CN1525857B - 去甲二氢愈创木酸衍生物在制备治疗肿瘤的药物中的应用 - Google Patents

去甲二氢愈创木酸衍生物在制备治疗肿瘤的药物中的应用 Download PDF

Info

Publication number
CN1525857B
CN1525857B CN028138627A CN02813862A CN1525857B CN 1525857 B CN1525857 B CN 1525857B CN 028138627 A CN028138627 A CN 028138627A CN 02813862 A CN02813862 A CN 02813862A CN 1525857 B CN1525857 B CN 1525857B
Authority
CN
China
Prior art keywords
cell
tumor
gene
mice
dmso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN028138627A
Other languages
English (en)
Other versions
CN1525857A (zh
Inventor
黄汝吉
乔纳森·D·赫勒
张智全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johns Hopkins University
Original Assignee
Johns Hopkins University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johns Hopkins University filed Critical Johns Hopkins University
Publication of CN1525857A publication Critical patent/CN1525857A/zh
Application granted granted Critical
Publication of CN1525857B publication Critical patent/CN1525857B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/075Ethers or acetals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/225Polycarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/401Proline; Derivatives thereof, e.g. captopril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/405Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/417Imidazole-alkylamines, e.g. histamine, phentolamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Emergency Medicine (AREA)
  • Communicable Diseases (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • AIDS & HIV (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Hematology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

