CN1566983A - Method for array channel calibration by utilizing ocean echo wave - Google Patents

Method for array channel calibration by utilizing ocean echo wave Download PDF

Info

Publication number
CN1566983A
CN1566983A CN 03128238 CN03128238A CN1566983A CN 1566983 A CN1566983 A CN 1566983A CN 03128238 CN03128238 CN 03128238 CN 03128238 A CN03128238 A CN 03128238A CN 1566983 A CN1566983 A CN 1566983A
Authority
CN
China
Prior art keywords
mrow
msub
msup
echo
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 03128238
Other languages
Chinese (zh)
Other versions
CN1321331C (en
Inventor
吴雄斌
程丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CNB031282385A priority Critical patent/CN1321331C/en
Publication of CN1566983A publication Critical patent/CN1566983A/en
Application granted granted Critical
Publication of CN1321331C publication Critical patent/CN1321331C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

A correction method for array channel by use of sea echo and is characterized by the following: to use antenna array with at least two displacement invariable array couple and to measure the one-way arrival frequency points through statistical analysis of sea echo two-dimensional spectrum; to statistic average the echo spectrum relevant amplitude of one-way arrival frequency points and to estimate the amplitude characteristics of each channel and realize the amplitude correction; to adopt MUSIC method to estimate the phase characteristics and to average the multiple results and realize the phase correction according to relevant echo spectrum phase of the one-way arrival frequency points and echo information of known reflection signal source ,such as island, light house and drill platform.

