CN1525153A - Soft measurement method for overflow particle size index of ball mill grinding system - Google Patents
Soft measurement method for overflow particle size index of ball mill grinding system Download PDFInfo
- Publication number
- CN1525153A CN1525153A CNA031339514A CN03133951A CN1525153A CN 1525153 A CN1525153 A CN 1525153A CN A031339514 A CNA031339514 A CN A031339514A CN 03133951 A CN03133951 A CN 03133951A CN 1525153 A CN1525153 A CN 1525153A
- Authority
- CN
- China
- Prior art keywords
- ball mill
- neural network
- measurement
- classifier
- soft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Crushing And Grinding (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种自动化技术中的测量技术领域,具体地涉及对选矿厂磨矿工段中用于研磨矿石的由球磨机和螺旋分级机组成的湿式磨矿回路的最终产品——螺旋分级机溢流粒度指标进行软测量的方法。The invention relates to the field of measurement technology in automation technology, in particular to the overflow of the spiral classifier, the final product of the wet grinding circuit composed of a ball mill and a spiral classifier, which is used to grind ore in the grinding section of a mineral processing plant. A method for soft-sensing granularity indicators.
背景技术Background technique
在选矿行业中,由球磨机和螺旋分级机组成的湿式磨矿回路广泛用于将矿石研磨至工艺要求的粒度范围内,粒度过大或过小均对后续的选别过程产生不利影响,因此磨矿回路的最终产品——螺旋分级机溢流的粒度(也称磨矿粒度、溢流粒度)是衡量磨矿回路运行品质的重要指标。目前,常规的磨矿粒度的检测方法由两种:一是离线人工取样,在实验室人工测量;另一种是使用粒度的检测设备——粒度计进行在线测量,前一种方法的不足在于:1.人工操作时人为因素影响大,测量结果的客观性差;2.测量的时间间隔长,测量结果反馈的时间也长,因此得到的信息对操作人员缺乏指导意义;第二种方法不足之处在于虽然能够得到比较准确客观及时的测量结果,但粒度计价格昂贵,我国多数选矿厂难以配备,而且现场维护的工作量也很庞大,综上所述,目前国内外还没有专门针对球磨机加螺旋分级机构成的磨矿回路的磨矿粒度采用软测量方法。In the mineral processing industry, the wet grinding circuit composed of ball mills and spiral classifiers is widely used to grind ore to the particle size range required by the process. Too large or too small particles will have an adverse effect on the subsequent separation process. Therefore, grinding The final product of the mining circuit - the overflow particle size of the spiral classifier (also called grinding particle size, overflow particle size) is an important indicator to measure the operation quality of the grinding circuit. At present, there are two conventional detection methods for grinding particle size: one is offline manual sampling and manual measurement in the laboratory; the other is online measurement using a particle size detection device—a particle size meter. The disadvantage of the former method is that : 1. The influence of human factors is large during manual operation, and the objectivity of the measurement results is poor; 2. The time interval of measurement is long, and the time for feedback of measurement results is also long, so the obtained information lacks guiding significance for operators; the second method is insufficient. The reason is that although accurate, objective and timely measurement results can be obtained, the particle size meter is expensive, and it is difficult to equip most of the concentrators in China, and the workload of on-site maintenance is also huge. The grinding particle size of the grinding circuit formed by the spiral classifier adopts the soft measurement method.
发明内容Contents of the invention
为了解决以上对球磨机加螺旋分级机构成的磨矿回路的磨矿粒度测量之不足,本发明的目的是提供一种针对这种磨矿回路的磨矿粒度软测量方法,用于建立用神经网络实现的磨矿粒度软测量模型,通过常规在线测量仪表提供的辅助变量的测量参数,给出当前的分级机溢流粒度的估计值,为磨矿生产过程的优化操作和优化运行提供关键指标。In order to solve the above deficiencies in the measurement of the grinding particle size of the grinding circuit composed of a ball mill plus a spiral classifier, the purpose of the present invention is to provide a soft measurement method for the grinding particle size of this grinding circuit, which is used to establish a neural network The realized grinding particle size soft measurement model provides the estimated value of the current classifier overflow particle size through the measurement parameters of auxiliary variables provided by conventional online measuring instruments, and provides key indicators for the optimal operation and optimal operation of the grinding production process.
本发明软测量方法技术方案是这样实现的:The technical solution of the soft sensor method of the present invention is realized in this way:
本发明所提出的磨矿粒度测量方法由硬件平台及测量软件组成,其中硬件平台核心由球磨机及螺旋分级机组成,同时配备了测量仪表,执行机构以及进行软件计算的计算机系统。其硬件的联接是球磨机的输入端与皮带给料机、球磨机入口加水量管路及分级机返砂口相联接,球磨机输出端与出口补加水入口同时与螺旋分级机输入口相接,螺旋分级机返砂端与球磨机入口相接,详细结构如下(如图1所示):The grinding particle size measurement method proposed by the present invention is composed of a hardware platform and measurement software, wherein the core of the hardware platform is composed of a ball mill and a spiral classifier, and is equipped with a measuring instrument, an actuator and a computer system for software calculation. The connection of its hardware is that the input end of the ball mill is connected with the belt feeder, the water addition pipeline of the ball mill inlet and the sand return port of the classifier, and the output end of the ball mill is connected with the inlet of supplementary water at the outlet and the input port of the spiral classifier at the same time. The sand return end of the machine is connected to the entrance of the ball mill, and the detailed structure is as follows (as shown in Figure 1):
一个由球磨机加螺旋分级机构成的磨矿回路,其测量仪表包括A grinding circuit consisting of a ball mill and a spiral classifier, the measuring instruments include
一个称重仪表(可以是核子秤或皮带秤),用于在线测量球磨机新给矿量QF,安装在给料皮带上;A weighing instrument (can be a nuclear scale or a belt scale), used for online measurement of the new ore feed Q F of the ball mill, installed on the feed belt;
一个流量计,用于在线测量球磨机入口加水量WF,安装在球磨机入口加水管上;A flowmeter, used for online measurement of water addition W F at the inlet of the ball mill, installed on the water inlet pipe of the ball mill;
一个密度计,用于在线测量分级机溢流浓度DOVC,安装在分级机溢流管路上;A density meter, used for online measurement of classifier overflow concentration D OVC , installed on the classifier overflow pipeline;
两个功率计或两个电流计,用于在线测量球磨机功率PWM和螺旋分级机功率PWC或球磨机电流和螺旋分级机电流,分别与球磨机及分级机的驱动电机相接,由于功率信号与电流信号等价,所以本说明书中PWM和PWC也可以用来表示球磨机电流和螺旋分级机电流信号。Two power meters or two ammeters are used to measure the power P WM of the ball mill and the power P WC of the spiral classifier or the current of the ball mill and the current of the spiral classifier, respectively connected to the drive motors of the ball mill and the classifier. Current signals are equivalent, so PWM and P WC in this specification can also be used to represent ball mill current and spiral classifier current signals.