去甲二氢愈创木酸衍生物抑制CDC-2和survivin,促使凋亡和治疗肿瘤的应用。

Description

去甲二氢愈创木酸衍生物在制备治疗肿瘤的药物中的应用
本发明部分基金来自国立卫生研究中心(NIH)批准的No.AI 32301基金和美国军事医学研究批准的DAMD17-93-C3122基金。美国政府享有本发明的部分权力。 
技术领域
本发明涉及去甲二氢愈创木酸衍生物,尤其是含有天然氨基酸取代基的衍生物在治疗肿瘤和病毒感染中的应用。 
背景技术
癌症是由多种遗传和外在因素所导致,表现为在不同组织中产生了无法控制的细胞生长。抗癌研究的全球目标在于开发临床治疗方法,使该治疗能够缩减肿瘤生长,对宿主无毒,且大多数患者都能够承受。抑制特定细胞分裂的肿瘤药物应该是没有明显副作用的有效化疗制剂。 
细胞在细胞周期过程中要通过许多检查点(checkpoints)。为了通过这些检查点,需要满足特定标准。在G2/M过渡期,最主要的调节子是细胞周期蛋白依赖性激酶CDC2。该激酶牢固地结合到调控性蛋白细胞周期蛋白B上,所形成的复合物被称作促成熟因子(MPF),它能激发一连串反应导致细胞进入早期的初始阶段(1)。很正常,当MPF的任一部分丢失或失活,都会阻碍细胞进程,而不进入G2期。 
MPF的表达和活性在不同水平上受到调节。细胞周期蛋白B水平在细胞周期G1至S期期间缓慢提高,在G2至M期的过渡期间达到最高值,在有丝分裂期间急剧下降(2)。另一方面,CDC2蛋白一直存在于细胞周期中,而在G2期的最后阶段CDC2蛋白水平略微升高(3)。蛋白的活性依赖于与之相关的相应细胞周期蛋白,以及依赖于由磷酸酯酶CDC25C引起的蛋白抑制位点的脱磷酸化(4,5)。已经显示,由辐射或化学反应导致的DNA损伤使脱磷酸化失败而引发G2停滞。最近,有证据显示任何剩余的CDC2可以在DNA损伤后被转运到核外(6)。
一些天然存在的植物木酚素去甲二氢愈创木酸(NDGA)衍生物已经显示通过抑制病毒转录而阻止病毒复制的功能。这项早期的工作显示了NDGA衍生物通过使Sp1-依赖性启动子失活而抑制HIV(7,8),HSV(9)和HPV(10)的转录,这些NDGA衍生物最初是从Larrea Tridentata中分离得到的,其后采用化学方法合成而得。没有预料到的是,其中一个衍生物四-氧-甲基NDGA还表现出能诱导哺乳细胞系的细胞周期停止。以下所述证据表明M4N能够诱导哺乳动物细胞的G2停滞,而没有检测到毒性,并且还说明停滞是由于抑制了细胞周期蛋白依赖性激酶CDC2。 
人类乳头瘤病毒(HPV)感染使得在各种类型的鳞状上皮细胞中产生了无法控制的细胞生长,从而导致各种病症,从良性pallilomae(疣)到子宫颈癌、阴茎癌和口腔癌。这些与HPV密切相关的癌症和广泛存在的感染显示了研制抗HPV治疗方法的重要性。 
即使不是所有病毒,也是大多数病毒都寄生在宿主中,其中包括那些复制的活性突变体。它们需要特定细胞因子的参与以维持病毒的生长。与病毒蛋白质不同,宿主细胞因子不存在突变压力,通常结构是不变的。因此,能够在病毒生命周期各阶段阻止病毒来利用细胞因子的化合物可能会是很好候选药物,这种抗病毒药物不受突变体的影响。利用细胞因子作为替代靶点用于抑制HIV-1的研究已有报道(11)。 
申请人早期已报道从Creosote bush(Larrea tridentata)中分离得到的3’-氧-甲基NDGA(即Mal.4)能够在人细胞培养物中明确地阻止基本HIV的转录,Tat-调控的反式激活,以及HIV复制(8,12,13)。Mal.4是通过干扰转录因子Sp1结合到HIV前病毒模板启动子上而发挥作用的。Mal.4的靶点被定位在核苷酸-87至-40,它是HIV长末端重复序列(LTR)的Sp1结合位点。在体外试验中,未经修饰的NDGA并不抑制HIV的转录,且对Sp1的结合也没有作用(8)。 
然而,植物木酚素的分离和纯化需要花费大量的工作和费用。由于预见了植物木酚素可能会在临床上用于控制人类Sp1-调控的病毒和肿瘤的生长,因而,采用非甲基化的NDGA作为母体大量低成本地化学合成了九种甲基化的NDGA(7)。在药物浓度低于30μM时,四-氧-甲基NDGA通过抑制Sp1调控的前病毒转录和反式激活而最大程度地有效控制了HIV的复 制(7)。此项研究已被进一步运用到控制单纯疱疹病毒(HSV-1和HSV-2)的生长中(9)。单纯疱疹立早(immediate early(IE))ICP4基因是HSV复制的关键基因。该基因的启动子区域具有八个Sp1相同的结合位点(15),其中有五个是ICP4基因表达的必要基因。因此使ICP4基因成为这项试验的很好候选基因。申请人已经发现3-氧-甲基NDGA(Mal.4)和四-氧-甲基NDGA(M4N)都是Vero细胞中HSV的ICP4基因表达的有效转录抑制剂,在电泳迁移率实验(EMSA)观察到它们是通过阻断Sp1蛋白结合至ICP4启动子而产生作用(9)。 
在感染的Vero细胞中,通过测试M4N和Ma1.4的抗-HSV活性,并与无环鸟苷(acyclovir,ACV)的活性相比,申请人观察到作用于第10代HSV-1和第4代HSV-2的M4N的IC50值在11.7μM至4μM,并没有需要更高药物浓度的明显上升趋势。然而,ACV抑制第一代HSV-1和抑制第十代HSV-1,其IC50值从7μM升至444μM,抑制第四代HSV-2的IC50值>88μM,显示了Vero细胞内快速形成了对ACV药物的耐受。M4N的选择指数S.I.(TC50/IC50)保持相对稳定;在vero细胞中,病毒经过十代后,ACV的S.I.下降了60倍(9)。可见,M4N是突变非敏感药物,它可以有效抑制对ACV耐药的HSV(9)。 
鉴于事实,Sp1是一种重要的细胞转录因子(16),应该寻找对于Sp1调控的细胞基因的表达可能具有抑制作用的化合物。一旦Sp1牢固地结合在结合位点时,Mal.4不能替代Sp1(8)。因此,NDGA衍生物似乎对于增殖细胞中的Sp1调控的基因比稳态细胞中Sp1调控的看家基因表达的作用更大。对于前者,药物能够在DNA合成期间与Sp1蛋白竞争基因启动子中的Sp1位点,而在后者,药物对于Sp1蛋白已经牢固地结合在启动子上的看家基因转录的染色质几乎没有作用。其实这种现象已经被显示。正如下所示,通过对9600个表达的基因阵列进行研究,申请人发现大多数Sp1调控的基因产物保持在相似的水平上,培养的宫颈癌细胞C3并不受药物处理的影响(图5)。甚至,选择指数较低的M4N,如果必需全身用药时,则使其应用受到限制,只能使用最低有效浓度。另一方面,人类乳突瘤病毒最初通过Sp1调控的HPV E6E7基因的表达导致子宫颈实体瘤和口腔肿瘤的形成(17)。申请人推理,如果药物能够原位传输,并且只维持在肿瘤区域, 则高浓度药物可以有效消灭肿瘤而对于患者几乎没有损伤。 
Survivin是一种抑制细胞凋亡的物质,它大量存在于人类癌细胞中却不存在于正常成人组织中,被认为是细胞死亡/存活的终端效应期可能的调节子(36)。Survivin以细胞周期依赖性方式表达于G2-M中,直接与有丝分裂纺锤体微管相结合。Survivin在Thr-34上的磷酸化似乎是在细胞分裂时维持细胞生存力的必要步骤(37),已显示磷酸化缺陷的survivin突变体的表达能够激起几种人类黑素瘤细胞系的凋亡(38)。磷酸化的survivin作用于凋亡酶(caspase)通路以抑制凋亡酶-3和凋亡酶-9的形成,通过该途径而抑制细胞凋亡。(Ref.39,10页,给出了凋亡信号通路的概要)。因此,能够减少survivin表达的化合物将有可能加快细胞凋亡和死亡的速度。CDC-2已显示是survivin磷酸化的必要物质(37)。 
发明概述 
本发明的一个目的在于提供用于治疗动物,特别是哺乳动物,更特别是人类的癌性肿瘤和非癌性肿瘤的化合物和组合物。根据本发明的这个技术方案,提供了抑制肿瘤生长的新的去甲二氢愈创木酸衍生物。 
去甲二氢愈创木酸衍生物是指具有以下结构的化合物 
Figure S02813862719960402D000041
其中,R1,R2,R3和R4各自独立代表-OH,-OCH3,-O(C=O)CH3,或氨基酸残基,但是不能同时都是-OH。氨基酸取代基包括丙氨酸,精氨酸,天冬酰氨,天冬氨酸,半胱氨酸,谷氨酸,谷氨酰胺,甘氨酸,组氨酸,异亮氨酸,亮氨酸,赖氨酸,蛋氨酸,苯基丙氨酸,脯氨酸,丝氨酸,苏氨酸,色氨酸,酪氨酸,缬氨酸,5-羟赖氨酸,4-羟脯氨酸,甲状腺素,3-甲基组氨酸,∈-N-甲基赖氨酸,∈-N,N,N-三甲基赖氨酸,氨基脂肪酸,γ-羧基谷氨酸,磷酸丝氨酸,磷酸苏氨酸,磷酸酪氨酸,N-甲基精氨酸和N-乙酰 赖氨酸。 
本发明尤其优选的化合物是M4N和G4N,见图1。 
本发明进一步的目的在于提供一种治疗癌性肿瘤和非癌性肿瘤的方法,该方法利用了这些新的衍生物以及已知的、但从前还没有用于治疗肿瘤的类似衍生物。该方法对于抑制含有细胞周期蛋白依赖性激酶CDC2的快速增殖细胞特别有效。本发明的进一步目的在于提供一种抑制真核细胞周期中的CDC2的方法,优选动物细胞,更优选哺乳动物细胞,最优选人类细胞。 
根据本发明方法治疗的肿瘤包括对于上述化合物敏感的任意肿瘤,尤其包括对于细胞周期蛋白依赖性激酶CDC2周期的抑制敏感的快速分裂的癌性肿瘤和良性肿瘤。 
术语“癌性肿瘤”包括任何可能已经转移或还没有转移的恶性肿瘤。术语“非癌性肿瘤”包括任何良性肿瘤。这些术语是本领域技术人员通常使用和理解的术语。 
可通过本发明的组合物和方法治疗的良性和恶性肿瘤的例子在CancerBiology(Raymond W.Ruddon,Cancer Biology,3rdEd.,Oxford Univ.Press,1995,作为参考文献引用)中的表1-1给出。用于治疗的肿瘤包括已知的起源于病毒的肿瘤,以及不是起源于病毒的肿瘤。本发明的组合物和方法尤其有益于治疗实体瘤。 
本发明的另一个目的在于提供一种抑制细胞周期蛋白依赖性激酶CDC2周期的方法。该方法在抑制细胞增殖,尤其是在抑制快速分裂的细胞增殖方面非常有用。 
在一个优选的实施方案中,本发明所述化合物和组合物被用于治疗HPV-诱导的肿瘤。HPV-诱导的肿瘤尤其包括,但不受限于,与HPV感染相关的宫颈癌、口腔癌、阴茎癌和头颈癌。本方法包括局部使用去甲二氢愈创木酸衍生物,尤其是使用四-O-甲基去甲二氢愈创木酸(M4N)和四甘氨酰基去甲二氢愈创木酸(G4N)治疗癌性和非癌性HPV-诱导的肿瘤。 
本发明的另一个目的在于提供一种通过施用含有氨基酸取代基的式I化合物来抑制病毒复制和生长的方法。该方法优选采用氨基酸取代基R1,R2,R3和R4都相同的化合物。
本发明的另一个目的在于提供一种在表达survivin细胞的真核细胞周期中抑制survivin产生的方法,这种细胞尤其是癌细胞。本发明人发现了本发明的去甲二氢愈创木酸衍生物下调survivin的mRNA和蛋白水平并活化CDC-2和凋亡酶通路,由此提高了表达survivin的细胞的凋亡水平。该方法提供了一种治疗癌症的方法,其中survivin的表达受到抑制或清除,而由此提高了癌细胞凋亡的速度。 
预计M4N、G4N和其它衍生物可通过局部注射至肿瘤内的方式给药,通常随同药用可接受的稀释剂,赋型剂和载体一起给药。在优选的实施方式中,M4N以DMSO溶液的形式注射至肿瘤内,而G4N以PBS溶液形式给药。G4N的使用补充了M4N的应用,尤其是对大肿瘤(>2cm3),这是由于G4N的水溶解性使其能够扩散到肿瘤的更广泛区域。本发明的其它水溶性和水不溶性去甲二氢愈创木酸衍生物的应用类似。这些物质也可以使用本领域公知的和常用的脂质基质的制剂进行全身给药。 
本发明的药用可接受的稀释剂,赋型剂和载体是与M4N,G4N和其它类似衍生物相容的本领域技术人员已知的物质,而且这些物质适用于人类或其它哺乳动物的局部给药。尽管以下描述的实例是以局部注射的方式给药,但也可以使用其它局部给药方式如外用给药或传输至肿瘤靶点的靶向给药。 
能获得所需治疗效果的化合物给药剂量虽不尽相同,但其可以由本领域技术人员容易地确定出。剂量、给药频率和治疗时间的长短视情况而定,主要由肿瘤大小和类型决定。举例来说,M4N单独给药剂量是根据每克肿瘤重量用药10mg-20mg,或与相似剂量的G4N共同给药,给药间隔从每天至每周或更少的频率。将50μl至100μl的M4N以浓度200mg/ml溶于DMSO中,单独或与G4N联合给药时,有望对于1-1.5cm3的多种肿瘤的治疗有效。 
附图简述 
图1为M4N和G4N的结构。 
图2A为显示E6/E7启动子(pPV16P97)区域和Sp1蛋白结合位点的HPV-16LCR。 
图2B为M4N对C-33A细胞的E6/E7启动子活性的作用。
(通过不同浓度的M4N来抑制E6/E7启动子控制的荧光素酶基因的转录)图3A-3C为通过40μM的M4N抑制病毒E6和E7的RNA转录物。C3细胞在含有40μM的M4N或仅含DMSO的培养基中处理71个小时,提取C3细胞的总RNA用于进行相对RT-PCR(relative RT-PCR)。该RTPCR样品在增加的扩增循环后移走并溶在琼脂糖凝胶上。凝胶图片(3A和3B)指出了这些循环,生长基质中M4N存在(+)或不存在(-),以及pGMT载体的两个消化产物作为尺寸标记物。扩增图(2C)显示了扩增产物的两个期望大小,它是由早期病毒RNA转录产物的交替接合而形成。 
图4A为M4N对C3细胞生长的抑制。 
图4B为除去M4N后对C3细胞生长的抑制。 
图5A-5B为基因检测分析所测得的M4N对于C3细胞的基因表达的影响。 
5A,表示DMSO处理>2小时后C3细胞(C3 DMSO)中表达的基因。 
5B,表示用DMSO作为溶剂的M4N处理>2小时后C3细胞(C3M4N)中表达的基因。 
图6A-6B,M4N对长有肿瘤的小鼠处理后所进行的观察。 
6A,对长有单个肿瘤的小鼠进行原位注射DMSO(#3)或M4N(#7)。对于长有两个肿瘤的小鼠#9中的一个肿瘤进行原位注射M4N。 
6B,相同小鼠中的经M4N处理后的肿瘤(白色疤痕)与未经处理的肿瘤,如表2所描述的#9。 
图7为M4N和M4N/G4N对于小鼠中肿瘤生长的组织病理学影响。板的第一栏表示#4,10,12小鼠的大肿瘤用DMSO处理后(CON)与小剂量药物处理(M4N或M4N/G4N)的#12,10,27和20小鼠的病变组织的比较(M4N)。其后的像片为(A、B、C用DMSO处理,D未处理,E、F、G、H用M4N或M4N/G4N处理)小鼠在100X放大下检查的肿瘤实例(表1和表2)。 
图8为没有药物(HSV-C,HSV-SC),存在无效药物(ABDS1[″HSV-ABDS1″],ABDS2[″HSV-ABDS2″])以及存在有效药物(M4N[″HSV-4N″]和ACV[″HSV-ACV″])的情况下,HSV-1的复制。 
图9为M4N引起哺乳动物细胞生长的停止。(a-d)为用不同浓度的M4N处理的C3,CEM-T4,C33a,和TC-1细胞。实验开始时存在的细胞数目显示为第0天。三天后计数存活细胞并根据M4N的浓度制图。(e),将C3细胞分装 入T-25小瓶中,使每个小瓶含有5X103个细胞,其中给予含M4N的1%DMSO的基质,或给予只含1%DMSO的基质(第一次改变基质)。三天后,将M4N处理的一半细胞给予新鲜的仅含1%DMSO的基质,而其余细胞则给予相同条件的新鲜基质(第二次改变基质)。每天计数细胞并依据处理时间而制图。 
图10为用M4N处理的细胞停止在G2/M期。C3细胞(a),C33a细胞(b),CEM-T4细胞(c),以及TC1细胞(d)在含有1%DMSO或含有M4N的1%DMSO的基质中生长三天。用胰蛋白酶使细胞消化,用乙醇固定,碘化丙啶染色,然后进行流式细胞术计数。基于碘化丙啶染色强度显示细胞数目的数值(总细胞数3-5X104)。指示的细胞周期阶段被标记出,且其与通过染色强度确定的相对的细胞互补DNA对应。 
图11是用40μM M4N处理的C3细胞证明具有G2细胞结构。C3细胞在盖玻片上,在含有1%DMSO(对照)或40μM M4N的1%DMSO(M4N)的基质中生长三天。样品用乙醇固定,并与抗α(绿色)和γ(橙色)微管蛋白(a)抗体一起培养,或用DAPI进行DNA染色(b)。通过荧光显微镜观察细胞。 