Description

Method for correcting array channel by using ocean echo
Technical Field
The invention relates to a method for correcting array channels of a high-frequency ground wave radar by using ocean echoes.
Background
The high-frequency ground wave radar is a novel radar for detecting long-distance targets (ships, low-altitude airplanes, cruise missiles, ocean surfaces and the like) by utilizing diffraction of high-frequency (3-30 MHz) electromagnetic waves along the surface of the earth, has the outstanding advantages of long detection distance, anti-stealth, anti-radiation missiles, low-altitude defense resistance, capability of detecting ocean surface states and the like (compared with the conventional radar), and has great development potential.
The high-frequency ground wave radar adopts a phased array antenna, and utilizes digital beam forming and space spectrum estimation technologies to carry out beam scanning and DOA (direction of arrival) estimation on a marine target, so that the high-frequency ground wave radar can effectively detect the sea surface states of wind, waves, currents and the like and moving targets of airplanes, ships and the like.
Due to the inconsistency of hardware and the influence of multiple factors such as mutual coupling effect between antennas, the amplitude characteristics and the phase characteristics of all receiving channels forming the radar array are different in practice, so that the amplitude and the phase changes of echo signals passing through different channels are inconsistent. The inconsistency of the channel characteristics causes the error increase and even complete failure of beam scanning and DOA estimation, and is one of the key problems influencing the detection performance of the high-frequency ground wave radar. In order to ensure that the radar can work effectively, measures must be taken to limit the inconsistency between array channels within a certain range: on one hand, the consistency of each channel is ensured as much as possible during manufacturing through proper measures (such as component screening); on the other hand, the difference in channel characteristics can be further reduced by correction.
The existing array channel correction methods can be divided into passive correction and active correction.
In the passive correction method, a signal source with an accurately known direction is not needed, the amplitude and phase errors of each channel are calculated by directly utilizing the received measured data and some a priori knowledge (such as an array form), and then compensation correction is carried out. Some passive correction methods also enable joint estimation of signal direction of arrival and channel error. The method is described in detail in the book "estimation of spatial spectrum and application thereof" (1997 of university of Chinese science and technology publishers) edited by Liude tree, Luo Jing Qing, etc.
In the active correction method, a known signal source is placed in an open field far enough away from the array, signals are transmitted, the amplitude and the phase of output signals of each receiving channel are measured, and phase differences caused by the spatial position of the array are deducted, so that channel error information can be obtained. The correction method is simple in principle and good in effect, and is widely applied in practice. In high frequency ground wave radar, the signal source for correction is a transponder placed far in front of the array for amplifying the received radar signal and transmitting it back, and the array response of the response signal is compared with the ideal array response to obtain the estimation of the channel amplitude and phase error.
In the existing channel correction method, passive correction needs multiple complex iterative operations, the calculated amount is large, the real-time requirement cannot be met necessarily, and the passive correction is likely to converge on a local minimum value rather than a global minimum value, so that an error result is obtained. Although the active correction using a transponder has a simple principle and a good effect, the application in practical situations is limited: the transponder is difficult to place and maintain on the sea and difficult to work for a long time; it is difficult to eliminate the influence of multipath effect caused by islands, ships, and the like.
For better illustration of the present invention, the operation of the high frequency ground wave radar will be described. The High Frequency Ground wave radar adopts FMCW (Frequency chirp continuous wave) system, and under the condition of co-station transmission and receiving, the FMICW (Frequency chirp interrupted continuous wave) system is formed by interrupting the system for solving the problem of isolation of transmission and receiving, and the paper published by Rafaat Khan et al entitled "High Frequency Ground wave radar Target Detection and Tracking" (Target Detection and Tracking With a High Frequency group wave radar. IEEE Journal of organic Engineering, 1994, 19 (4): 540-548) has detailed description.
The radar signal generator generates an FMCW local oscillator signal, which may be expressed as
foFor the radar signal carrier frequency, α is the sweep rate, T is the sweep period, and A and o are the signal amplitude and initial phase, respectively. The local oscillator signal becomes a transmitting signal after being interrupted by the gate control pulse
ST(t)=S(t)g(t)
(2)
The gating pulse g (t) may be expressed as
<math> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mi>rect</mi> <mo>[</mo> <mfrac> <mrow> <mi>t</mi> <mo>-</mo> <mi>pq</mi> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> </mrow> <msub> <mi>T</mi> <mn>0</mn> </msub> </mfrac> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
P is the number of gated pulses within the sweep period T, T0And q are the pulse width and period, respectively.Representative width of T0A rectangular pulse centered at the origin.
If the target moves at a radial velocity v (positive away from the radar) at a distance r, the time delay of the target's reflected signal received by the radar is
<math> <mrow> <mi>&tau;</mi> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mi>r</mi> <mo>+</mo> <mi>vt</mi> <mo>)</mo> </mrow> </mrow> <mi>c</mi> </mfrac> </mrow> </math>
Where c is the speed of light. The radar receives signals of
SR(t)=KR ST(t-τ)
(5)
KRIs the propagation attenuation factor. After the received signal and the local oscillator signal are mixed, the baseband signal is obtained by low-pass filtering demodulation
<math> <mrow> <msub> <mi>S</mi> <mi>I</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>lowpass</mi> <mo>{</mo> <mi>S</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>S</mi> <mi>R</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </math>
<math> <mrow> <mo>=</mo> <msub> <mi>A</mi> <mi>I</mi> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mrow> <mo>(</mo> <mi>&alpha;&tau;t</mi> <mo>-</mo> <msub> <mi>f</mi> <mn>0</mn> </msub> <mi>&tau;</mi> <mo>-</mo> <mfrac> <msup> <mi>&alpha;&tau;</mi> <mn>2</mn> </msup> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
AIIs the baseband signal amplitude. The low-pass filtering removes the pulse modulation and makes the baseband signal continuous wave, so the term gating pulse g (t) is not included in equation (6). After substituting equation (4) into equation (6), the expansion can be achieved by omitting a small amount of phase
<math> <mrow> <msub> <mi>S</mi> <mi>I</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&ap;</mo> <msub> <mi>A</mi> <mi>I</mi> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mrow> <mo>(</mo> <mn>2</mn> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&alpha;r</mi> <mo>-</mo> <msub> <mi>f</mi> <mn>0</mn> </msub> <mi>v</mi> </mrow> <mi>c</mi> </mfrac> <mo>)</mo> </mrow> <mi>t</mi> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <mi>&alpha;v</mi> </mrow> <mi>c</mi> </mfrac> <msup> <mi>t</mi> <mn>2</mn> </msup> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mn>0</mn> </msub> <mi>r</mi> </mrow> <mi>c</mi> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <mi>&alpha;</mi> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <msup> <mi>c</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mi>I</mi> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&phi;</mi> <mi>&tau;</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
Instantaneous frequency of baseband signal is