其执行机构包括:Its executive agencies include:
两个电动调节阀门,分别用于调节球磨机入口补加水和球磨机出口补加水,安装于球磨机入口补加水管和球磨机出口补加水管上;Two electric regulating valves are used to adjust the supplementary water at the ball mill inlet and the supplementary water at the ball mill outlet respectively, and are installed on the supplementary water pipes at the entrance of the ball mill and the supplementary water pipes at the outlet of the ball mill;
一个变频器,用于调节给料机振动频率,与振动给料机相接;A frequency converter, used to adjust the vibration frequency of the feeder, connected with the vibrating feeder;
该磨矿回路同时配置了分布式计算机控制系统(DCS)、或可编程逻辑控制器(PLC)、或工业控制计算机(IPC),或分立式工业调节器,并按照如下对应关系组成基本控制回路:The grinding circuit is also equipped with a distributed computer control system (DCS), or a programmable logic controller (PLC), or an industrial control computer (IPC), or a discrete industrial regulator, and the basic control is formed according to the following corresponding relationship Loop:
电振给料机频率控制新给矿量QF;The frequency of the electric vibrating feeder controls the new ore feeding amount Q F ;
球磨机入口补加水电动调节阀控制球磨机入口补加水流量WF;The electric regulating valve for supplementary water at the entrance of the ball mill controls the flow rate W F of the supplementary water at the entrance of the ball mill;
球磨机出口补加水电动调节阀控制螺旋分级机溢流浓度DOVC;The electric regulating valve for adding water at the outlet of the ball mill controls the overflow concentration D OVC of the spiral classifier;
本发明的软测量软件既可以运行在计算机控制系统的监控计算机上,也可以运行于独立的计算机上,该软件通过与控制回路(分布式计算机控制系统(DCS)、或可编程逻辑控制器(PLC)、或工业控制计算机(IPC),或分立式工业调节器)进行通讯,获得实时的过程数据,并给出磨矿粒度的估计结果。Soft measurement software of the present invention both can be run on the supervisory computer of computer control system, also can be run on the independent computer, this software passes through with control loop (distributed computer control system (DCS) or programmable logic controller ( PLC), or industrial control computer (IPC), or discrete industrial regulator) to communicate, obtain real-time process data, and give the estimated result of grinding particle size.
本发明的实现方法包括,辅助变量的选择,训练数据的取得,神经网络软测量模型的学习和使用。The realization method of the present invention includes the selection of auxiliary variables, the acquisition of training data, the study and use of the neural network soft sensor model.
辅助变量的选择。Auxiliary variable selection.
在上述的硬件平台实现了球磨机的三个基础回路的自动控制之后,我们将由球磨机加螺旋分级机构成的磨矿设备在加上控制系统定义为由下述输入输出变量组成的非线性的多输入多输出的磨矿系统:After the above-mentioned hardware platform realizes the automatic control of the three basic loops of the ball mill, we define the grinding equipment composed of the ball mill plus the spiral classifier plus the control system as a non-linear multi-input composed of the following input and output variables Multiple output grinding system:
其输入变量包括:Its input variables include:
可控的可在线测量的操作变量(也称独立变量),包括Controllable manipulated variables (also called independent variables) that can be measured online, including
球磨机新给矿量QF;The new ore supply Q F of the ball mill;
球磨机入口加水量WF;The amount of water added to the ball mill inlet W F ;
分级机溢流浓度DVOC;Classifier overflow concentration D VOC ;
不可控的不可在线测量的干扰变量,包括Uncontrollable disturbance variables that cannot be measured online, including
球磨机内磨矿介质的数量GM,一般正常操作下每天一次性加入一定数量的钢球,所以该变量随时间的变化趋势大致为如图2所示的锯齿型曲线;矿石硬度HD;The quantity G M of the grinding medium in the ball mill generally adds a certain amount of steel balls once a day under normal operation, so the change trend of this variable over time is roughly a zigzag curve as shown in Figure 2; the ore hardness H D ;
其输出变量包括:Its output variables include:
可在线测量的变量,包括Variables that can be measured online, including
球磨机功率(或电流)PWM;Ball mill power (or current) P WM ;
螺旋分级机功率(或电流)PWC;Spiral classifier power (or current) P WC ;
不可在线测量的目标变量,即The target variable that cannot be measured online, namely
螺旋分级机溢流粒度PSOV,一般采用离线人工取样,在实验室人工测量获得数据;Spiral classifier overflow particle size P SOV generally adopts off-line manual sampling, and the data is obtained by manual measurement in the laboratory;
在稳态情况下,该非线性系统的输入输出关系可以表示为In the steady state, the input-output relationship of the nonlinear system can be expressed as
PSOV=f1(QF,WF,DOV,HD,GM)P SOV =f 1 (Q F , W F , D OV , HD , G M )
PWM=f2(QF,WF,DOV,HD,GM)P WM =f 2 (Q F , W F , D OV , HD , G M )
PWC=f3(QF,WF,DOV,HD,GM)P WC =f 3 (Q F , W F , D OV , HD , G M )
根据反函数定理,由f2和f3两个公式可知,球磨机电流和分级机电流与磨矿介质数量和矿石硬度之间存在反函数关系:According to the inverse function theorem, it can be seen from the two formulas f2 and f3 that there is an inverse function relationship between the current of the ball mill and the current of the classifier, the amount of grinding media and the hardness of the ore:
HD=f4(QF,WF,DOV,PWM,PWC)H D =f 4 (Q F , W F , D OV , P WM , P WC )
GM=f5(QF,WF,DOV,PWM,PWC)G M =f 5 (Q F , W F , D OV , P WM , P WC )
因此,将上两个非线性函数代入f1之中,可以得到Therefore, substituting the above two nonlinear functions into f 1 , we can get