图12为M4N使CDC2和病毒致癌基因减少。C3细胞在含有1%DMSO(D)或含40μM M4N的1%DMSO(M)的基质中生长不同的时间。在一特定时间后,从细胞中分离总蛋白质或总RNA。用抗CDC2或细胞周期蛋白B的抗体在相同的硝基纤维素过滤膜上进行Western印迹(a的上面两个板)。细胞周期蛋白B的抗体通过与γ-32PATP和组蛋白H1共同培养而发生免疫沉积后,进行激酶分析(a的下面两个板)。将PAGE凝胶进行库马西染色(coomassie stain)作为承载对照。在药物处理达24小时和72小时后,分别进行激酶检测。对总RNA提取物进行Northern印迹(b)。将过滤器与CDC2或GAPDH的含有随机引物的32P-标记DNA培养过夜,清洗,将膜暴露三天。用相同的过滤器检测CDC2和GAPDH RNA。引物与HPV-16E7或GAPDH的区域杂交,进行总RNA提取物的rtPCR分析(c)。两个引物对都被用于相同的反应,用琼脂糖凝胶电泳分析产物。 
图13为G4N与HIV Sp1-结合位点(-87至-49)相互作用的电泳迁移率分析(EMSA)。(A),G4N对Sp1-167D与32p标记的HIV Sp1 DNA模板结合的抑 制作用。泳道1,模板;泳道2,模板加上0.1μg Sp1-167D;泳道3-9,在加入0.1μg Sp1-167D之前,模板与增加浓度的G4N(0.25-1.75mM)共同培养。(B)G4N取代Sp1-167D与HIV模板相结合。泳道1,模板;泳道2,模板加上0.1μg Sp1-167D以及过量100倍未标记的模板;泳道3,模板加上0.1μgSp1-167D;泳道4-10,随着G4N浓度增加(0.25-1.75mM)的Sp1/DNA复合物;泳道11,在含有1.75mM G4N的反应缓冲液中培养的模板。(C)Sp1-167D替代G4N与模板相结合。泳道1,模板;泳道2-4,模板加上Sp1-167D的增加量(0.075,0.150,0.300μg);泳道5-8,增加量的Sp1-167D(0.075,0.150,0.300μg)激起免疫反应后,在含有1.2mM G4N的反应缓冲液中培养的模板,泳道8没有Sp1-167D。(D)对应于用(A)---·---和(B)—·—表示的增加的G4N浓度,Sp1-167D/DNA复合物带强度减小的图。使用的凝胶是5%非变性聚丙烯酰胺,其每个泳道接受5μl的反应液,如实验部分和参考文献中所描述[1]。 
图14为G4N对于Cos细胞中HIV Tat-调控的反式激活的抑制作用。 
图15为G4N存在下的SIV的生成。37℃,将107174x细胞以及人类T-细胞淋巴瘤细胞系与24小时收获的SIV mac 239(4ng的p27)细胞混合2小时。细胞被再次悬浮,并在三个96孔培养板的每一个孔中加入含有1x105细胞的100μl基质。从储存液中配置新鲜的各种浓度的G4N,并将其加入六个孔中。在四天和八天后收集培养液的上清液用于病毒产生的分析。病毒产生是通过修饰的p27壳体蛋白抗原的捕获ELISA进行分析检测,如实验部分所描述。 
图16为G4N抑制H9细胞产生HIV p24抗原的作用。 
在AZT耐受的HIV株,HIV-1RTMF感染H9细胞9天后,通过G4N处理后的双份培养液的平均p24水平和未处理的H9细胞的p24水平的比较,计算抑制百分数。 
图17为Survivin基因表达的RT-PCR分析。(a)上图:用40μM的M4N分别处理C3细胞达24小时和72小时的Survivin基因表达(泳道3和4),以及未经处理的对照物(泳道1和2)。下图:相应的GAPDH对照物。带强度用Scion Image进行定量。(b)将Survivin RT-PCR产物信号正常化为GAPDH对照物并作图。
图18为药物浓度-依赖性survivin蛋白的下调。(a)将C3细胞与各浓度的M4N培养72小时,所有细胞的溶解产物进行针对survivin的免疫印迹。(b)相对带强度用Scion Image图像软件定量,并针对M4N浓度作图。 
图19为用M4N处理72个小时的C3细胞中凋亡酶-3裂解片断的免疫印迹分析。(a)凋亡酶-3的Western印迹显示了32KD前凋亡酶-3的裂解并形成活性的20KD裂解的产物。(b)使带强度量化并对M4N浓度作图。 
发明详述 
实验方法 
NDGA衍生物通过化学方法合成得到的(7)。细胞系C3是HPV16E+L加上活化的Ras转染的C57BL/6kh细胞系(原C57BL/6kh细胞系是由Loyola University Medical Center,Chicago,Illinois,U.S.A.的W.Martin Kast提供),它由Greenstone等(18)和Feltkamp等(19,20)所描述的方法进行维持与培养。 
G4N的合成: 
制备内消旋-1,4-双[3,4-(二甲氨基乙酰氧基)苯基]-(2R,3S)-二甲基丁烷盐酸盐,四甘氨酰基NDGA,G4N的标准步骤。在含有NDGA(12.8g,42.3mmol,1.0equiv)和N,N,-二甲基甘氨酸(26.2g,254mmol,6.0equiv)的二氯甲烷(250ml)溶液中,加入DCC(52.4g,254mmol,6.0equiv)和DMAP(2.32g,18.9mmol,1.0equiv)。在室温下,于氮气氛围中搅拌反应混合物达24小时。过滤反应混合物,减压浓缩溶液。然后,将丙酮(250ml)加入反应瓶中,通入过量的氯化氢气体。将水溶性沉积物溶于水中,室温下用丙酮重结晶两次得到(1)(29,2g,36.8mmol),其为白色固体,收率为87%。用VarianUnity-400(400MHz)核磁仪,D2O为溶剂,TSP为内标,得到质子NMR图谱。用Varian Unity-400(400MHz)核磁仪,以D2O作溶剂,得到C-13NMR图谱。C-13化学位移以TSP单峰作为参照(50.0ppm)。 
合成方法见路线1。
Figure S02813862719960402D000111
总步骤。除非另有说明,否则所有反应都在用烘箱(120℃)烘干的玻璃器皿中和氮气氛围中进行。丙酮、二氯甲烷、1,4-二噁烷、乙酸乙酯、己烷和四氢呋喃都购自Mallinckrodt Chemical Co.。丙酮用4A分子筛干燥并蒸馏。二氯甲烷,乙酸乙酯和己烷用CaH2干燥并蒸馏。1,4-二噁烷和四氢呋喃在氮气氛围中,加入钠和二苯甲酮进行蒸馏干燥。去甲二氢愈创木酸购自Fluka Chemical Co.。N,N′-二环己基碳二亚胺(DCC),4-二甲基氨基吡啶(DMAP),吗啉,三乙胺和碳酸钾都购自Aldrich Chemical Co.。 
分析薄层色谱(TLC)在已铺制好的薄板(硅胶60F-254)上进行,其购自Merck Inc.。气相色谱分析在装有25-m交联甲基硅胶毛细管柱(0.32mm i.d.)的Hewlett-Packard5890Series II分析仪上进行。氮气作为载气,其流速保持14.0ml/分钟的恒速。保留时间(tR)在以下条件下测定:注射温度260℃,柱温等温为280℃。气相色谱和低分辨质谱分析在配有Hewlett-Packard5971A质量选择探测器和毛细管HP-1柱的Hewlett-Packard 5890 Series II分析仪上进行。通过媒介-压力液相色谱(MPLC)进行分离,其利用JascoModel 880-PU智能HPLC泵,流速为120ml/小时。MPLC的填充物为反相硅胶C18(颗粒尺寸为0.035-0.070mm),购自Knauer Co.。通过比重柱色谱纯化,其利用Merek试剂硅胶60(颗粒尺寸为0.063-0.200mm,70-230网筛ASTM)进行操作。 
红外光谱(IR)是利用Bomem Michelson Series FT-IR分析仪来测定。报告中的波数1601cm-1为聚苯乙烯的吸收。吸收强度用以下缩写表示:s,强;m,中等;w,弱。质子NMR图谱利用Varian Unity-400(400MHz)分析仪获得,以D2O为溶剂,3-(三甲硅基)丙酸钠盐为内标。C-13NMR图谱利用Varian Unity-400(100MHz)分析仪获得,以D2O为溶剂,C-13化学位移是以3-(三甲硅基)丙酸钠盐的单峰中心(60.0ppm)为参照。峰的多样性由以下缩写表示:s,单峰;d,双峰;t,三重峰,q,四重峰;m,多重峰;J.耦合常数(hertz)。高分辨质谱是利用JEOLJMS-HX110质谱仪获得。 
内消旋-1,4双[3,4-(二甲氨基乙酰氧基)苯基]-3S-二甲基丁烷盐酸盐(2)。在含有NDGA(1,12.81g,42.37mmol,1.0equiv)和N,N-二甲基甘氨酸(26.21g,254.2mmol,6.0equiv)的二氯甲烷(250ml)溶液中加入DCC(52.45g,254.2mmol,6.0equiv)和DMAP(5.176g,42.37mmol,1.0equiv)。反应混合 物在氮气保护下,于室温搅拌24小时。在二环己基脲从反应混合物中过滤出后,减压浓缩得到的溶液。然后,将丙酮(250ml)加入残余物中,将过量的氯化氢气体通入所得溶液中。将沉积物溶于水中,并室温下用丙酮重结晶两次,得到2(28.97g,36.86mmol),其为白色固体,收率为87%: 
1H NMR(D20,400MHz)δ0.78(d,J=6.0Hz,6H.2×CH3),1.73(m,2H.2×CH),2.38(dd,J=13.2,9.6Hz,2H.2×ArCH),2.78(dd,J=13.2,4.4Hz,2H.2×ArCH),3.03(s,24H.8×CH3N),4.53(s,8H,4×CH2N),7.22(m,4H.4×ArCH),7.29(d,J=8.4Hz,2H.2×ArH);13CNMR(D20,100MHz)δ18.11,40.82,41.73,46.75,59.59,125.79,126.58,131.63,140.66,142.47,146.11,167.84;IR(KBr)3461(br),2963(m),1777(s,C=O),1620(m),1478(m),1377(m),1210(m),1106(m),961(w),852(w)cm-1;(2-4HCl)的MS(FAB)m/z(相对强度)643(M+,30),600(20),558(43),515(20),473(42),430(13),388(26),185(18),93(38),58(100),44(22);(2-4HCl)的HRMS(FAB)C34H50N4O8的计算值642.3628,理论值642.3614;C34H54N4O8Cl4的分析计算值:C,51.78;H,6.90;N,7.10;O,16.23。理论值:C,51.70;H,6.85;N,7.05;O,16.21。 
可以理解,通过取代合适的其它N,N-二甲基-取代的氨基酸,可以合成得其它的氨基酸取代的本发明的化合物。 
实施例1 
M4N和几个其它的NDGA衍生物对于SP1-调控的E6/E7启动子活性的影响。 
M4N和几个其它的NDGA衍生物对于SP1-调控的E6/E7启动子活性的影响是利用荧光素酶作为报告进行检测。该测试方法通过磷酸钙法将融合了荧光素酶报告的HPV16LCR(P97)的DNA转染至C33A细胞中。C33A是一种宫颈肿瘤细胞系(ATCC序列号HTB-31),其不包含任何整合的HPVDNA,但具有HPV早期基因启动子强表达所必需的转录因子。在DNA转染的第二天,将助溶于二甲基亚砜(DMSO)配制的不同浓度的药物加入至所述细胞中。药物处理30个小时后(以使测试能在瞬时转染试验标准的48小时内完成),将细胞裂解,并测定特定的荧光素酶活性(Luciferase Assay Systems,Promega,U.S.Pat.No.5283,179)。随着M4N药物浓度的增加,特定的荧光素酶活性随之减小。 
结果(见图2)表明在荧光素酶测试中M4N显著减少了Sp1调控的HPVE6/E7启动子启动的转录。 
实施例2 
用M4N处理后E6/E7mRNA合成的抑制 
用M4N处理后E6/E7mRNA合成的抑制是通过宫颈细胞系C3中的RT-PCR进行测试。相关的RT-PCR是根据标准化细胞计数的总细胞RNA量而进行的。在2%琼脂糖凝胶上对RT-PCR产物进行分析,结果见图3。RT-PCR结果表明具有E7(321bp)和E6(204bp)的预期大小的扩增cDNAs在DMSO处理的细胞的第22循环时就被检测出。在扩增30个循环的药物处理的RNA提取物中则几乎检测不到这样的产物。对于没有模板的PCR对照或HPV16-阴性的C33a细胞系的总RNA提取物中都检测不到扩增的产物。 
实施例3 
通过M4N处理而抑制宫颈C3细胞生长 
将转染HPV16的永生小鼠表皮细胞(C3细胞)置于小瓶中,使每瓶含有105个细胞。24小时后,将半数小瓶给予生长基质,该基质含有溶于1%DMSO的40μM M4N,而另一半则给予仅含1%DMSO的生长基质。结果见图4A。24小时内,药物处理的C3细胞和对照C3细胞的细胞形态已显现出差别。药物处理的细胞生长和分裂比未经药物处理的对照细胞明显减少,而对于药物处理的和仅含DMSO的对照细胞,存活细胞与总计数细胞的比值分数保持不变。这表明M4N能显著减少细胞分化。 
将M4N从基质中除去后,其对C3细胞生长的影响也进行了检测。将C3细胞置于小瓶中,使每瓶含有104个细胞。在时间=0时,在2/3的小瓶中加入添加有40μM M4N的1%DMSO的生长基质。其余的小瓶加入仅含1%DMSO的生长基质。73个小时后,清洗半数已加入含M4N生长基质的 小瓶,然后加入仅含1%DMSO的生长基质。清洗另一半小瓶,再加入与先前相同的基质。结果见图4B,其显示M4N处理后的样品在转变成不含药物的基质后,其细胞生长速度并没有明显增加,该现象表明即使将细胞外环境中的M4N除去,其仍继续显著减少细胞的分裂。 
实施例4 
72个小时药物处理前后的C3细胞中细胞基因表达的分析 
对于9600个基因阵列的基因表达进行了研究(图5)。根据Genomics51,313-3241998所描述的方法,将M4N(40μM)处理72小时的(C3M4N)和未处理的(C3DMSO)中的polyA+RNA各5mg用于人9600基因阵列对的杂交研究。用配有Nikon55mm AF微Niko镜头的彩色摄相机拍摄了杂交图像并通过Macintosh LC630计算机进行数字化处理。该测试以单一色或双重色模式通过酶底物与酶反应形成颜色,该方法敏感度高,且可以复制(能够从107细胞中检测到每个细胞含有RNAs<5次拷贝的转录)。 
将显示差异性表达的基因(C3M4N/C3DMSO>10,C3DMSO/C3M4N>10)的计算机打印结果列表进行分析。TIFF格式的图像文件和MSexcel格式的数据文件被保存在zip磁盘中。可根据基因名称和克隆ID号来给获得的克隆图像,以便将来用于northern印迹分析。 
在经M4N处理72小时后的一组上调或下调基因中,以下是那些尤其与细胞分裂和凋亡相关的基因。一些其它细胞周期相关基因也根据M4N而被大幅度上调。除细胞周期蛋白依赖性激酶CDC2(实施例11)以外,还有例如: 
                   增加 
细胞周期蛋白依赖性激酶抑制剂     (100X) 
凋亡(APO-1)抗原            (100X) 
死亡结构域3DR3                        (100X) 
Ras-相关蛋白RAP-1                     (60X) 
人Map激酶                             (40X) 
下列细胞周期相关基因根据M4N而被大幅度下调:
                       处理     未处理 
细胞周期蛋白依赖性激酶7            (5%)        100% 
人类细胞因子受体                     (2%)        100% 
增殖的细胞核抗原,PCNA               (1%)        100% 
人TNF-相关的凋亡APO2       (3%)        100% 
半胱氨酸蛋白酶                       (7%)        100% 
在早期,如药物处理后一个小时,其E6/E7水平与对照细胞中的相似,而4.5小时后,E6/E7水平则不能被RT-PCR检测出(10)。9600基因阵列的基因表达能够用从这些短时间(1小时和5小时)处理的细胞中分离出的RNA重复出,以进一步抑制药物对细胞的最初作用。 
实施例5 
通过局部注射M4N靶向抑制C3肿瘤生长 
在36只C57b1-16NCR小鼠的后背肩部注入5×105C3细胞。其中24只在20天内产生了肿瘤。每天注射(50μl-100μl的M4N或M4N/G4N)(M4N在DMSO中浓度为200mg/ml,G4N在PBS中浓度为200mg/ml),对动物体内肿瘤的生长具有明显的影响,见表1和2,图6和7。 
表1.M4N和G4N对小鼠体内单个肿瘤生长的影响 
  