<math> <mrow> <msub> <mi>f</mi> <mi>&tau;</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mfrac> <mrow> <mi>d</mi> <msub> <mi>&phi;</mi> <mi>&tau;</mi> </msub> </mrow> <mi>dt</mi> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&alpha;r</mi> </mrow> <mi>c</mi> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mn>0</mn> </msub> <mi>v</mi> </mrow> <mi>c</mi> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>4</mn> <mi>&alpha;vt</mi> </mrow> <mi>c</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
The first term is caused by the target distance, and the second and third terms are caused by the target radial velocity. In high-frequency radars
<math> <mrow> <mo>|</mo> <mfrac> <mrow> <mn>2</mn> <mi>&alpha;r</mi> </mrow> <mi>c</mi> </mfrac> <mo>|</mo> <mo>></mo> <mo>></mo> <mo>|</mo> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mn>0</mn> </msub> <mi>v</mi> </mrow> <mi>c</mi> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>4</mn> <mi>&alpha;vt</mi> </mrow> <mi>c</mi> </mfrac> <mo>|</mo> <mo>,</mo> </mrow> </math> Thus is provided with <math> <mrow> <msub> <mi>f</mi> <mi>&tau;</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&ap;</mo> <mfrac> <mrow> <mn>2</mn> <mi>&alpha;r</mi> </mrow> <mi>c</mi> </mfrac> <mo>.</mo> </mrow> </math>
The above analysis shows that, after a/D conversion, FFT is performed on the baseband signal to obtain a discrete spectrum corresponding to the distance, this time FFT is called distance conversion, and the obtained distance spectrum is
R I [ m ] = FFT { S I ( t ) }
<math> <mrow> <mo>=</mo> <msub> <mi>A</mi> <mi>I</mi> </msub> <mo>&CenterDot;</mo> <mi>FFT</mi> <mo>{</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mrow> <mo>(</mo> <mi>&alpha;&tau;t</mi> <mo>-</mo> <msub> <mi>f</mi> <mn>0</mn> </msub> <mi>&tau;</mi> <mo>-</mo> <mfrac> <msup> <mi>&alpha;&tau;</mi> <mn>2</mn> </msup> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </math>
<math> <mrow> <mo>=</mo> <msub> <mi>A</mi> <mi>I</mi> </msub> <mo>&CenterDot;</mo> <mi>R</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
Using the distance spectrum obtained in a sweep period as a line, imaxThe distance spectrum obtained from one sweep period can form onemax×mmaxMatrix array
mmaxIs the farthest distance element number.
Now, the phase of each line in R is analyzed according to the change rule of the sweep period ordinal number (line ordinal number) l. During the first sweep period, the target distance is
r1=r+v(l-1)T (11)
The phase of the baseband signal of the ith sweep period is
<math> <mrow> <msub> <mi>&phi;</mi> <mi>l&tau;</mi> </msub> <mo>=</mo> <mn>2</mn> <mi>&pi;</mi> <mrow> <mo>(</mo> <mn>2</mn> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&alpha;r</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>f</mi> <mn>0</mn> </msub> <mi>v</mi> </mrow> <mi>c</mi> </mfrac> <mo>)</mo> </mrow> <mi>t</mi> <mo>+</mo> <mfrac> <mrow> <mn>2</mn> <mi>&alpha;v</mi> </mrow> <mi>c</mi> </mfrac> <msup> <mi>t</mi> <mn>2</mn> </msup> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mn>0</mn> </msub> <msub> <mi>r</mi> <mi>l</mi> </msub> </mrow> <mi>c</mi> </mfrac> <mo>-</mo> <mfrac> <msup> <msub> <mrow> <mn>2</mn> <mi>&alpha;r</mi> </mrow> <mi>l</mi> </msub> <mn>2</mn> </msup> <msup> <mi>c</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
Within 100 sweep periods, i.e. /)maxWhen the phase difference is less than or equal to 100, some small phase terms are omitted, and the phase difference of the baseband signals of two continuous sweep periods is
<math> <mrow> <mi>&Delta;&phi;</mi> <mo>&ap;</mo> <mn>2</mn> <mi>&pi;</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <mn>2</mn> <msub> <mi>f</mi> <mn>0</mn> </msub> <mi>v</mi> </mrow> <mi>c</mi> </mfrac> <mo>)</mo> </mrow> <mi>T</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
From this approximation, the l-th and 1-th rows in R differ by only one phase factor
Figure A0312823800062
Can be approximately expressed as
The FFT performed once more for each column of equation (14) can obtain a doppler spectrum corresponding to the velocity, and this FFT is called doppler transform. Therefore, after sampling a plurality of frequency sweep period baseband signals, performing FFT processing twice to obtain a discrete two-dimensional echo spectrum
Z(m,n)=FFT{FFT{SI(t)}} (15)
Where m is the discrete frequency in the distance dimension and n is the discrete frequency in the velocity (doppler frequency) dimension. The frequency of the peak of the target echo in the distance dimension is fτ2ar/c, the frequency of peaks in the velocity dimension is fv=-2f0v/c, carrying out peak detection on the two-dimensional echo spectrum to obtain the target distance and speed.
From the above discussion of the working principle of the high-frequency ground wave radar, it can be known that the two FFTs actually separate target echo signals with different distances and speeds, so that the target echo signals correspond to different frequency points in the two-dimensional echo spectrum. The high-frequency ground wave radar receives a large amount of ocean echo signals with strong energy, the ocean echo signals are dispersed on a plurality of frequency points of a two-dimensional echo spectrum, and a part of the ocean echo signals are only in a single arrival direction. Through the statistical analysis of the two-dimensional echo spectrum output of the specific array, the frequency points in the single arrival direction can be detected, then the amplitude-phase characteristics of each channel are estimated according to the known echo information of the reflection source, and the statistical averaging is carried out to improve the precision.
Disclosure of Invention
Aiming at the defects of the existing method, the invention aims to provide a real-time, accurate, cheap, more stable and reliable array channel correction method by utilizing ocean echo information received by a high-frequency ground wave radar so as to reduce channel amplitude-phase errors and improve the performance of a radar system.
In order to achieve the above object, the array correction method adopted by the present invention is: receiving ocean echoes by an antenna array comprising at least two array element pairs with unchanged translation, and detecting single arrival direction frequency points in the ocean echoes by statistical analysis of a two-dimensional spectrum of the ocean echoes; carrying out statistical averaging on the echo spectrum amplitude corresponding to the frequency points in the single arrival direction, estimating the amplitude characteristic of each channel, and realizing amplitude correction; according to the echo spectrum phase corresponding to the frequency point in the single arrival direction and the echo information of the known reflection signal source, such as an island, a lighthouse, a drilling platform and the like, the phase characteristics of each channel are estimated by adopting a MUSIC (multiple signal classification) algorithm, and a plurality of results are counted and averaged to realize phase correction.
The invention has the advantages that: complex iterative operation is not adopted, the calculated amount is not large, and the requirement of channel correction instantaneity can be met; a statistical method is adopted for a large number of echo signals, so that the accuracy of channel correction is improved; by utilizing a large amount of continuous ocean echoes and known reflection source information, the problems of placement and maintenance of the transponder are avoided, so that the channel correction is cheaper and can be stably and reliably carried out for a long time; the MUSIC algorithm capable of multi-source DOA estimation is adopted, and the influence of multipath effect is eliminated.
The present invention will be described in more detail with reference to the accompanying drawings and examples.
Drawings
FIG. 1 is a working principle diagram of a high-frequency ground wave radar
FIG. 2 is a schematic diagram of a two-dimensional echo spectrum of a high-frequency ground wave radar
FIG. 3 is a diagram of a specific array for detecting frequency points in a single arrival direction in a two-dimensional echo spectrum
FIG. 4 is a schematic view of a uniform linear array
Detailed Description
The key point of the invention is to detect the frequency point of a single arrival direction in a two-dimensional echo spectrum, which requires that an antenna array contains a specific array form, as shown in fig. 3.