PSOV=f1(QF,WF,DOV,HD,GM)P SOV =f 1 (Q F , W F , D OV , HD , G M )
=f1[QF,WF,DOV,f4(QF,WF,DOV,PWM,PWC),f5(QF,WF,DOV,PWM,PWC)]= f 1 [Q F , W F , D OV , f 4 (Q F , W F , D OV , P WM , P WC ), f 5 (Q F , W F , D OV , P WM , P WC ) ]
=f6(QF,WF,DOV,PWM,PWC)所以,螺旋分级机溢流粒度PSOV可以通过新给矿量QF、入口补加水流量WF、分级机溢流浓度DOVC、球磨机功率(或电流)PWM、分级机功率(或电流)PWC的信息参数反映出来。=f 6 (Q F , W F , D OV , P WM , P WC ) Therefore, the overflow particle size P SOV of the spiral classifier can be determined by the new ore feed Q F , the inlet supplementary water flow W F , and the classifier overflow concentration The information parameters of D OVC , ball mill power (or current) P WM , and classifier power (or current) P WC are reflected.
注意到球磨机内磨矿介质的数量GM,在一般正常操作下每天一次性加入一定数量的钢球,其变化规律为周期为24小时的近似锯齿型的曲线,如果引入如下的时间变量:Pay attention to the amount G M of the grinding medium in the ball mill. Under normal operation, a certain amount of steel balls are added once a day, and the change rule is an approximately zigzag curve with a period of 24 hours. If the following time variables are introduced:
T——在一个加球周期之内,从加球时刻开始到当前时刻的时间长度就可以更加敏感地反映球磨机内磨矿介质的数量GM的变化(功率或电流的变化尽管可以反映,但敏感性差一些)。因此将时间变量T作为一个独立的辅助变量引入软测量模型:T——In a ball adding cycle, the length of time from the moment of adding balls to the current moment can more sensitively reflect the change of the quantity G M of the grinding medium in the ball mill (although the change of power or current can be reflected, but less sensitive). Therefore, the time variable T is introduced into the soft sensor model as an independent auxiliary variable:
PSOV=f7(QF,WF,DOV,PWM,PWC,T)上式反映了在磨矿系统的稳定状态下,我们选择的这些辅助变量,与待估计的主变量螺旋分级机溢流粒度PSOV之间客观存在的非线性函数关系。P SOV =f 7 (Q F , W F , D OV , P WM , P WC , T) The above formula reflects that in the steady state of the grinding system, these auxiliary variables we choose are spiral with the main variable to be estimated There is an objective nonlinear functional relationship between the classifier overflow particle size P SOV .
因此本发明所选择的辅助变量包括Therefore, the auxiliary variables selected by the present invention include
新给矿量QF;New ore supply Q F ;
入口补加水流量WF;Inlet make-up water flow rate W F ;
分级机溢流浓度DOVC;Classifier overflow concentration D OVC ;
球磨机功率(或电流)PWM;Ball mill power (or current) P WM ;
分级机功率(或电流)PWC;Classifier power (or current) P WC ;
时间变量T。time variable T.
训练数据的取得。Acquisition of training data.
在设备承受能力之内,在覆盖正常操作范围并稍大于正常操作范围的范围内,给出一组独立变量(新给矿量QF、入口补加水流量WF、分级机溢流浓度DOVC)的不同的设定值的组合,形成下面的设定值集合Within the bearing capacity of the equipment, within the scope covering the normal operating range and slightly larger than the normal operating range, a set of independent variables (new ore feeding Q F , inlet supplementary water flow W F , classifier overflow concentration D OVC ) of different set value combinations to form the following set of set values
Ssetpoint={[QFi,WFi,DOVi]|=1,…,m}其中m为该集合内的元素数量,每个元素包含一个[QFi,WFi,DOVi]的三元组。将该设定值集合的每一个元素依次施加于磨矿系统之上,每加一次元素[QFi,WFi,DOVi]之后待磨矿系统进入稳态,在螺旋分级机溢流处由人工采集样本,送实验室测量样本的粒度数值PSOVi,同时记录采样的时刻Ti(从最近的一次加球时刻开始计量),作为本次采样的时间变量,并同时记录球磨机功率(或电流)PWMi、分级机功率(或电流)PWCi,待本次采样及记录完成后,对磨矿系统施加下一元素。由此,可以得到如下的数据集合S setpoint ={[Q Fi , W Fi , D OVi ]|=1,...,m} where m is the number of elements in the set, and each element contains a ternary of [Q Fi , W Fi , D OVi ] Group. Each element of the set value set is applied to the grinding system in turn. After each element [Q Fi , W Fi , D OVi ] is added, the grinding system enters a steady state, and the overflow of the spiral classifier is formed by Manually collect samples, send them to the laboratory to measure the particle size value P SOVi of the samples, and record the sampling time T i (measured from the latest ball adding time) as the time variable of this sampling, and record the power (or current) of the ball mill at the same time ) P WMi , classifier power (or current) P WCi , after this sampling and recording is completed, apply the next element to the grinding system. Thus, the following data set can be obtained
SV={[QFi,WFi,DOVi,PWMi,PWCi,Ti,PSOVi]|i=1,…,m}以上述数据集合按照下述规则配对,即成为训练集S V ={[Q Fi , W Fi , D OVi , P WMi , P WCi , T i , P SOVi ]|i=1,..., m} pair the above data set according to the following rules, and it becomes the training set
{[QFi,WFi,DOVi,PWMi,PWCi,Ti]|i=1,…,m}→{[PSOVi]|i=1,…,m}其中,→符号左边的变量为磨矿粒度软测量模型的输入变量(也就是辅助变量),→符号右边的变量为磨矿粒度软测量模型进行学习训练的导师信号。该软测量模型的输入输出变量关系及训练方式如图3所示。{[Q Fi , W Fi , D OVi , P WMi , P WCi , T i ]|i=1,...,m}→{[P SOVi ]|i=1,...,m} where, → sign left The variable is the input variable (that is, the auxiliary variable) of the grinding particle size soft sensor model, and the variable on the right side of the symbol is the tutor signal for learning and training of the grinding particle size soft sensor model. The relationship between the input and output variables and the training method of the soft sensor model are shown in Figure 3.