小鼠# 治疗时间天数1-16 病变组织大小(mm)第1天       第7天     第21天 切除的病变组织Wt.(g)第16天      第24天 体重(g)第1天  第16天  第24天
1234 DMSODMSODMSODMSO 3×8×3.3    —      5×7×44.4×6×3.5  10×12×8    —0.8×0.8×1   —    10.5×11×92.8×3.8×2.5 —    18×11×9 —           0.31.56         ——           1.14-2.9 18.8     —     20.219.6    20.5    —18.2     —      16.117.6     —      20.2
6 天数1-16M4N —          9×8×5       — 0.2           — 19      19.2     —
[0106]   
71114151617 M4NM4NM4NM4NM4NM4N —          6×7×7      —1×1.3×1   9.5×10×9  —3.8×3.8×3.5 8×9×6  ——      5×4×4   —2.8×2.8×2.8 9×6×4  —2.3×2.3×2.3 6×6×4   — —         0.1—          00.4    —0.1    —0     —0.2**   — 18.2   —    20.419.5   —    20.217    17.6   —18.9   20.0   —17.2   17.6   —17.3   —    —
181921 22272829 天数             天数1-10             9-17M4N G4NM4N G4N M4N G4NM4N G4NM4N G4NM4N G4N M4N G4N 3×2.8×3   8×7×5   ——     5×5×5    —1.8×1.8×1.8  9×10×5 — —         7×7×5  —2.5×5×2.5   59×6×6 —2.8×2.3×2.8 5×5×4  —2.8×2.5×2.8  5×6×4  — —             1.0***0.2           —0.2           — —            0—             1.8***0.17          ——            0.2 18.8   —   21.118.2   19.9   —17.3   19.2   — 17.9   —    19.520      —    20.718.1     19.8  —18.8   —   19.6
*DMSO=药物溶剂 
**第15天进行操作 
***大部分包含坏死细胞的病变组织也在小鼠6,7,11,14,15,17,19,21,28,19中出现(图6,7)。药物治疗后的小鼠#11和#22中没有病变。在对照小鼠#1,2,3,4中发现的肿瘤含有生长的细胞(图2)。 
实验步骤: 
将5×105C3细胞/只注入36只C57b1-16NCR小鼠中。在小鼠后背肩部皮下注射100μL。将细胞悬浮于低盐HBSS中并轻微震动使悬浮液保持均匀。 
24只小鼠长出肿瘤。其病变大小通过带表卡尺(dial caliper)测得。将这些小鼠剃毛、称重并开始治疗(第一天)。将四只小鼠作为对照小鼠。对照小鼠每天接受肿瘤内注射50μl DMSO。实验小鼠(10)接受50μl溶于DMSO 的M4N(200mg/mL)。其余10只小鼠在G4N治疗(50μl,PBS中的浓度为200mg/ml)8天后再接受M4N治疗8天。在肿瘤的几个区域进行注射。小鼠在注射前给予乙醚或甲氧氟烷进行麻醉。 
表2.M4N和G4N对含有多个肿瘤小鼠中的病变组织生长的影响 
  