Suppose that the high-frequency ground wave radar has M antenna units with the coordinate of (x)i,yi) I is 1, 2, … M. The specific array for detecting the single-arrival-direction echo spectrum frequency point is composed of array elements 1-4, wherein 1 and 2 form an array element pair A 13 and 4 form an array element pair A2。A1And A2With translational invariance between, i.e. A1After translation can be connected with A2Completely coincide with (x)2,y2)=(x1+d,y1),(x4,y4)=(x3+d,y3). Let the channel complex gain of array element i be giejφi Taking array element 1 as the origin of coordinates, the two-dimensional echo spectrum of the array is
<math> <mrow> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>g</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&phi;</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>[</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <msub> <mi>S</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>+</mo> <msub> <mi>N</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein S isk(m, n) is the k-th echo signal received by the array element 1 (the arrival direction is theta)k) Two-dimensional echo spectrum of (1)iAnd (m, n) is a noise component in the two-dimensional echo spectrum of the array element i, lambda is a signal wavelength, and K is the number of arrival directions of echo signals.
Order to <math> <mrow> <msub> <mi>&eta;</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> <msub> <mi>Z</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> <msub> <mi>Z</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </math> When K is 1 and NiWhen (m, n) is 0, there are <math> <mrow> <msub> <mi>&eta;</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>g</mi> <mn>2</mn> </msub> <msub> <mi>g</mi> <mn>3</mn> </msub> </mrow> <mrow> <msub> <mi>g</mi> <mn>1</mn> </msub> <msub> <mi>g</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mrow> <mo>(</mo> <msub> <mi>&phi;</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>&phi;</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>&phi;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>&phi;</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> </mrow> </math> This indicates that
For a certain frequency point (m, n) in the two-dimensional echo spectrum, eta in the ideal case of only one arrival direction and no noise component1Is a fixed quantity related only to the channel complex gain. Noise is inevitable in real systems, corresponding eta1Distributed around this fixed amount. Simple analysis shows that the number K of the arrival directions is more than or equal to 2, and eta corresponding to the frequency points1Is a variation quantity related to the echo intensity and the arrival direction, and is in a dispersed state on the complex plane, and eta corresponding to the frequency point with the number of arrival directions K equal to 11Then the focus is near a certain point on the complex plane. Corresponding eta of all frequency points exceeding a certain signal-to-noise ratio threshold in the two-dimensional echo spectrum1Marked on complex plane, there is one and only one region where η appears1Phenomenon of aggregation in which most of η1The frequency point corresponding to the value has only one arrival direction.
Order to <math> <mrow> <msub> <mi>&eta;</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> <msubsup> <mi>Z</mi> <mn>1</mn> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>Z</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> <msubsup> <mi>Z</mi> <mn>3</mn> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow> </math> Eta. according to the same analysis as above2The concentration region also appears on the complex plane, where most of η2The frequency point corresponding to the value has only one arrival direction. Eta corresponding to frequency point due to single arrival direction1And η2Are all concentrated in respective concentration areas, and the eta corresponding to the frequency points of multiple arrival directions1And η2Is distributed dispersedly with little possibility of falling into a gathering zone, so that eta can be used1And η2Whether the frequency points fall into the aggregation area simultaneously is used as a criterion for detecting the frequency points in the single arrival direction.
From the above analysis, it can be known that the single arrival direction frequency point in the two-dimensional echo spectrum can be detected as long as the antenna array contains at least two array element pairs with unchanged translation. The arrays to which the channel correction method of the present invention is applied all contain this particular array format.
Assuming that the frequency point in the single arrival direction is (m ', n'), and K is 1, the two-dimensional echo spectrum output corresponding to the frequency point can be obtained by substituting equation (16)
<math> <mrow> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>g</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&phi;</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>[</mo> <msub> <mi>S</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>+</mo> <msub> <mi>N</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
When N is presentiWhen (m ', n') is 0, there are
gi=|Zi(m′,n′)|/|S1(m′,n′)| (18)
Based on the receiving channel of array element 1, g1=1,|S1(m′,n′)|=|Z1(m ', n') |, into the formula (18) to obtain
gi=|Zi(m′,n′)|/|Z1(m′,n′)| (19)
The actual two-dimensional echo spectrum is noisy and g is obtained from different single-arrival-direction frequency pointsiThere will be some random fluctuations and statistical averaging can be performed to improve the estimation accuracy. Estimating channel amplitude gain giThen, the echo data of each channel is divided by giAmplitude correction can be achieved.
After amplitude correction, the channel amplitude gain giWhen N is 1, according to formula (17)iWhen (m ', n') is 0, there is
<math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&phi;</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>=</mo> <mo>[</mo> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>S</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>]</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
Using the receiving channel of the array element 1 as a reference and the position thereof as the origin of coordinates, i.e. <math> <mrow> <msup> <mi>e</mi> <mrow> <mi>J</mi> <msub> <mi>&phi;</mi> <mn>1</mn> </msub> </mrow> </msup> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mrow> </math> (x1,y1) When it is (0, 0), then there is S1(m′,n′)=Z1(m ', n') into the formula (20) to obtain
<math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&phi;</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>=</mo> <mo>[</mo> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>]</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
Writing formula (16) in matrix form
Z(m,n)=GAS(m,n)+GN(m,n) (22)
Wherein Z (m, n) ═ Z1(m,n),Z2(m,n),…,ZM(m,n)]T
<math> <mrow> <mi>G</mi> <mo>=</mo> <mi>diag</mi> <mrow> <mo>(</mo> <msub> <mi>g</mi> <mn>1</mn> </msub> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&phi;</mi> <mn>1</mn> </msub> </mrow> </msup> <mo>,</mo> <msub> <mi>g</mi> <mn>2</mn> </msub> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&phi;</mi> <mn>2</mn> </msub> </mrow> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msub> <mi>g</mi> <mi>M</mi> </msub> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&phi;</mi> <mi>M</mi> </msub> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </math>
A=[a(θ1),a(θ2),…,a(θK)]
<math> <mrow> <mi>a</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>[</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mi>sin</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <mi>cos</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mi>sin</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <mi>cos</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>M</mi> </msub> <mi>sin</mi> <mi>&theta;</mi> <mo>+</mo> <msub> <mi>y</mi> <mi>M</mi> </msub> <mi>cos</mi> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </msup> <msup> <mo>]</mo> <mi>T</mi> </msup> </mrow> </math>
S(m,n)=[S1(m,n),S2(m,n),…,SK(m,n)]T
N(m,n)=[N1(m,n),N2(m,n),…,NM(m,n)]TChannel amplitude corrected gi1 is ═ 1, i.e <math> <mrow> <mi>G</mi> <mo>=</mo> <mi>diag</mi> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&phi;</mi> <mn>1</mn> </msub> </mrow> </msup> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&phi;</mi> <mn>2</mn> </msub> </mrow> </msup> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&phi;</mi> <mi>M</mi> </msub> </mrow> </msup> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