神经网络软测量模型的训练和使用。Training and use of neural network soft sensor models.
本发明的软测量方法是以软测量软件的方式实现的,其流程框图(如图4所示)。分为训练过程和测量过程,其详细步骤如下:The soft sensor method of the present invention is realized in the form of soft sensor software, and its flow chart is shown in FIG. 4 . It is divided into training process and measurement process, and its detailed steps are as follows:
(A)初始化:进行所有变量的初始化。(A) Initialization: Initialize all variables.
(B)训练或测量?如果本次运行为训练过程,则转至(C),进行用训练集的数据训练神经网络的过程;如果神经网络已经训练好,本次运行过程的目的是为了测量当前状态下的溢流浓度指标,则转至(I);(B) Train or measure? If this operation is a training process, go to (C) to train the neural network with the training set data; if the neural network has been trained, the purpose of this operation is to measure the overflow concentration in the current state indicator, go to (I);
(C)确定神经网络结构和初始权值(C) Determine the neural network structure and initial weights
由于神经网络可以以任意精度逼近任意的连续非线性函数,因此任何具有上述性质的神经网络都可以用来作为本发明的软测量模型结构,具体实施时可以采用反向传播网络(BP)和径向基函数(RBF)网络,但不限于这两种网络。Since the neural network can approach any continuous nonlinear function with arbitrary precision, any neural network with the above-mentioned properties can be used as the soft sensor model structure of the present invention, and backpropagation network (BP) and path Redirected basis function (RBF) networks, but not limited to these two types of networks.
(D)读取训练集的数据:从训练集所在的数据库中读取有关数据,进行归一化处理后,输入神经网络软测量模型;(D) read the data of the training set: read relevant data from the database where the training set is located, after normalization processing, input the neural network soft sensor model;
(E)计算神经网络软测量模型的输出,并与导师信号比较(E) Calculate the output of the neural network soft sensor model and compare it with the supervisor signal
将训练集中的输入信号依次输入(逐次学习)或同时输入(批次学习)由神经网络构成的软测量模型,将当前时刻软测量模型的输出与对应的导师信号加以比较,计算当前的误差信号;The input signals in the training set are input sequentially (sequential learning) or simultaneously (batch learning) into the soft sensor model composed of neural networks, and the output of the soft sensor model at the current moment is compared with the corresponding tutor signal to calculate the current error signal ;
(F)修正神经网络权值(F) Correction of neural network weights
根据比较得到的误差信号采用相关的神经网络学习算法修正神经网络的内部的权值矩阵,修正的目标是使得软测量模型的输出与其对应的导师信号之间的误差的均方和下降。修正权值之后,重新计算神经网络的输出,并与导师信号比较误差;According to the error signal obtained from the comparison, the relevant neural network learning algorithm is used to correct the internal weight matrix of the neural network. The goal of the correction is to reduce the mean square sum of the error between the output of the soft sensor model and its corresponding tutor signal. After correcting the weights, recalculate the output of the neural network and compare the error with the mentor signal;
(G)误差是否合格?如果误差符合预定标准,则说明神经网络训练结束,转至(H);若误差不符合预定标准,说明应继续训练,转至(E);(G) Is the error qualified? If the error meets the predetermined standard, it means that the training of the neural network is over, and then go to (H); if the error does not meet the predetermined standard, it means that the training should be continued, and then go to (E);
(H)保存神经网络权值:训练过程结束,得到的神经网络权值就可以用于对溢流粒度进行软测量;(H) Preserving the neural network weights: the training process ends, and the obtained neural network weights can be used for soft measurement of the overflow granularity;
(I)读取神经网络权值:如果本次操作的目的是为了测量当前状态下的溢流浓度指标,则首先要读取前面(H)保存好的神经网络权值;(1) read neural network weights: if the purpose of this operation is to measure the overflow concentration index under the current state, then at first will read the neural network weights that front (H) preserves;
(J)读取过程数据(J) Read process data
(K)过程是否进入稳态?如果过程的所有变量都已进入稳态,则开始进行软测量过程;否则返回(J)等待进入稳态;(K) Has the process entered a steady state? If all the variables of the process have entered the steady state, then start the soft measurement process; otherwise return (J) and wait to enter the steady state;
(L)稳态过程数据经过与训练过程相同的归一化处理后输入神经网络。(L) The steady-state process data is input into the neural network after the same normalization process as the training process.