小鼠# 治疗时间天数1-16 病变组织大小(mm)第1天             第7天 切除病变组织的Wt.(g)治疗*           未治疗** 体重(g)第1天     第24天
91012 M4NM4NM4N 1.3×5×0.75      7×9×82.3×2.5×2.3     9.5×10×92.5×2.5×2.5     8×9×6 0.25             0.60.1              2.90.11             1.82 20.2       17.917.5       22.117.8       20.0
20 24 26 天数     天数1-9     10-18M4N      G4N M4N      G4N M4N      G4N 1.8×1.8×1.8       9×10×5 -           7×9×6 5×3.3×2.5     7×7×7 0.1             0.2 0               1.7 0.2             1.9 17         20.2 17.2       20.8 19.3       20.6
*DMSO中的药物直接注射至肿瘤区 
**从邻近肿瘤获得药物 
表3小鼠中G4N的毒性研究 
  
  #小鼠数目 给药途径 每天治疗次数 注射天数 死亡率
1234 187.5mg/kg375mg/kg750mg/kg375mg/kg 3342 皮下皮下皮下IV 2×1×1×2× 6666 0/30/31/40/2
来自NCI的C57BL-16NCR雌性小鼠用于该实验中。 
每天制备新鲜的四甘氨酰基NDGA(G4N)PBS溶液,其浓度为75mg/ml。组1每次注射0.05ml,组2和组4每次注射0.1ml,组3注射0.2ml,注射6天。试验持续了7天。在注射六天前后称量体重。试验期间,体重无显著变化。 
所有治疗的小鼠,对照小鼠(小鼠编号1-4)和试验小鼠(小鼠编号 6,7,9,10,11,12,14,15,16,17给予M4N,编号18-22,24,26-29给予M4N/G4N)都呈现肿胀。用带表卡尺测量病变大小。一些小鼠由于注射而出血。 
治疗方案和结果如下: 
第10天:再次称重小鼠。所有小鼠体重增加2克。 
第12天:没作治疗。 
第13天:所有小鼠皮肤鼓起,但程度不同。一只M4N治疗后的小鼠(#7)的皮肤剥离,“干状肿瘤”从中脱离。 
第14天:注射量增加至100μl。 
第15天:由于麻醉过量而使其中一只M4N治疗的小鼠(#17)死亡。#17小鼠病变部位处的皮肤裂开,“干状肿瘤”显露出来。将病变组织切除并称重。 
第16天:4只更大剂量M4N治疗的小鼠(#6,14,15,16),三只M4N/G4N治疗的小鼠(#19,21,28)和一只对照小鼠(#2)处以安乐死,然后切除、称重。其余对照小鼠(#1,3,4)没有进行侵入性检测,其带有肿瘤。 
第21天:用带表卡尺测量对照小鼠的肿瘤大小。 
观察:小鼠#10和#12(M4N治疗区)的病变部位处的皮肤裂开,“干状肿瘤”显露出来。 
第24天:小鼠#7皮肤完全恢复。实验于今日结束。所有M4N治疗后的存活小鼠(#7,9,10,11,12)和M4N/G4N治疗后小鼠(#18,20,24,26,29)都处以安乐死,切除、检测和称重。 
M4N和M4N/G4N对于小鼠C3肿瘤生长的作用在表1和2以及图5和6中给予总结。表1显示药物对于只带有单个肿瘤的小鼠C3细胞生长的影响。对照组四个切除的肿瘤平均重量为1.48g,而M4N治疗后和M4N/G4N治疗后的小鼠病变组织重量分别为0.142和0.51g。药物治疗后的病变组织主要由干状坏死细胞组成(图6)。对照组肿瘤表现出同质性,且包含具有活性的生长细胞。表2显示了药物对于带有多种肿瘤的小鼠中的C3肿瘤生长的影响。在该研究中,药物被注射至其中一个肿瘤中。未治疗的肿瘤平均重量为1.77g,而M4N治疗的病变组织重量为0.15g。经M4N/G4N注射后得到相似的结果,未经治疗的肿瘤平均重量为1.27g,而药物治疗后的病变组织的平均重量只有0.103g。在整个实验期间,所有小鼠的体重变化不 显著(表1和2)。 
实施例6 
两组小鼠中经药物处理(M4N)和DMSO溶剂处理或未经处理的肿瘤(CON)经过组织病理学检查。切除的肿瘤立即被固定,然后保存在磷酸缓冲盐的4%甲醛溶液中。然后将组织通过一系列级别的乙醇和二甲苯脱水,用石蜡固定。将石蜡组织块制成薄切片,并用苏木精和曙红进行染色用于显微观察。组织病理学研究显示DMSO处理的对照组肿瘤未受影响,仍继续生长。其显示了高程度的核/质比,多晶核变化,高有丝分裂形状,像肉瘤形状的纺锤体,和浸润至周围组织的癌细胞特征。相反,在开始接受M4N处理后不久,肿瘤即停止生长。表明肿瘤有显著的坏死并且不再具有存活的能力。高倍数放大下能看到少量的药物沉积物,而且焦点区域显示慢性炎症和纤维化。该治愈作用导致死亡的肿瘤细胞从病变区脱落。用M4N/G4N处理的结果与单独M4N处理的结果相同。然而,由于G4N是水溶性的,其比M4N扩散至肿瘤的更大面积。预计将G4N与M4N协同使用在治疗大尺寸的肿瘤中会更有效(即,大于2cm3)。 
实施例7 
M4N对于几内亚猪的HSV-1皮肤感染的作用 
将药物M4N用于几内亚猪皮肤感染HSV-1的病毒复制抑制作用实验。将几内亚猪皮肤用针刺破,局部用HSV-1使每个刺破区域受到感染。每天使其感染达6天后,将M4N用于被感染区域。 
将几内亚猪裸露的背部皮肤的六个区域用5=DIN针进行灭菌穿孔。两个区域接受HSV-1(HSV-C,培养物上清夜,或盐水中分离出的HSV,HSV-SC)的感染。其它4个区域接受HSV-SC感染。感染后的15分钟,将30μl实验用化合物(DMSO中60mg/ml的ABDS1,ABDS2,ACV和M4N(4N)用于每个穿孔的被感染区域,每天操作5次,共进行六天。ABDS1和ABDS2作为阴性对照。图8的照片是第6天拍摄的,其显示了在不给予药物(HSV-C,HSV-SC),在给予无效药物(HSV-ABDS1,HSV-ABDS2)以及在给予有效药物 (HSV-M4N和HSV-ACV)的情况下HSV-1的复制程度。可以看到,在经HSV-C,HSV-SC,HSV-ABDS1,HSV-ABDS2处理的皮肤有6个大面积汇合的水泡,而经M4N(4N)和ACV处理的被感染区域则没有水泡形成。该模型体系得到的明确结果是M4N能够阻止HSV复制,表现为皮肤病变消失且经药物处理4天后无病毒脱落。最初的动物研究还显示了当M4N经腹腔内给药且浓度高达300mg/kg,以及皮下或静脉给药浓度高达375mg/kg时对小鼠都无毒性作用(Table3)(6)。 
实施例8 
M4N原位注射的临床治疗 
将M4N直接施用于肿瘤内的药物传输途径具有几个显著的优势。1)M4N是一种疏水化合物,易溶于DMSO中(200mg/ml)。因此,只需要注射少量的药物溶液即可以达到有效的药物剂量。在实施例5中描述的小鼠研究中,每日注射50μl至100μl达数日足以完全使小鼠中的肿瘤停止生长。从前对于使用大剂量DMSO治疗疾病也进行了一些研究(每次治疗静脉给药30ml)(21)。实验结果没有得出结论(22)。然而,由于过去世界范围的上千万人已经安全的经受了大量的DMSO的实验,DMSO在少量使用时应该是安全的药物传输媒介(23)。2)通过原位注射,大部分药物残余物保持未溶状态并集中在肿瘤区域,而不会进入循环系统,从而可以避免全身毒性。此外,由于有足够的药物保留在肿瘤内以抑制其生长,则在几次治疗后无需继续注射药物。在实施例5的小鼠研究中,甚至在停止注射M4N后,肿瘤细胞继续死亡。因此当直接靶向给药时,肿瘤大小则成为给药剂量的决定因素。人的体重与小鼠体重的差别则无相关性。在小鼠肿瘤研究中,每天给药20mg,给药10天,则足以消除肿瘤。对于治疗大小为(1-1.5cm3)的人类肿瘤,则无须使用更高剂量。这将减小用人类作试验的高风险。 
实施例9 
用M4N处理细胞以阻止细胞增殖 
我们前面对于M4N的研究表明了M4N通过使Sp1-依赖性启动子失活 可以抑制病毒转录。很多哺乳动物细胞周期基因也包含基本的Sp1启动子,M4N也因此能够阻止其转录。该假设通过M4N对于多种细胞系的抗增殖作用而得以验证。低浓度(10μM)的母体化合物,NDGA,先前即显示了诱导哺乳动物细胞凋亡的作用(24)。然而,该作用能够通过加大儿茶酚的一个氧原子位阻或在NDGA上加成亲水基团(25)而受到阻止。在HPV-16/ras转染的C3细胞系培养实验中,通过增加NDGA衍生物M4N的量来确定所需的最佳增殖抑制浓度(26)(Figure 9a)。细胞对于M4N的响应良好,72小时后,在浓度范围40至60μM时细胞停止分裂。保持该浓度的三天后,细胞数目与开始用药物处理时的细胞数目相等(第0天,Fig9)。在更低的浓度时,细胞生长减少得更少,而在浓度大于60μM时可以看到一些细胞死亡的现象。 
M4N对于C3细胞系的抗增殖作用不仅仅是由于药物使Sp1-依赖性HPV-16E6/E7致癌基因启动子失活,在HPV-16转染的TC-1细胞系中,其E6/E7致癌基因是由非-Sp1依赖性逆转录病毒启动子所控制(27),同样也观察到生长抑制现象(Figure 9d)。此外,C33a细胞系的生长(图9c)、HPV-阴性人类宫颈癌细胞系和CEM-T4系(图9b)、人类白血病细胞系(28),通过M4N的处理也都受到阻碍。在该四种用药物处理的细胞系中,直至M4N浓度超过一阈值(对于C3细胞为60μM,对于TC-1细胞为40μM等)时,几乎所有(>95%)停止生长的细胞都是存活的。高于该浓度以上,存活细胞的百分数则急剧下降。而停止生长的细胞在长时间的药物处理后仍有>95%的细胞是存活的。C3细胞在用40μM的M4N处理8天后,死亡的细胞数仍没有增加(图9e)。 
实施例10 
用M4N处理的细胞停止于G2期 
一旦建立用M4N处理使细胞停止增殖,但仍使细胞存活的实验后,则可以使用细胞的DNA含量分析和细胞结构的荧光测试来确定细胞停止生长的周期点。将细胞用M4N处理达72小时,与对照细胞相比,显示出G2/MDNA含量增加(图10a-d)。最极端的响应可以从C3和CEMT4细胞系中观察到,其中>90%的细胞显示了G2/M DNA含量。
为了区别是在G2期还是在有丝分裂阻抑期停止,将抗α微管的抗体(绿色)和抗γ微管的抗体(红色)用于确定M4N处理72小时后的C3细胞系的中心体状态。如图11a所示,M4N处理的细胞中心体被复制,但仍在细胞核附近彼此相邻。由于在前期的早期中心体分离,因此可以断定这些细胞还没有开始有丝分裂。相反,对照细胞染色的γ微管具有G1或S期的辐射状特征(29)。用DAPI染色还观察到M4N处理后的细胞中缺少染色质浓缩(图12b),这是细胞没有从G2期继续发展的另一证据(30)。 
实施例11 
40μM M4N抑制了CDC2的生成 
由于细胞自G2之后的进程依赖于MPF的生成,对于40μM M4N处理的C3细胞中的蛋白质组成状态进行了检测。不同步的细胞在含有M4N的1%DMSO、或只有1%DMSO的介质中生长24个小时或72个小时。收集细胞,用western印迹分析相同量的总细胞蛋白。用M4N处理72小时的细胞CDC2数量显著下降(图12a)。然而,通过脱膜和重复探测相同膜进行检测,细胞周期蛋白B的水平没有改变。这些结果表明,在这些条件下细胞生长的停止不可能是响应p53的结果,因为p53的过度表达会导致细胞周期蛋白B的减少(31,32)。与western印迹分析结果相一致,CDC2激酶在M4N处理72小时后而失活(图12a)。这些试验支持了一个观点,即药物是通过抑制CDC2蛋白的合成,导致MPF失活而起作用。 
我们在前的研究表明M4N阻止Sp1-依赖性病毒转录的能力提示了CDC2mRNA水平的降低可能是CDC2蛋白质减少的机理。这与一个发现相一致,即基因表达时不需要Sp1的细胞周期蛋白B以正常水平合成;而基因启动子上具有两个必要的Sp1位点的CDC2蛋白,其数量显著减少。为了证明该假设,对40μM M4N处理5至72个小时的C3细胞中收集到的RNA进行了northern印迹分析。如图12b所示,在M4N仅处理24小时后,CDC2mRNA的数量就减少了,而在72小时后则几乎消失。非-Sp1调控的看家基因GAPDH的合成被用作承载RNA的对照(RNA loading control),其水平不受40μM M4N的影响。
采用C3细胞系使我们得到了一种用于分析M4N介导细胞周期停止的机理的另外的对照,因为其它Sp1-依赖性基因启动子也可能受到M4N的抑制。这种可能性是通过M4N对于C3细胞中Sp1依赖性HPV-16 E6/E7启动子转录的抑制作用进行检测的。对40μM M4N处理5至72小时的C3细胞中分离得到的RNA进行rtPCR分析,显示E7转录物水平明显减少(图12c)。GAPDH被再次用作本试验的内部对照,其水平不受药物处理的影响。这些结果为M4N减少了Sp1调控的启动子的转录物提供了证据。 
实施例12 
凝胶迁移率分析中G4N对于Sp1-结合活性的抑制 
Sp1家族蛋白诱导在DNA大沟处的结合(33)。Sp1蛋白的锌指区域负责GC框序列5′-GGGGCGGGG-3′的结合。根据计算机分析,可以确定G4N作为NDGA的氨基酯衍生物,能够与大沟处的序列形成稳定的复合物。为了确定G4N是否能作为Sp1阻止剂以及Sp1替代物,我们通过凝胶迁移率分析,在存在G4N或不存在G4N时,仅对Sp1的DNB结合域进行p1/增强子相互作用的研究。在阻止实验中,首先将不同浓度的G4N与32P-标记的DNA在结合缓冲液中,于25℃培养30分钟。然后加入重组Sp1蛋白(Sp1-167D)的DNA结合域,并在过量BSA蛋白下继续培养30分钟。在替代研究中,先使重组SP1-167D与DNA结合,然后在培养的第二步加入G4N。G4N和Sp1-167D的浓度以及培养和凝胶电泳条件在两个研究中都相同(实验部分)。如图13所示,在任一项研究中可以看到G4N能够使DNA不与Sp1-167D蛋白相互作用。当只测试Sp1的DNA结合域时,凝胶迁移率分析显示G4N表现出比阻止Sp1结合增强子更有效的替代结合Sp1的作用(图13,A,B,D)。我们也已经检验了结合的G4N是否能够被Sp1-167D所替代。在该项研究中,G4N抑制Sp1-167D的结合作用首先通过迁移率分析而得(图13C,泳道2和5)。当G4N结合的模板被其它Sp1-167D所替代,我们观察到Sp1-167D/DNA复合物带强度是剂量依赖性增强的(图6C,带6,7),表明Sp1-167D替代了模板上的G4N。
实施例13 
G4N对于Sp1调控的Tat-反式激活的HIV启动子活性的抑制作用 
如从前所报导的,甲基化的NDGA衍生物能够阻止Sp1与多种病毒启动子的增强子位点结合,包括HIV,HSV的ICP4,HPV的E6/E7基因的启动子(8,9,10)。我们通过如前所述的SEAP实验进一步验证了G4N对于Cos细胞中的HIV启动子的Tat-反式激活活性。Cos细胞中几乎检测不到HIVLTR驱动的SEAP表达的基本水平。当Cos细胞与CMV启动子驱动的Tat基因共转染时,则存在60倍或更多的SEAP表达(8)。这种Tat-驱动式HIVLTR启动子活性的反式激活从前显示是受Sp1调控的(7,8)。在G4N的存在下,我们观察到HIV反式激活的抑制是剂量依赖的方式(图14)。G4N的平均IC50值36μM可与3-O-甲基NDGA,Mal.4(IC5025μM)相比,并高于四甲基NDGA,M4N(IC5011μM)。这种差别可能是由于测试化合物的化学性质影响了细胞对药物的摄取。 
实施例14 
G4N对于SIV-1和HIV-1在细胞培养物中合成的抑制作用 
HIV-1和SIV都是逆转录病毒,需要整合到宿主染色体中以完成复制。二者都依赖宿主转录因子进行原病毒转录。Sp1在这两种病毒的表达中起关键作用,这两种病毒享有几乎相同的转录调控方式。我们已经研究并比较了G4N对于174x CEM细胞中的SIV与H9细胞中的HIV的抑制作用,使用了SIV感染的恒河猴作为动物模型以测试G4N的抗病毒效果。也检测了G4N在两种细胞系中的细胞毒性。对于SIV的抑制作用研究,将107174xCEM细胞与高滴度储存液SIVmac239在37℃下混合两个小时,然后用冷PBS缓冲液冲洗两次以除去未被吸附的病毒。将细胞悬浮液等分加入3个96孔培养板中。用储存液新鲜制备各种浓度的G4N溶液,然后分别等分加入至6个96孔培养板中。感染后(P.I.),每4天收集一次培养物上清液,将含有适宜药物浓度的新鲜介质在收集上清液后加入至培养物中。通过修饰的p27核心抗原捕获ELISA检测病毒的生成,如图示(图15)。在G4N的浓度超过5CIM时没有检测到SIV的生成。与无药物存在时的病毒合成相比较,当G4N的浓度低于2.5CIM,在感染后第4天和第8天的培养物上清液 中才检测到有SIV生成(图15)。通过MTT测试法确定,G4N(250μM或更少)对于未感染的174xCEM细胞显示无毒作用(34)。 
在H9细胞中进行了G4N对HIV-1抑制作用的类似实验。将H9细胞以1x105/ml浓度进行次培养,并用HIV-1(HIV-1RTMF)的AZT耐药株感染该细胞。感染后2个小时后,加入不同浓度的G4N,每4天更换新鲜介质。在9天的实验期间,仔细监测G4N存在时的细胞生长状况。用p24核心抗原捕获ELISA检测病毒的产成。如图所示(图16),G4N浓度为80CIM时,H9细胞中的HIV复制完全受到抑制。G4N抑制HIV-1RTMF的IC50为12μM。在测试范围内(低于250μM),对于未感染的H9细胞没有检测到毒性作用。 
实施例15 
M4N对于C3细胞中的Survivin基因表达的影响 
材料和方法 
细胞培养。C3细胞在补充有5%胎牛血清(GIBCO BRL)的Iscove′s修饰的Dulbecco′s基质(GIBCO BRL)中,保持在潮湿的孵育箱中,于37℃,5%CO2环境中单层生长。 
M4N处理。将C3细胞(5X106)接种于150-mm培养板中,并使其与培养板相接触。接种后的24小时后,用PBS清洗培养物两次,并用溶解于1%的DMSO中的M4N与生长基质相混合。 
细胞提取和免疫印迹。将细胞溶解于溶解缓冲液中,该缓冲液含有50mM HEPES pH7,250mM NaCl,0.1%(v/v)Nonidet P-40,10%甘油,1mMDTT,和鸡尾酒疗法的50μl/ml蛋白酶抑制剂(Sigma)。提取物的蛋白质浓度采用Bradford测试(Bio-Rad Laboratories),然后用SDS-PAGE分离50μg的蛋白质,并电迁移至硝基纤维素膜上(ECL)。将膜与Survivin的一级抗体(Santa Cruz Biotechnology)和凋亡酶3(Santa Cruz Biotechnology)共同培养。印记再与抗兔生物素共轭的二级抗体培养,然后与Avidx-AP抗生物素蛋白链菌素-碱磷酸酯酶培养,用CSPD???底物(Tropix)检测。 
