corporation Compact aero-thermo model based tip clearance management
US10196985B2 (en) 2013-03-15 2019-02-05 United Technologies Corporation Compact aero-thermo model based degraded mode control
US9915206B2 (en) 2013-03-15 2018-03-13 United Technologies Corporation Compact aero-thermo model real time linearization based state estimator
US10480416B2 (en) 2013-03-15 2019-11-19 United Technologies Corporation Compact aero-thermo model based control system estimator starting algorithm
US10539078B2 (en) 2013-03-15 2020-01-21 United Technologies Corporation Compact aero-thermo model real time linearization based state estimator
US10753284B2 (en) 2013-03-15 2020-08-25 Raytheon Technologies Corporation Compact aero-thermo model base point linear system based state estimator
US10767563B2 (en) 2013-03-15 2020-09-08 Raytheon Technologies Corporation Compact aero-thermo model based control system
US10774749B2 (en) 2013-03-15 2020-09-15 Raytheon Technologies Corporation Compact aero-thermo model based engine power control
US10844793B2 (en) 2013-03-15 2020-11-24 Raytheon Technologies Corporation Compact aero-thermo model based engine material temperature control
CN105829652A (zh) * 2013-12-18 2016-08-03 斯奈克玛 涡轮机叶轮的叶片及其建模方法
CN112282864A (zh) * 2020-11-16 2021-01-29 兰州长城机械工程有限公司 一种烟气轮机转子长柄动叶片叶根保护技术

Also Published As

Publication number Publication date
EP1507064A2 (en) 2005-02-16
EP1507064A3 (en) 2008-12-31
EP1507064B1 (en) 2016-05-04
US20050036890A1 (en) 2005-02-17
US6857853B1 (en) 2005-02-22
JP2005061414A (ja) 2005-03-10
CN100406680C (zh) 2008-07-30

Similar Documents

Publication Publication Date Title
CN1580496A (zh) 涡轮叶片的锥形末梢覆环内圆角
CN100347409C (zh) 第二级透平叶片翼面
US6474948B1 (en) Third-stage turbine bucket airfoil
US6450770B1 (en) Second-stage turbine bucket airfoil
US6503059B1 (en) Fourth-stage turbine bucket airfoil
US6461110B1 (en) First-stage high pressure turbine bucket airfoil
US7063509B2 (en) Conical tip shroud fillet for a turbine bucket
US6558122B1 (en) Second-stage turbine bucket airfoil
US7497663B2 (en) Rotor blade profile optimization
US7527473B2 (en) Airfoil shape for a turbine nozzle
US6685434B1 (en) Second stage turbine bucket airfoil
US6715990B1 (en) First stage turbine bucket airfoil
US6769879B1 (en) Airfoil shape for a turbine bucket
US6884038B2 (en) Airfoil shape for a turbine bucket
US6722852B1 (en) Third stage turbine bucket airfoil
US20100158678A1 (en) Airfoil shape for a turbine nozzle
EP2738352A1 (en) Fillet for use with a turbine rotor blade tip shroud
CN100507217C (zh) 涡轮叶片上对中设置的切齿
CN1576517A (zh) 涡轮叶片顶部覆环边缘轮廓
CN1661199A (zh) 透平叶片的翼面形状
US20050036889A1 (en) Turbine bucket tip shroud edge profile
CN1542258A (zh) 用于透平叶片的内部核心轮廓
US10704392B2 (en) Tip shroud fillets for turbine rotor blades

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080730

Termination date: 20200813