(M)计算神经网络输出:根据前面确定好的神经网络结构和神经网络权值,计算当前的输出,也就是溢流粒度指标的估计值。(M) Calculate neural network output: calculate the current output, which is the estimated value of the overflow granularity index, according to the previously determined neural network structure and neural network weights.
(N)显示粒度软测量结果:在人机界面上显示溢流粒度的软测量指标的估计值。(N) Display particle size soft measurement results: display the estimated value of the overflow particle size soft measurement index on the man-machine interface.
(O)结束否?如果需要继续测量,则返回至(J);如果不需要继续测量,则转至(P);(O) Is it over? If you need to continue measuring, go back to (J); if you don’t need to continue measuring, go to (P);
(P)结束。(P) end.
为了使得软测量模型具有一定的自适应能力,适应磨矿系统的特性的慢性漂移和变化,需要神经网络软测量模型在必要时候重新启动学习,其方法是,当按照选矿厂的运行规定定期人工测量分级机溢流粒度的时候,将采样值与神经网络的输出值相比较,如果差值超过一定范围,说明磨矿系统的特性已经出现显著漂移,于是启动学习过程,将新采集到的数据组成新的训练集,按照前述的学习算法对原来的神经网络软测量模型进行进一步训练,直至误差水平降至所要求的标准。In order to make the soft sensor model have a certain self-adaptive ability and adapt to the chronic drift and change of the characteristics of the grinding system, it is necessary to restart the learning of the neural network soft sensor model when necessary. When measuring the overflow particle size of the classifier, compare the sampling value with the output value of the neural network. If the difference exceeds a certain range, it means that the characteristics of the grinding system have drifted significantly, so the learning process is started, and the newly collected data A new training set is formed, and the original neural network soft sensor model is further trained according to the aforementioned learning algorithm until the error level drops to the required standard.
本发明的优点在于:利用常规计算机控制系统和常规的检测仪表提供的在线过程数据,并结合时间变量以反映磨矿介质的变化,仅仅通过少量的人工采样,实现了磨矿系统分级机溢流粒度的软测量。与粒度计相比,降低了成本,并且不会发生取样管路堵塞的情况,降低了维护工作量,提高了可靠性;与人工测量相比,减少了操作人员的工作量,降低了人为操作引入的测量的不确定性,提高了测量的时效性。该方法有助于实现磨矿系统的优化控制和优化运行。The present invention has the advantages of: using the online process data provided by the conventional computer control system and conventional detection instruments, combined with the time variable to reflect the change of the grinding medium, and only through a small amount of manual sampling, the overflow of the classifier of the grinding system is realized Soft measurement of granularity. Compared with the particle size meter, the cost is reduced, and the sampling pipeline will not be blocked, the maintenance workload is reduced, and the reliability is improved; compared with manual measurement, the workload of the operator is reduced, and the manual operation is reduced The measurement uncertainty introduced improves the timeliness of measurement. This method is helpful to realize the optimal control and optimal operation of the grinding system.
附图说明Description of drawings
图1为本发明磨矿回路的流程及测量仪表执行机构和基础回路配置图Fig. 1 is the process flow of the grinding circuit of the present invention and the configuration diagram of the measuring instrument actuator and the basic circuit
图2为本发明常规加球制度下的球磨机内磨矿介质的近似变化曲线Fig. 2 is the approximate variation curve of the grinding medium in the ball mill under the conventional ball adding system of the present invention
图3为本发明的磨矿粒度软测量模型的输入输出关系及训练方式Fig. 3 is the input-output relationship and the training method of the grinding particle size soft sensor model of the present invention
图4为本发明的溢流粒度软测量软件的流程框图Fig. 4 is the block flow diagram of overflow particle size soft measurement software of the present invention
图1至图3中所用标记符号如下:The symbols used in Figures 1 to 3 are as follows:
螺旋分级机溢流粒度——PSOV Spiral classifier overflow particle size - P SOV
新给矿量——QF New ore supply——Q F
球磨机入口补加水流量——WF Ball mill inlet make-up water flow rate——W F
螺旋分级机溢流浓度——DOVC Spiral classifier overflow concentration - D OVC
球磨机功率(或电流)——PWM Ball mill power (or current) - P WM
螺旋分级机功率(或电流)——PWC Spiral classifier power (or current) - P WC
时间变量——TTime variable - T
功率(或电流)变送器——PTPower (or current) transmitter - PT
浓度变送器——DTConcentration Transmitter - DT
流量变送器——FTFlow Transmitter - FT
质量变送器——WTMass Transmitter - WT
实线尖头表示物流(原矿,水和矿浆)或信号流;The pointed head of the solid line indicates the flow of material (raw ore, water and pulp) or signal flow;
点虚线箭头表示基础控制回路的配对;The dotted arrows indicate the pairing of the underlying control loops;
划虚线表示传感器与变送器的连接。A dashed line indicates the connection of the sensor to the transmitter.
具体实施方式Detailed ways
本发明的实施例为一个大型铁矿选矿厂的弱磁焙烧矿的一段磨矿系列。该选矿厂的主要铁矿石为黄铁矿、褐铁矿,脉石以重晶石、石英、碧玉及铁白云石为主,矿石实际含铁品位33%,经分选后的弱磁矿经焙烧工序后输至弱磁选圆筒矿仓,磨矿系统的示意图如图1所示,弱磁选圆筒矿仓内的焙烧矿由电振给矿机排料,再由给矿皮带机送入球磨机内,与球磨机入口补加水混合在球磨机内被研磨成矿浆,该段磨矿采用格子型球磨机,球磨机排矿与球磨机出口补加水回合进入螺旋分级机,螺旋分级机返砂返回一次球磨,与一次球磨形成闭路。螺旋分级机溢流(即本道工序之最终产品)进入泵池后被输送至后续工序。The embodiment of the present invention is a grinding series of the weak magnetic roasted ore of a large-scale iron ore concentrator. The main iron ores of this concentrator are pyrite and limonite, and the gangues are mainly barite, quartz, jasper and iron dolomite. The actual iron content of the ore is 33%. After sorting, the weak magnetic ore After the roasting process, it is transported to the weak magnetic separation cylinder silo. The schematic diagram of the grinding system is shown in Figure 1. The roasted ore in the weak magnetic separation cylinder silo is discharged by the electric vibration feeder, and then fed by the ore belt. The machine is sent into the ball mill, mixed with the additional water at the ball mill inlet, and ground into the ore pulp in the ball mill. This stage of grinding adopts a grid-type ball mill. Ball milling forms a closed circuit with primary ball milling. The overflow of the spiral classifier (that is, the final product of this process) enters the pump pool and is transported to the subsequent process.