RT-PCR分析。用硫氰酸胍盐和苯酚方法,从分子克隆中所描述的培养细胞中分离出mRNA(40)。采用survivin-义寡核苷酸引物5′-GCATCGCCACCTTCAAGAACTGGCCC-3′和survivin-反义寡核苷酸引物5′CGGGTAGTCTTTGCAGTCTCTTCAAACTC-3′得到一个343-碱基对的RT-PCR产物。采用GAPDH和反义引物5′-GAATCTACTGGCGTCTTCACC-3′和5′-GTCATGAGCCCTTCCACGATGC-3′得到238-碱基对的RT-PCR产物作为对照。在与MMLV(Promega)的逆转录反应后,将mRNA等份物置入含有1U或rRNAsin和脱氧核糖核酸酶的20μl反应缓冲液中,在75℃下培养5分钟。将得到的c-DNA产物在PCR条件下扩增:55℃达55秒,60℃达55秒,72℃达1分钟,进行30个循环。在含有溴化3,8-二氨基-5-乙基-6-苯基菲啶鎓的1.8%琼酯糖凝胶上通过电泳分离PCR产物,并在UV下拍照。用Scion Image定量电泳带,并将survivin PCR反应产物的信号强度正常化至GAPDH PCR产物的信号强度以生成survivin基因下调的图片。 
为了确定C3细胞中的Spl-调控的survivin基因表达是否在接受M4N处理后而减少,我们用40μM M4N处理细胞达24小时和72小时。如图17所示,用M4N处理的细胞导致survivin基因表达以时间-依赖性方式而显著减少。用40μM M4N处理细胞达24小时和72小时导致survivin基因表达分别减少了65%和80%。未接受处理的细胞,其survivin基因表达未显示任何减少。 
通过免疫印迹也可以显示Survivin蛋白在M4N处理72小时后出现下调。这种下调是剂量依赖性的(图18)。 
实施例16 
M4N处理诱导凋亡 
因为我们的数据显示M4N导致survivin mRNA和蛋白质的减少,由于survivin具有抗-凋亡功能,我们研究了上述减少是否能够导致凋亡。如凋亡酶-3的免疫印迹所示(图19),M4N处理达72小时促使凋亡酶-3活化。该活化有望导致M4N处理后的细胞凋亡的增加。
为便于参考,下面列出所参考的文献。 
1.Nurse,P.,Universal Control Mechanism Regulating Onsetof M-Phase.Nature,344,503-508(1990). 
2.Fang,F.and J.W.Newport,Evidence That theGl-S and G2-M Transitions AreControlled by Different cdc2 Proteins in Higher Eukaryotes.Cell,66,731-742(1991). 
3.Dalton,S.,Cell Cycle Regulation of the Human cdc2 Gene.The EMBO Journal,11,1797-1804.(1992.) 
4.Morgan,D.O.,Principlesof CDK Regulation.Nature,374,131-134.(1995.) 
5.Murray,A.W.,Creative Blocks:Cell-cycle Checkpoints and Feedback Controls.Nature,359,599-604(1992). 
6.Kao,G.D.,M.W.G.,and R.J.Muschel,p34(Cdc2)Kinase Activity ls E×cludedFrom the Nucleus During the Radiation-induced G (2)Arrest in HeLa Cells.J.Biol.Chem.,274,34779-34784(1999). 
7.Hwu,J.R.,Tseng,W.N.,Gnabre,J.,Giza,P.and Huang,R.C.C.AntiviralActivities of Methylated Nordihyd roguaiaretic Acids(I)Synthesis,StructureIdentification and Inhibition of Tat Regulated HIV Transactivation.J.Med.Chem.41:2994-3000(1998). 
8.Gnabre,J.N.,Brady,J.N.,Clanton,D.J.,lto,Y.,Dittmer,J.,Bates,R.B.andHuang,R.C.Inhibition of Human lmmunodeficiency Virus Type1Transcription andReplication by DNA Sequence-Selected Plant Lignans.Proc.Natl.Acad Sci U.S.A.92, 
11239(1995). 
9.Chen,H.,etal.,Antiviral Activities of Methylated Nordihydroguaiaretic Acids.2.Targeting Herpes Simplex Virus Replication by the Mutation Insensitive TranscriptionInhibitorTetra-O-Methyl-NDGA.Joumal of Medicinal Chemistry,41,3001-3007(1998). 
10.Craigo,J.,et al.,Inhibition of Human Papillomavirus Type16Gene E×pressionby Nordihydroguaiaretic Acid Plant Lignan Derivatives.Antiviral Research,47,19-28(2000). 
11.Baba,M.Mini Review.Cellular Factors as Alternative Targets for inhibitionofHIV-1.Antiviral Res.33,144i-1452(1997).
12.Gnabre,J.N.,lto,Y.,Ma.Y.and Huang,R.C.(1996)lsolation of Anti-HlV-1Lignans from Larrea T ridentata by Counter-Current Chromatography.J.Chromatogr.A 719,353. 
13.Gnabre,J.N.,Huang,R.C.,Bates,R.B.,Burns,J.J.,Calder,S.,Malcomson,M.E.andMcClure,K.J.(1995)CharacterizationofAnti-HIV Lignans fromLarreaT ridentata Tetrahedron 51,12203. 
14.Honess,R.W.,andRoizman,B.(1988)RegulationofHerpesVirusMacromolecular Synthesis.1.Cascade Regulation of Synthesis of Three Groups ofViral Proteins.J.Virol.1974.14,8. 
15.Courey,A.J.,and Tjian.R.(1988)Analysis of Spl in vivo Reveals MultipleTranscription Domains.Including a Novel Glutamine-rich Activation Motif.Cell 55,887. 
16.Some of the Spl-regulated cellular genes:Sartorelli,V.;Webster,K.A.;Kedes,L.Muscle-specif-c expresison of the cardiac alpha-actin gene requiresmyoD1,CarG-hox binding factor and Spl.Gene Dev.1990,4,1811.Dailey,i.,Roberts,S.B.;Heintz,N.Purification of the histone H4 gene-specific transcription factors,H4TF-1and H4TF-2.Gene Dev.1988,2,1700.Means,A.L.;Farnham,P.J.Transcriptioninitiation form the dihydrogolate reductase promoter is positioned by HIP-1binding atthe initiation site.Mel.Cell Biol.1990,10,653.Abravaya,K.;Philips,B.;Mo rimoto,R.l.Heat shock-induced interaction so heat shock transcription factor and human hsp70promoter examined by in vivefootp rinting.Mel.CellBiol.1991,11,586.Leask,A.;Rosenberg,M.;Vassa r,R.;Fuchs,E.Regulation fo a human epidermal keratin gene:Sequences and nuclear factors involve din keratinocyte-specific transcription.GeneDev.1990,4,1985.Desjardins,E.;Hay,N.Repeated CT elements bound by zincfinger proteins control the absolute and relative activities of the two principal huymancmyc promoter.Mel.Cell Biol.1993,13,5710.Sanchez,H.B.;Yieh,i.,Osborne,T.F.Cooperation by sterol regulatory element-binding proteins and Spl in sterol regulationof low-densitylipoprotein receptor gene.J.Biol.Chem.1995,270,1161.Lemaigre,F.P.;Lafontaine,D.A.;Courtois,S.J.;Durviaux,S.M.;Rousseau,G.G.Spl candisplaceGHF-1from its distal binding site and stimulate transcription form growthhormone gene promoter.Mol.l Cell.Biol.1990,10,1811.
17.Phelps,W.C.,Yee,C.L.,Munge r,K.and Howle y,P.M.(1988)The HumanPapilloma Virus Type 16 E7 Gene Encodes Transactivation and TransformationFunctions Similar to Those ofAdenovirus E/A.Cell 53,539-547. 
18.Greenstone,H.L.Nieland,J.D.,DeVisser,K.E.,DeBruijn,M.L.,Kimbauer,R.,Roden,R.B.,Lowy,D.R.,Kast,W.M.and Schille r,J.T.(1998)ChimericPapillomavirus Virus-Like particles Elicit Antitumor Immunity Against the E7Oncoprotein in an HPV16 Tumor Model.PNAS 95,1800-1805. 
19.Feltkamp,M.C.,Vreugdenhil,G.R.,Vierboom,M.P.,Ras,E.,Van der Burg,S.H.,Schegget,J.Ter,Melief,C.J.M.and Kast,W.M.(1995)CTL Raised Against aSubdominant Epitope Offered as a Synthetic Peptide Eradicate HumanPapillonavirus Type 16-induced Tumors.European Journal of Immunology25,2638-2642. 
20.Feltkamp,M.C.,Smits,H.L.,Vierboom,M.P.,Minaar,R.P.,B.M.Drijfhout,J.W.,Schegget,J.,Melief,C.and Kast,W.M.(1993)Vaccination with Cytotoxic TLymphocyte Epitope-Containing Peptide Protects Against a Tumor Induced byHuman Papillomavirus Type 16 Transformed Cells.Eur.J.Immunol.23,2242-2249. 
21.Jacob,S.W.and Herschler(1986)Pharmacology of DMSO.Academic Press,Inc. 
22.Jack,C.,and Torre,de la(1983)Biological Actions and Medical Applications ofDimethyl Sulfoxide.New York Academy of Sciences,New York,N.Y. 
23.Spruance,S.L.,McKeough.M.B.and Cardinal,J.R.(1983)Dimethyl Sulfoxideas a vehicle for topical antiviral chemotherapy.Ann.N.Y.Acad.Sci 411,28-33. 
24.Biswal,S.S.,et al.,Glutathione O×idation and Mitochondrial Depolarization asMechanisms of Nordihydroguaiaretic Acid-induced ApoptosisinLipoxygenase-deficient F15.12Cells.Toxicol.Sci.,53,77-83.(2000.) 
25.Schegg,K.M.and W.J.Welch,The Effect of Nordihydroguaiaretic Acid andRelated Lignans onFormyltetrahydrofolate Synthetase and Carbodylesterase.Biochim.Biophys.Acta,788,167-180(1984). 
26.Feltkamp,M.C.W.,etal.,Vaccination With Cytotoxic T LymphocyteEpitope-containing Peptide Protects Against a Tumor Induced by HumanPapillomavirus Type 16-Transfromed Cells.Eur.J.Immunol.,23,2242-2249(1993).
27.Lin,K.,et al.,Treatment of Established Tumors With a Novel Vaccine ThatEnhances Major Histocompatiblity Class II Presentation of Tumor Antigen.CancerRes,56,21-26.(1996.) 
28.Foley,G.E.,etal.,Continuous Culture of HumanLymphoblasts From Pe ripheralBlood of a Child With Acute Leukemia.Cancer,18,522-529(1965). 
29.Shiebel,E.,Gamma-Tubulin Complexes:Binding to the Centrosome,RegulationandMicrotubule Nucleation.Current Opinion Cellular Biology,12,113-118(2000). 
30.Marsden,M.P.F.,Laemmli,U.K.,Metaphase Chromosome Structure:Evidencefor a Radial Loop Model.Cell,17,849-858(1979). 
31.Taylo r,W.R.,etal.,Mechanisms of 02 Arrest in Response to Overexpression ofp53.Molecular Biology of the Cell,10,3607-3622(1999). 
32.Innocente,S.A.,et al.,p53 Regulates a G2 Checkpoint Through Cyclin B1.Proc.Natl.Acad.Sci USA,96,2147-2152(1999). 
33.Sjottem,E.;Anderson,C.;Johansen,T.Structural and Functional Analyses ofDNA Bending Induced by Spl Family Transcription Factors.J.Mol.Bio.,267,490-504(1997). 
37. 
34.Weislow,O.S.;Kiser,R.;Fine,D.L.;Bader,J.;Shoemaker,R.H.;Boyd,M.R.New Soluble-Formazan Assay for HIV-1 Cytopathic Effects:Application to High-FluxScreening of Synthetic and Natural Products for AIDS-Antiviral Activity.J.Natl.Cancer Inst.,81(8),557-586(1989). 
35.Li,F.and Altieri,D.C.,Transcriptional analysis of human su rvivin geneexpression.Biochem.J.344,305-311(1999). 
36.Li,F.and Altieri,D.C.,The Cancer Apoptosis Survivin gene:Characterization ofLocus and Transcriptional Requirements of Basal and Cell Cycle-dependentExpression.Cancer Res.59,3143-3151(1999). 
37.O′Connor,D.S.et al.,Proc.Natl.Acad.Sci.(US)97,13103-13107(2000). 
38.Grossman,D.et al.,Proc.Natl.Acad.Sci.(US)98,635-640(2001). 
39.Studzinski,G.P.(ed.),Apoptosis,A Practical Approach(1999),page10. 
40.Sambrook and Russell,Molecular Cloning,3rd ed.(2001).