Assuming that signal and noise components in the two-dimensional echo spectrum are ergodic zero-mean stationary random processes, the signal and the noise are independent of each other, and the noise of each channel is independent of each otherAre uncorrelated and have the same variance σ2The white Gaussian process of (1), the array covariance matrix of the two-dimensional echo spectrum is
RZZ=E[Z(m,n)ZH(m,n)]=GARSSAHGH2I (23)
Wherein R isSS=E[S(m,n)SH(m,n)]. To RZZIs subjected to eigenvalue decomposition to obtain
RZZ=UDUH (24)
D is a radical of RZZIs constructed by diagonal arrays of eigenvalues
D=diag(λ1,λ2,…,λM1≥λ2≥…≥λM (25)
U is a sum of the eigenvalues λiMatrix of corresponding feature vectors
U=[μ1,μ2,…,μM]=[US,UN] (26)
Wherein, US=[μ1,μ2,…,μK]Corresponding to K eigenvalues representing the signal, the space spanned by the column vectors is called signal subspace; u shapeN=[μK+1,μK+2,…,μM]The space spanned by the column vectors, corresponding to the M-K eigenvalues representing noise, is then referred to as the noise subspace.
The spatial spectrum function of DOA estimation is obtained by using MUSIC algorithm (R.O.Schmidt, Multiple event location and signaling, IEEE trans. antennas Propagation, 1986, Vol.34, pp.276-280.) proposed by Schmidt
<math> <mrow> <msub> <mi>P</mi> <mi>MU</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mo>[</mo> <mi>Ga</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <msup> <mo>]</mo> <mi>H</mi> </msup> <msup> <mi>&Pi;</mi> <mo>&perp;</mo> </msup> <mo>[</mo> <mi>Ga</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein IIFor projection operators on noise subspaces
<math> <mrow> <msup> <mi>&Pi;</mi> <mo>&perp;</mo> </msup> <mo>=</mo> <msub> <mi>U</mi> <mi>N</mi> </msub> <msubsup> <mi>U</mi> <mi>N</mi> <mi>H</mi> </msubsup> <mo>=</mo> <mi>I</mi> <mo>-</mo> <mi>A</mi> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi>H</mi> </msup> <mi>A</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>A</mi> <mi>H</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow> </math>
By outputting a two-dimensional spectrum array in which Z (m, n) in equation (22) is a frequency corresponding to a known reflection source echo (which can be detected in a two-dimensional echo spectrum based on information such as the distance and speed of the reflection source), II can be obtained. As is clear from the formula (21), G is substantially θ1Can be expressed as G (theta)1) The arrival direction θ of the echo of the reflection source is θ0Known, then PMUBecomes theta1Function of (2)
<math> <mrow> <msub> <mi>P</mi> <mi>MU</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mo>[</mo> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msup> <mo>]</mo> <mi>H</mi> </msup> <msup> <mi>&Pi;</mi> <mo>&perp;</mo> </msup> <mo>[</mo> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> </mrow> </math>
Will PMU1) Theta corresponding to spectrum peak1The value is used as DOA estimation of a single arrival direction frequency point in a two-dimensional echo spectrum and is substituted into the formula (21) to obtain the channel phase gain ejφi. E found from different single arrival direction frequency points with noise in the actual echo spectrumjφiUnlike this, statistical averaging may be performed to improve estimation accuracy. After the channel phase gain is estimated, the echo data of each channel is divided by the respective phase gain, so that the channel phase correction can be realized.
Fig. 4 is a schematic diagram of a uniform linear array commonly used in high-frequency ground wave radar, in which case, the detection of a single arrival direction frequency point in a echo spectrum is more accurate, and the above active phase correction method can be simplified.
The M-element uniform linear array can be divided into M-1 translation-invariant array element pairs A1-AMAny two of the combinations can be used for detecting the frequency points in the single arrival direction to obtain a corresponding set. Whether the frequency points fall into the intersection of a plurality of sets is used as a criterion, so that the detection of the frequency points in the single arrival direction is more accurate.
The coordinate of each array element of the uniform linear array is (x)i,yi) By substituting ((i-1) d, 0) into the formula (21)
<math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&phi;</mi> <mn>1</mn> </msub> </mrow> </msup> <mo>=</mo> <mo>[</mo> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>]</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>d</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> </mrow> </math>
When the value of i is 2, the ratio of i to i is, <math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>&lambda;</mi> </mfrac> <mi>d</mi> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> </mrow> </msup> <mo>=</mo> <mo>[</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>]</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <msub> <mi>&phi;</mi> <mn>2</mn> </msub> </mrow> </msup> <mo>,</mo> </mrow> </math> can be obtained by substituting the above formula
<math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&phi;</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>=</mo> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>[</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <msup> <mo>]</mo> <mrow> <mn>1</mn> <mo>-</mo> <mi>i</mi> </mrow> </msup> <mo>[</mo> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <msup> <mo>]</mo> <mrow> <mi>i</mi> <mo>-</mo> <mn>2</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&phi;</mi> <mn>2</mn> </msub> </mrow> </msup> <mo>=</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&phi;</mi> <mn>2</mn> </msub> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>31</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, <math> <mrow> <msub> <mi>B</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <mo>[</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <msup> <mo>]</mo> <mrow> <mn>1</mn> <mo>-</mo> <mi>i</mi> </mrow> </msup> <mo>[</mo> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msup> <mi>m</mi> <mo>&prime;</mo> </msup> <mo>,</mo> <msup> <mi>n</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <msup> <mo>]</mo> <mrow> <mi>i</mi> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mo>[</mo> <msub> <mi>&phi;</mi> <mi>i</mi> </msub> <mo>-</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&phi;</mi> <mn>2</mn> </msub> <mo>]</mo> </mrow> </msup> <mo>,</mo> </mrow> </math> is a quantity independent of the echo bearing corresponding to the single arrival direction frequency point. The actual system contains noise and disturbance, and B obtained according to different single arrival direction frequency pointsiDifferent, can be statistically averaged to obtain BiSubstituted into formula (31) having
<math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&phi;</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>=</mo> <msub> <mover> <mi>B</mi> <mo>&OverBar;</mo> </mover> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mi>&phi;</mi> <mn>2</mn> </msub> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>32</mn> <mo>)</mo> </mrow> </mrow> </math>
From the above formula, G is phi2Can be expressed as G (phi)2) The arrival direction θ of the echo of the reflection source is θ0Then P isMUBecomes phi2Function of (2)
<math> <mrow> <msub> <mi>P</mi> <mi>MU</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&phi;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mo>[</mo> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>&phi;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msup> <mo>]</mo> <mi>H</mi> </msup> <msup> <mi>&Pi;</mi> <mo>&perp;</mo> </msup> <mo>[</mo> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>&phi;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>33</mn> <mo>)</mo> </mrow> </mrow> </math>
Will PMU2) Phi corresponding to spectral peak2The value is used as the estimation of the channel phase error of the array element 2 (based on the array element 1), and the channel phase gain e can be obtained by substituting the value into the formula (32)jφi
The active phase correction method for the uniform linear array only carries out spectrum search once, and the statistical average is placed before the spectrum search, so that the calculation amount is small.