球磨机型号为Ф3200×3500,有效容积25.3m3,筒体转速18.5r/min,最大装球量54吨。The model of the ball mill is Ф3200×3500, the effective volume is 25.3m 3 , the rotating speed of the cylinder is 18.5r/min, and the maximum loading capacity is 54 tons.
螺旋分级机为2FLG-2400型双螺旋分级机。螺旋转速3.5r/min,水槽坡度17度。The spiral classifier is 2FLG-2400 double spiral classifier. The spiral speed is 3.5r/min, and the slope of the tank is 17 degrees.
首先在按照本说明书的要求安装如下的测量仪表和执行机构,包括:First, install the following measuring instruments and actuators according to the requirements of this manual, including:
核子秤测量新给矿量QF Nuclear scales measure the new ore supply Q F
电磁流量计测量球磨机入口补加水流量WF Electromagnetic flowmeter measures the flow rate W F of the supplementary water at the inlet of the ball mill
核子密度计测量螺旋分级机溢流浓度DOVC Measuring Spiral Classifier Overflow Concentration D OVC with Nucleon Density Meter
电流计测量球磨机电流PWM The current meter measures the current P WM of the ball mill
电流计测量螺旋分级机电流PWC The current meter measures the spiral classifier current P WC
变频器控制电振给料机频率Inverter controls frequency of electric vibration feeder
两个电动调节阀控制球磨机入口补加水和球磨机出口补加水Two electric regulating valves control the supplementary water at the inlet of the ball mill and the supplementary water at the outlet of the ball mill
以可编程控制器(PLC)实现基础控制回路的自动控制。在下位机中,使用PLC中的单回路调节器组态成如下的基础控制回路:The automatic control of the basic control loop is realized by the programmable logic controller (PLC). In the lower computer, use the single-loop regulator in the PLC to configure the following basic control loop:
电振给料机频率控制新给矿量QF Electric vibrating feeder frequency control new ore feeding Q F
球磨机入口补加水电动调节阀控制球磨机入口补加水流量WF Electric regulating valve for supplementary water at the entrance of the ball mill controls the flow of supplementary water at the entrance of the ball mill W F
球磨机出口补加水电动调节阀控制螺旋分级机溢流浓度DOVC Electric control valve for adding water at the outlet of the ball mill to control the overflow concentration of the spiral classifier D OVC
在上位机(监控计算机)以RSView32软件实现监控人机界面。在人机界面上给出上述三个回路的设定值,基础回路控制器就可以保证在磨矿系统进入稳态时,各操作变量等于各自设定值,该磨矿系统的正常工作范围为:On the upper computer (monitoring computer), the monitoring man-machine interface is realized with RSView32 software. Given the setting values of the above three loops on the man-machine interface, the basic loop controller can ensure that when the grinding system enters a steady state, each operating variable is equal to its respective setting value. The normal working range of the grinding system is :
新给矿量——75±5吨/小时New ore feed——75±5 tons/hour
一次磨矿浓度——78%~85%Primary grinding concentration——78%~85%
螺旋分级机溢流浓度——45%~50%Spiral classifier overflow concentration - 45% ~ 50%
螺旋分级机溢流粒度——55%~60%(-200目)Spiral classifier overflow particle size - 55% ~ 60% (-200 mesh)
介质填充率——38%~42%Medium filling rate - 38% ~ 42%
软测量程序在单独的计算机上运行,该计算机上装有RS Linx通讯程序负责与PLC和上位机进行数据通讯,RS Linx与软测量程序之间通过DDE方式进行双向通讯。The soft measurement program runs on a separate computer, and the computer is equipped with RS Linx communication program responsible for data communication with the PLC and the host computer, and the two-way communication between RS Linx and the soft measurement program is carried out through DDE.
按照本说明书所述取得训练数据的步骤,首先给出50组不同的独立变量(新给矿量QF、入口补加水流量WF、分级机溢流浓度DOVC)的设定值的组合,依次施加于上位机的设定值栏内,待磨矿系统进入稳态之后,人工采样测量溢流粒度,并记录磨矿系统的数据,形成由50个训练对组成的训练集合。According to the steps of obtaining training data described in this manual, firstly, 50 sets of different combinations of independent variables (new ore feed Q F , inlet supplementary water flow W F , classifier overflow concentration D OVC ) set value combinations are given, Sequentially applied to the set value column of the host computer, after the grinding system enters a steady state, manual sampling and measurement of the overflow particle size, and record the data of the grinding system to form a training set consisting of 50 training pairs.