Claims (5)

1.四-O-甲基去甲二氢愈创木酸在制备用于治疗个体白血病的药物中的应用。
2.根据权利要求1所述的应用,其中所述药物进一步包括至少一种药用可接受的赋形剂或载体。
3.根据权利要求2的应用,其中所述赋形剂或载体选自二甲基亚砜,磷酸缓冲盐和脂质体制剂。
4.根据权利要求1的应用,其中所述个体为哺乳动物。
5.根据权利要求4的应用,其中所述哺乳动物为人类。
CN028138627A 2001-05-09 2002-05-08 去甲二氢愈创木酸衍生物在制备治疗肿瘤的药物中的应用 Expired - Lifetime CN1525857B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/851,425 2001-05-09
US09/851,425 US6608108B2 (en) 1999-10-15 2001-05-09 Method for treatment of tumors using nordihydroguaiaretic acid derivatives
PCT/US2002/014374 WO2002089795A1 (en) 2001-05-09 2002-05-08 Method for treatment of tumors using nordihydroguaiaretic acid derivatives

Publications (2)

Publication Number Publication Date
CN1525857A CN1525857A (zh) 2004-09-01
CN1525857B true CN1525857B (zh) 2013-06-12

Family

ID=25310742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN028138627A Expired - Lifetime CN1525857B (zh) 2001-05-09 2002-05-08 去甲二氢愈创木酸衍生物在制备治疗肿瘤的药物中的应用

Country Status (8)