Claims (2)

1. A method for utilizing ocean echo to carry on array channel correction, characterized by that to receive the ocean echo with the antenna array comprising at least two array element pairs of invariant translation, through the statistical analysis to the two-dimensional spectrum of ocean echo, detect the frequency point of single direction of arrival among them; carrying out statistical averaging on the echo spectrum amplitude corresponding to the frequency points in the single arrival direction, estimating the amplitude characteristic of each channel, and realizing amplitude correction; according to the echo spectrum phase corresponding to the frequency point in the single arrival direction and the echo information of the known reflection signal source, such as an island, a lighthouse, a drilling platform and the like, the phase characteristics of each channel are estimated by adopting a MUSIC (multiple signal classification) algorithm, and a plurality of results are counted and averaged to realize phase correction.
2. The method of claim 1 wherein the antenna array is a uniform linear array, and wherein the M-ary uniform linear array is divisible into M-1 translation invariant array element pairs a1~AMAny two of the sets can be used for detecting the frequency points in the single arrival direction together to obtain a corresponding set, and whether the set falls into the intersection of a plurality of sets is used as a criterion.
CNB031282385A 2003-06-30 2003-06-30 Method for array channel calibration by utilizing ocean echo wave Expired - Fee Related CN1321331C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB031282385A CN1321331C (en) 2003-06-30 2003-06-30 Method for array channel calibration by utilizing ocean echo wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB031282385A CN1321331C (en) 2003-06-30 2003-06-30 Method for array channel calibration by utilizing ocean echo wave