神经网络采用七输入一输出单隐层BP网络。七个输入分别为:新给矿量QF、入口补加水流量WF、分级机溢流浓度DOVC、球磨机电流PWM、螺旋分级机电流PWC、时间变量T、恒定的阈值(-1)。神经网络的隐元数目选择为60个,网络的结构以矩阵的形式表示为:The neural network adopts a seven-input one-output single-hidden layer BP network. The seven inputs are: new ore feed Q F , inlet supplementary water flow W F , classifier overflow concentration D OVC , ball mill current P WM , spiral classifier current P WC , time variable T, constant threshold (-1 ). The number of hidden units of the neural network is selected as 60, and the structure of the network is expressed in the form of a matrix as:
y=NN(x)y=NN(x)
=W1·sig(W2·x)其中,y为网络的输出,x为含有阈值在内的增广输入向量,激活函数选择为Sigmoid函数,其表达式为:=W 1 ·sig(W 2 ·x) Among them, y is the output of the network, x is the augmented input vector including the threshold value, the activation function is selected as the Sigmoid function, and its expression is:
输出变量与输出层权值W1之间为线性关系,采用梯度下降法进行训练,学习速率η取0.0001。当相对误差下降至2%以下时停止训练,经过上述学习过程形成的溢流粒度的神经网络软测量模型在磨矿系统正常运行期间,能够根据过程的稳态实时数据估计出稳态的螺旋分级机溢流粒度,相对误差不超过3%,成为一个具有很高实用价值的、低成本的粒度计量手段。There is a linear relationship between the output variable and the weight value W 1 of the output layer, and the gradient descent method is used for training, and the learning rate η is set to 0.0001. Stop training when the relative error drops below 2%. The neural network soft-sensing model of the overflow granularity formed through the above learning process can estimate the steady-state spiral classification according to the steady-state real-time data of the process during the normal operation of the grinding system. The relative error of the machine overflow particle size is not more than 3%, and it has become a low-cost particle size measurement method with high practical value.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031339514A CN100394163C (en) | 2003-09-12 | 2003-09-12 | Soft measurement method for overflow particle size index of ball mill grinding system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB031339514A CN100394163C (en) | 2003-09-12 | 2003-09-12 | Soft measurement method for overflow particle size index of ball mill grinding system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1525153A true CN1525153A (en) | 2004-09-01 |
CN100394163C CN100394163C (en) | 2008-06-11 |
Family
ID=34286086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB031339514A Expired - Fee Related CN100394163C (en) | 2003-09-12 | 2003-09-12 | Soft measurement method for overflow particle size index of ball mill grinding system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100394163C (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101569869A (en) * | 2009-05-31 | 2009-11-04 | 内蒙古华生高岭土有限责任公司 | Coal-measure hard kaolin wet method stripping monocular tertiary circular grinding method |
CN101776531A (en) * | 2010-02-10 | 2010-07-14 | 东北大学 | Soft sensing method for load parameter of ball mill |
CN101244403B (en) * | 2008-03-17 | 2011-07-20 | 西安艾贝尔科技发展有限公司 | Optimization control method for grind grading process |
CN102169077A (en) * | 2010-12-28 | 2011-08-31 | 东北大学 | Hybrid intelligence soft measuring method of overflow granularity index in wet grinding process |
CN102357395A (en) * | 2011-10-27 | 2012-02-22 | 东南大学 | Obscure monitoring control device and method in ore grinding grading process |
CN103344530A (en) * | 2013-04-18 | 2013-10-09 | 中国科学院沈阳自动化研究所 | Soft measurement method for granularity of cement raw material grinded by ball mill |
CN104028364A (en) * | 2014-04-30 | 2014-09-10 | 江西理工大学 | Multi-metal ore-separating and ore-grinding grading optimization test method |
CN105528636A (en) * | 2015-12-04 | 2016-04-27 | 中国人民解放军61599部队计算所 | Mill load parameter soft measurement method based on fuzzy inference |
CN106485326A (en) * | 2016-10-17 | 2017-03-08 | 鞍钢集团矿业有限公司 | A kind of hardness detection method in ore reduction production process |
CN107451386A (en) * | 2016-05-31 | 2017-12-08 | 丹东东方测控技术股份有限公司 | Grinding process mill power online soft sensor method |
CN109142167A (en) * | 2018-06-26 | 2019-01-04 | 中国矿业大学 | A kind of method for building up of the online robust canonical soft-sensing model of grinding particle size |
CN109190226A (en) * | 2018-08-24 | 2019-01-11 | 东北大学 | A kind of grinding system overflow granularity index flexible measurement method |
CN109482330A (en) * | 2018-11-02 | 2019-03-19 | 北矿智云科技(北京)有限公司 | A kind of total level weighing apparatus control method and device of SABC ore grinding |
CN109829177A (en) * | 2018-10-18 | 2019-05-31 | 太原理工大学 | Ball mill overflow granularity is distributed flexible measurement method under a kind of multi-state environment |
CN112268842A (en) * | 2020-10-20 | 2021-01-26 | 华北理工大学 | Double-channel dynamic particle size detection device |
CN114870988A (en) * | 2022-05-11 | 2022-08-09 | 内蒙古大中矿业股份有限公司 | A kind of automatic mineral processing monitoring method and system |
CN116060174A (en) * | 2022-12-13 | 2023-05-05 | 中核沽源铀业有限责任公司 | Ore feeding device of ball mill |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1032978A (en) * | 1987-11-04 | 1989-05-17 | 冶金工业部马鞍山矿山研究院 | The method and apparatus of ultrasound examination pulp granularity |
CN87108168A (en) * | 1987-12-19 | 1988-07-27 | 沈阳矿山机器厂 | A kind of method of controlling grinding particle size |
FR2690745B1 (en) * | 1992-04-30 | 1994-07-22 | Lorraine Laminage | METHOD AND DEVICE FOR CONTINUOUSLY DETERMINING THE SIZE OF A SOLID MATERIAL IN DIVIDED FORM. |
-
2003
- 2003-09-12 CN CNB031339514A patent/CN100394163C/en not_active Expired - Fee Related
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101244403B (en) * | 2008-03-17 | 2011-07-20 | 西安艾贝尔科技发展有限公司 | Optimization control method for grind grading process |
CN101569869A (en) * | 2009-05-31 | 2009-11-04 | 内蒙古华生高岭土有限责任公司 | Coal-measure hard kaolin wet method stripping monocular tertiary circular grinding method |