Country Link
US (3) US6608108B2 (zh)
EP (1) EP1392293B1 (zh)
JP (2) JP2004534025A (zh)
CN (1) CN1525857B (zh)
AU (1) AU2002311890C1 (zh)
CA (1) CA2447045A1 (zh)
SG (1) SG169224A1 (zh)
WO (1) WO2002089795A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365787B1 (en) * 1994-09-30 2002-04-02 The Johns Hopkins University Compounds for the suppression of HIV TAT transactivation
US6608108B2 (en) * 1999-10-15 2003-08-19 Johns Hopkins University Method for treatment of tumors using nordihydroguaiaretic acid derivatives
US20060141029A1 (en) * 2003-05-20 2006-06-29 Erimos Pharmaceuticals Llc Methods and compositions for delivery of catecholic butanes for treatment of diseases
US7728036B2 (en) 2003-05-20 2010-06-01 Erimos Pharmaceuticals, Llc Methods for delivery of catecholic butanes for treatment of tumors
WO2005007080A2 (en) * 2003-05-20 2005-01-27 Johns Hopkins University Methods and compositions for delivery of catecholic butanes for treatment of tumors
CA2524495A1 (en) * 2003-06-03 2005-01-13 Eli Lilly And Company Modulation of survivin expression
WO2005112924A2 (en) * 2004-04-27 2005-12-01 California Institute Of Technology Methods of treating cancer by inhibiting histone gene expression
CN100440843C (zh) * 2004-05-12 2008-12-03 华为技术有限公司 一种环网及其业务实现方法
US8440648B2 (en) * 2004-07-20 2013-05-14 Erimos Pharmaceuticals Llc Methods and compositions for treatment of intraepithelial neoplasia
KR20070086431A (ko) * 2004-12-22 2007-08-27 더 지렛트 캄파니 서비빈 저해제를 이용한 모발 성장 감소
AU2006208108A1 (en) * 2005-01-27 2006-08-03 Erimos Pharmaceuticals Llc Oral formulations for delivery of catecholic butanes including NDGA compounds
CN101150956B (zh) * 2005-01-27 2013-04-17 埃里莫斯医药品有限公司 用于注射入动物的包括ndga化合物的儿茶酚丁烷配方
US20060276423A1 (en) * 2005-04-18 2006-12-07 Rachel Altura Survivin-directed RNA interference-compositions and methods
US7964223B2 (en) * 2005-09-27 2011-06-21 University Of Kentucky Research Foundation Berry preparations and extracts
US8367126B2 (en) 2005-09-27 2013-02-05 University Of Kentucky Research Foundation Berry preparations and extracts
JP2009528294A (ja) * 2006-02-23 2009-08-06 エリモス・ファーマスーティカルズ・エルエルシー インフルエンザウイルス感染症の治療方法
US20100047371A1 (en) * 2006-08-29 2010-02-25 Mumper Russell J Compositions and methods for oral cancer chemoprevention using berry preparations and extracts
CN101547689B (zh) * 2006-10-02 2014-02-26 埃里莫斯医药品有限公司 通过醚键和氨基甲酸酯键四取代的ndga衍生物、它们的合成方法和药学用途
US9067875B2 (en) 2006-10-02 2015-06-30 Erimos Pharmaceuticals Llc Tetra-substituted NDGA derivatives via ether bonds and carbamate bonds and their synthesis and pharmaceutical use
US20100093872A1 (en) * 2008-10-15 2010-04-15 Erimos Pharmaceuticals Llc Stable aqueous formulations of water insoluble or poorly soluble drugs
CN101690829B (zh) * 2009-08-31 2013-09-18 中国科学院上海硅酸盐研究所 一种可再细胞化的生物瓣瓣膜材料的制备方法
US20120171213A1 (en) 2009-09-10 2012-07-05 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Method of treating tumors
WO2012106556A2 (en) 2011-02-02 2012-08-09 Amgen Inc. Methods and compositons relating to inhibition of igf-1r
EP2699237A4 (en) * 2011-04-21 2014-11-12 Childrens Hosp Medical Center THERAPY FOR LEUKEMIA
US10342767B2 (en) 2011-04-21 2019-07-09 Children's Hospital Medical Center Therapy for kinase-dependent malignancies
WO2013071056A2 (en) 2011-11-11 2013-05-16 Duke University Combination drug therapy for the treatment of solid tumors
US8980259B2 (en) 2012-07-20 2015-03-17 Novartis Ag Combination therapy
AU2014293011A1 (en) 2013-07-26 2016-03-17 Race Oncology Ltd. Compositions to improve the therapeutic benefit of bisantrene
CR20170587A (es) 2015-06-22 2018-04-03 Janssen Biotech Inc Terapias de combinación para enfermedades malignas hematológicas con anticuerpos anti-cd38 e inhibidores de survivina
WO2017129763A1 (en) 2016-01-28 2017-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment of signet ring cell gastric cancer
MX2017002227A (es) 2017-02-17 2018-08-16 Promotora Tecnica Ind S A De C V Composicion mejorada a base de acido norhidroguayaretico.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214874B1 (en) * 1999-10-15 2001-04-10 John Hopkins University Treatment of HPV induced cancer using in situ application of two nordihydroguiaretic acid derivatives, tetramethyl NDGA M4N and tetraglycinal NDGA G4N

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008294A (en) 1985-02-11 1991-04-16 Chemex Pharmaceuticals, Inc. Methods of treating tumors with compositions of catecholic butanes
US5276060A (en) * 1979-06-19 1994-01-04 Block/Chemex, G.P. Methods of treating tumors with compositions of catecholic butanes
DE3009542A1 (de) 1980-03-13 1981-09-24 Henkel KGaA, 4000 Düsseldorf Desodorierende kosmetische zusammensetzungen
US4774229A (en) * 1982-04-05 1988-09-27 Chemex Pharmaceuticals, Inc. Modification of plant extracts from zygophyllaceae and pharmaceutical use therefor
US4708964A (en) 1984-02-09 1987-11-24 Chemex Pharmaceuticals Lipoxygenase inhibitors
US4880637A (en) 1985-02-11 1989-11-14 Chemex Pharmaceuticals, Inc. Compositions of catecholic butanes with zinc
WO1988001509A1 (en) * 1986-08-25 1988-03-10 Chemex Pharmaceuticals, Inc. Pharmacologically active compositions of catecholic butanes with zinc
US5559149A (en) 1990-01-29 1996-09-24 Johnson & Johnson Consumer Products, Inc. Skin care compositions containing retinoids
US5646186A (en) 1994-05-17 1997-07-08 Johnson & Johnson Consumer Products, Inc. Retinoid composition
US5409690A (en) * 1993-06-23 1995-04-25 Chemex Pharmaceuticals, Inc. Treatment of multidrug resistant diseases in cancer cell by potentiating with masoprocol
US6365787B1 (en) 1994-09-30 2002-04-02 The Johns Hopkins University Compounds for the suppression of HIV TAT transactivation
US6071949A (en) * 1995-03-14 2000-06-06 The United States Of America As Represented By The Department Of Health And Human Services Use of lipoxygenase inhibitors as anti-cancer therapeutic and intervention agents
US5837252A (en) 1996-07-01 1998-11-17 Larreacorp, Ltd. Nontoxic extract of Larrea tridentata and method of making same
US5827898A (en) 1996-10-07 1998-10-27 Shaman Pharmaceuticals, Inc. Use of bisphenolic compounds to treat type II diabetes
ATE414149T1 (de) * 1996-11-20 2008-11-15 Univ Yale Survivin, ein protein das zelluläre apoptosis hemmt, und dessen modulation
US6077709A (en) * 1998-09-29 2000-06-20 Isis Pharmaceuticals Inc. Antisense modulation of Survivin expression
US6608108B2 (en) * 1999-10-15 2003-08-19 Johns Hopkins University Method for treatment of tumors using nordihydroguaiaretic acid derivatives

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214874B1 (en) * 1999-10-15 2001-04-10 John Hopkins University Treatment of HPV induced cancer using in situ application of two nordihydroguiaretic acid derivatives, tetramethyl NDGA M4N and tetraglycinal NDGA G4N

Also Published As

Publication number Publication date
EP1392293B1 (en) 2016-10-26
CN1525857A (zh) 2004-09-01
US8318815B2 (en) 2012-11-27
JP2004534025A (ja) 2004-11-11
EP1392293A1 (en) 2004-03-03
US20030171416A1 (en) 2003-09-11
US6777444B2 (en) 2004-08-17
AU2002311890C1 (en) 2008-05-15
SG169224A1 (en) 2011-03-30
AU2002311890B2 (en) 2007-07-26
EP1392293A4 (en) 2005-05-25
CA2447045A1 (en) 2002-11-14
JP2009242438A (ja) 2009-10-22
WO2002089795A1 (en) 2002-11-14
US20040127562A1 (en) 2004-07-01
US6608108B2 (en) 2003-08-19
US20020065310A1 (en) 2002-05-30

Similar Documents

Publication Publication Date Title
CN1525857B (zh) 去甲二氢愈创木酸衍生物在制备治疗肿瘤的药物中的应用
Shafabakhsh et al. Melatonin: a new inhibitor agent for cervical cancer treatment
CN1309381C (zh) 用于治疗肿瘤的去甲二氢愈创木酸衍生物
AU2002311890A1 (en) Method for treatment of tumors using nordihydroguaiaretic acid derivatives
KR20120060945A (ko) 환경대사적 전환인자, 다차원 세포내 분자 또는 환경적 영향인자를 사용한 대사적 장애의 치료 방법
TW201618751A (zh) 來自牛樟芝菌絲體的化合物及混合物的用途
Gnocchi et al. Inhibition of LPAR6 overcomes sorafenib resistance by switching glycolysis into oxidative phosphorylation in hepatocellular carcinoma
Jiang et al. Zinc defends against Parthanatos and promotes functional recovery after spinal cord injury through SIRT3‐mediated anti‐oxidative stress and mitophagy
Abbas et al. Silymarin in combination with chlorogenic acid protects against hepatotoxicity induced by doxorubicin in rats: possible role of adenosine monophosphate–activated protein kinase pathway
Luo et al. The HO-1 signal prevents HMGB1-mediated activation of NLRP3 inflammasomes in lipopolysaccharide-induced acute lung injury in vitro
Park et al. Dichroa febrifuga Lour. inhibits the production of IL-1β and IL-6 through blocking NF-κB, MAPK and Akt activation in macrophages
CN109771428B (zh) 雷公藤红素联合erastin在治疗非小细胞肺癌的药物中的应用
CN115212212B (zh) 小分子化合物LGOd1在制备治疗癌症相关药物中的应用
Chen et al. Synergistic Effects of Tranylcypromine and ML385: A Repurposing Strategy for Effective Cancer Therapy
Wen et al. Glabridin improves autoimmune disease in Trex1-deficient mice by reducing type I interferon production
Chen et al. Synergistic Effects of Tranylcypromine and NRF2 Inhibitor: A Repurposing Strategy for Effective Cancer Therapy
MXPA02003799A (en) Nordihydroguaiaretic derivatives for use in treatment of tumors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20130612

CX01 Expiry of patent term