Publications (2)

Publication Number Publication Date
CN1566983A true CN1566983A (en) 2005-01-19
CN1321331C CN1321331C (en) 2007-06-13

Family

ID=34469184

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031282385A Expired - Fee Related CN1321331C (en) 2003-06-30 2003-06-30 Method for array channel calibration by utilizing ocean echo wave

Country Status (1)

Country Link
CN (1) CN1321331C (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006099800A1 (en) * 2005-03-24 2006-09-28 Wuhan University A passive channel adjustment method based on a non-linear antenna array
CN1804656B (en) * 2006-01-20 2010-04-14 武汉大学 Method for calibrating high-frequency radar antenna array channel by using ionosphere echo
CN1932554B (en) * 2006-10-11 2010-05-12 中国海洋石油总公司 Marine tow line array double-wing automatic fixing depth device
CN1924613B (en) * 2006-10-11 2010-05-12 中国船舶重工集团公司第七一○研究所 Ocean towing linear array three-blade balance unfolded device and method for determining zero angle of wing plate angle of attack
CN104765022A (en) * 2015-03-18 2015-07-08 中船重工鹏力(南京)大气海洋信息系统有限公司 Methods for characteristic value probability statistics model establishment and antenna self-check based on echo spectra
CN110531311A (en) * 2019-08-27 2019-12-03 武汉大学深圳研究院 A kind of LTE external illuminators-based radar DOA estimation method based on matrix recombination
CN112578353A (en) * 2020-02-28 2021-03-30 加特兰微电子科技(上海)有限公司 Device and method for measuring target angle, sensor and equipment
CN117554920A (en) * 2024-01-11 2024-02-13 之江实验室 Water surface detection method and device, storage medium and electronic equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184137A (en) * 1980-12-29 1993-02-02 Raytheon Company All weather tactical strike system (AWTSS) and method of operation
US4642642A (en) * 1984-10-29 1987-02-10 Motorola, Inc. Adaptive monopulse phase/amplitude calibration correction system
CN2441229Y (en) * 2000-09-14 2001-08-01 武汉大学 Phase array antennas for transmitting/receiving of HF earth-wave radar
CN1346986A (en) * 2000-10-08 2002-05-01 中国科学院电子学研究所 System and method for correcting quadrature demodulation error of radar