CN101776531A (en) * | 2010-02-10 | 2010-07-14 | 东北大学 | Soft sensing method for load parameter of ball mill |
CN101776531B (en) * | 2010-02-10 | 2013-07-10 | 东北大学 | Soft sensing method for load parameter of ball mill |
CN102169077A (en) * | 2010-12-28 | 2011-08-31 | 东北大学 | Hybrid intelligence soft measuring method of overflow granularity index in wet grinding process |
CN102169077B (en) * | 2010-12-28 | 2013-04-17 | 东北大学 | Hybrid intelligent soft measuring method of overflow granularity index in wet grinding process |
CN102357395A (en) * | 2011-10-27 | 2012-02-22 | 东南大学 | Obscure monitoring control device and method in ore grinding grading process |
CN103344530A (en) * | 2013-04-18 | 2013-10-09 | 中国科学院沈阳自动化研究所 | Soft measurement method for granularity of cement raw material grinded by ball mill |
CN104028364A (en) * | 2014-04-30 | 2014-09-10 | 江西理工大学 | Multi-metal ore-separating and ore-grinding grading optimization test method |
CN105528636B (en) * | 2015-12-04 | 2018-06-15 | 中国人民解放军61599部队计算所 | A kind of mill load parameter soft measurement method based on fuzzy reasoning |
CN105528636A (en) * | 2015-12-04 | 2016-04-27 | 中国人民解放军61599部队计算所 | Mill load parameter soft measurement method based on fuzzy inference |
CN107451386A (en) * | 2016-05-31 | 2017-12-08 | 丹东东方测控技术股份有限公司 | Grinding process mill power online soft sensor method |
CN106485326A (en) * | 2016-10-17 | 2017-03-08 | 鞍钢集团矿业有限公司 | A kind of hardness detection method in ore reduction production process |
CN106485326B (en) * | 2016-10-17 | 2019-02-05 | 鞍钢集团矿业有限公司 | A kind of hardness detection method in ore crushing production process |
CN109142167A (en) * | 2018-06-26 | 2019-01-04 | 中国矿业大学 | A kind of method for building up of the online robust canonical soft-sensing model of grinding particle size |
CN109142167B (en) * | 2018-06-26 | 2021-02-26 | 中国矿业大学 | An online robust canonical soft-sensor model establishment method for grinding particle size |
CN109190226A (en) * | 2018-08-24 | 2019-01-11 | 东北大学 | A kind of grinding system overflow granularity index flexible measurement method |
CN109190226B (en) * | 2018-08-24 | 2023-01-31 | 东北大学 | A Soft Measurement Method for Grinding System Overflow Particle Size Index |
CN109829177A (en) * | 2018-10-18 | 2019-05-31 | 太原理工大学 | Ball mill overflow granularity is distributed flexible measurement method under a kind of multi-state environment |
CN109482330A (en) * | 2018-11-02 | 2019-03-19 | 北矿智云科技(北京)有限公司 | A kind of total level weighing apparatus control method and device of SABC ore grinding |
CN112268842A (en) * | 2020-10-20 | 2021-01-26 | 华北理工大学 | Double-channel dynamic particle size detection device |
CN114870988A (en) * | 2022-05-11 | 2022-08-09 | 内蒙古大中矿业股份有限公司 | A kind of automatic mineral processing monitoring method and system |
CN116060174A (en) * | 2022-12-13 | 2023-05-05 | 中核沽源铀业有限责任公司 | Ore feeding device of ball mill |
Also Published As
Publication number | Publication date |
---|---|
CN100394163C (en) | 2008-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1525153A (en) | Soft measurement method for overflow particle size index of ball mill grinding system | |
CN101244403B (en) | Optimization control method for grind grading process | |
CN109190226B (en) | A Soft Measurement Method for Grinding System Overflow Particle Size Index | |
CN103344530B (en) | A soft measurement method for ball mill cement raw meal particle size | |
CN203830127U (en) | Closed type automatic control system for ore grinding classification | |
CN102169077B (en) | Hybrid intelligent soft measuring method of overflow granularity index in wet grinding process | |
CN101950171B (en) | Intelligent hierarchical control method and control device for ore grinding in concentration plant | |
CN103412489A (en) | Ore grinding granularity online prediction system and method | |
CN102357395A (en) | Obscure monitoring control device and method in ore grinding grading process | |
CN103617456B (en) | A kind of ore dressing process operating index optimization method | |
WO2022037499A1 (en) | Control system and control method for pelletizing machine | |
CN102008998A (en) | Automatic control device and automatic control method of hydrocyclone | |
CN101038277A (en) | Soft measurement method for coal power fineness in powdering producer | |
CN115238971A (en) | Intelligent brain analysis and processing system for coal preparation plant | |
CN108255082A (en) | Flotation intelligence control system based on the detection of ore pulp ash content and floatation feed information | |
CN1603986A (en) | Intelligent optimization setting method of grinding system based on case reasoning | |
CN1598534A (en) | Soft investigating method for overflow grain index of ore grinding system based on case inference | |
CN112264180A (en) | Dense medium density sorting automatic medium adding system of coal preparation plant and working method | |
CN107899733A (en) | Crusher and its control method, device and system, computer-readable recording medium | |
CN201527387U (en) | On-line detecting instrument for molding sand | |
CN113628171B (en) | Pellet production method and device based on machine vision and data driving | |
CN116440670A (en) | Limestone slurry density stability control method | |
CN114522793B (en) | Beneficiation fine grinding control method and beneficiation fine grinding control system thereof | |
CN112883993B (en) | Machine learning-based method for predicting optimal single-time-consumption working condition of coal mill powder production | |
CN214183553U (en) | Dense medium density separation automatic medium adding system for coal preparation plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080611 Termination date: 20150912 |
|
EXPY | Termination of patent right or utility model |