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006227098B2 (en) * 2005-03-24 2010-07-29 Wuhan University A passive channel adjustment method based on a non-linear antenna array
EP1879043A1 (en) * 2005-03-24 2008-01-16 Wuhan University A passive channel adjustment method based on a non-linear antenna array
WO2006099800A1 (en) * 2005-03-24 2006-09-28 Wuhan University A passive channel adjustment method based on a non-linear antenna array
EP1879043A4 (en) * 2005-03-24 2013-01-30 Univ Wuhan A passive channel adjustment method based on a non-linear antenna array
CN1804656B (en) * 2006-01-20 2010-04-14 武汉大学 Method for calibrating high-frequency radar antenna array channel by using ionosphere echo
CN1932554B (en) * 2006-10-11 2010-05-12 中国海洋石油总公司 Marine tow line array double-wing automatic fixing depth device
CN1924613B (en) * 2006-10-11 2010-05-12 中国船舶重工集团公司第七一○研究所 Ocean towing linear array three-blade balance unfolded device and method for determining zero angle of wing plate angle of attack
CN104765022A (en) * 2015-03-18 2015-07-08 中船重工鹏力(南京)大气海洋信息系统有限公司 Methods for characteristic value probability statistics model establishment and antenna self-check based on echo spectra
CN104765022B (en) * 2015-03-18 2017-03-01 中船重工鹏力(南京)大气海洋信息系统有限公司 The method that eigenvalue probability statistics model and antenna self-inspection are set up based on echo spectrum
CN110531311A (en) * 2019-08-27 2019-12-03 武汉大学深圳研究院 A kind of LTE external illuminators-based radar DOA estimation method based on matrix recombination
CN112578353A (en) * 2020-02-28 2021-03-30 加特兰微电子科技(上海)有限公司 Device and method for measuring target angle, sensor and equipment
CN117554920A (en) * 2024-01-11 2024-02-13 之江实验室 Water surface detection method and device, storage medium and electronic equipment
CN117554920B (en) * 2024-01-11 2024-04-02 之江实验室 Water surface detection method and device, storage medium and electronic equipment

Also Published As

Publication number Publication date
CN1321331C (en) 2007-06-13

Similar Documents

Publication Publication Date Title
CN1664611A (en) Method for correcting passive channels based on non-linear antenna array
CN107037410B (en) Method and device for interfering radar and frequency control array jammer
CN109581352B (en) Super-resolution angle measurement system based on millimeter wave radar
CN1740812A (en) Near-field calibrating method for high frequency surface wave radar uniform straight line array receiving channel
CN1653353A (en) A noise suppression system and method for phased-array based systems
Zheng et al. A target detection scheme with decreased complexity and enhanced performance for range-Doppler FMCW radar
CN110658514B (en) Classification and identification method of underwater static target
CN1769925A (en) Synthetic aperture radar moving target imaging method
CN110837078A (en) Target detection method under array ground wave radar sea clutter background based on correlation characteristics
Wang et al. Subarray-based frequency diverse array for target range-angle localization with monopulse processing
CN109946668B (en) Target secondary discrimination method based on multi-beam forming
CN108872947B (en) Sea clutter suppression method based on subspace technology
CN104977585A (en) Robust motion sonar target detection method
CN111781603B (en) Ground clutter suppression method for airborne weather radar
CN104391288B (en) The false-alarm elimination method of matching interferometric phase
CN1566983A (en) Method for array channel calibration by utilizing ocean echo wave
CN116520303A (en) Ship-borne ground wave radar target detection method based on self-adaptive beam RDT
CN109884337B (en) Method for detecting sea surface wind direction by using high-frequency ground wave radar
CN1847877A (en) Passive channel correcting method based on non-linear antenna array
CN104793206B (en) Using the imaging method of transmitting graing lobe
CN1714302A (en) Adaptive ground clutter cancellation
CN113359131A (en) SAR low-interception radio frequency stealth system and design method thereof
CN117420510A (en) Radar antenna scanning type identification method based on lightGBM algorithm
Kerstens et al. An optimized planar MIMO array approach to in-air synthetic aperture sonar
CN111812608B (en) Radar target azimuth angle estimation method based on MTD pulse accumulation and modal decomposition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070613

Termination date: 20130630