CN1514409A - Small wave region digital water marking mathod based on image target region - Google Patents
Small wave region digital water marking mathod based on image target region Download PDFInfo
- Publication number
- CN1514409A CN1514409A CNA031344372A CN03134437A CN1514409A CN 1514409 A CN1514409 A CN 1514409A CN A031344372 A CNA031344372 A CN A031344372A CN 03134437 A CN03134437 A CN 03134437A CN 1514409 A CN1514409 A CN 1514409A
- Authority
- CN
- China
- Prior art keywords
- watermark
- block
- image
- coefficient
- embedding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Editing Of Facsimile Originals (AREA)
- Image Processing (AREA)
Abstract
The method applies image comprehension technique to embed watermark into the most important part of image. In the method, wavelet decomposition is carried out for original image to confirm embedding field. When watermark is embedded, BCH error correction coding can be carried on for watermark and high frequency coefficient can be quantized in embedding field before watermark is embedded and wavelet coefficient is counter converted to obtain watermark image when watermark is picked up, BCH code is used to carry on decoding and correlation detection is carried out for picked up and original watermark according to normalized cross-correlation function to obtain judgement result for watermark.
Description
Technical field:
The present invention relates to technical field of image processing, a kind of specifically wavelet field digital watermark method based on image target area can be used for the multi-media information security protection in the network.
Background technology:
Along with network technology and rapid development of multimedia,, but also provide convenience simultaneously for the digital publishing rights abuse for the transmission and the utilization of numerical information brought very big facility.At present arbitrarily copy on the Internet behavior of various images constituted serious infringement to works human rights reproduction right, cause a big obstacle of the information industry development.Someone's method of having proposed a kind of digital watermarking addresses this problem for this reason.So-called digital watermark technology is meant and embeds and be present in invisible identification code or mark in the data.Existing water mark method roughly is divided into two classes: a class is the spatial domain method, as Raymond B.Wolfgang, Christine I.Podilchukand Edward J.Delp.Perceptual watermarks for digital images and video.Proceedings of theIEEE, Special issue on Identification and Protection of MultimediaInformation, 87 (7): 1108-1126, July, 1999. documents are described; Another kind of is the transform domain method, as Liehua Xie, Gonzalo R.Arce.A class of authentication digitalwatermarks for secure multimedia communication[J] .IEEE Trans onImage Processing, 2001,10 (11): 1754-1764.) document is described.The spatial domain method lacks robustness, and the transform domain method is then utilized the visually-perceptible model easily.Spread spectrum watermark method (the I.J.Cox that people such as the graduate I.J.Cox of NEC propose, J.Kilian, T.Leighton, andT.Shamoon.Secure spread spectrum watermarking for multimedia[J] .IEEE Trans on Image Processing, 1997,6 (12): 1673-1687.), be digital watermarking field classic methods the most, comprising watermark embedding and two kinds of processes of watermark detection, as Fig. 6, shown in Figure 7.
Watermark embed process shown in Figure 6 is:
(1) be that seed produces pseudo-random sequence with the key, this sequence has Gauss N (0,1) and distributes;
(2) image is the discrete surplus conversion DCT that revolves;
(3) with the discrete surplus conversion DCT coefficient that revolves of 1000 maximums of pseudorandom gaussian sequence modulation (stack) this image except that direct current (DC) component, embedding formula is:
y
f=x
i(1+α
lw
l)
Y wherein
lDCT coefficient after the representative modulation, x
lRepresent original DCT coefficient, w
lRepresent the watermark deal, α
lBe modulation factor;
(4) the discrete surplus conversion DCT coefficient that revolves to the image after the modulation carries out inverse discrete cosine transform IDCT, obtains containing watermarking images.
Watermark detection process shown in Figure 7 is:
(1) watermarking images that contains of original image and possibility distortion is done the discrete surplus conversion dct transform that revolves respectively, obtain the discrete surplus conversion DCT coefficient x that revolves of image respectively
iAnd the discrete surplus conversion DCT coefficient that revolves of the watermarking images of possibility distortion
(2) the anti-process by embedding formula can get:
(3) when the detection of watermark, ask original watermark
With the watermark of extracting
Between similarity, with following similarity criterion:
If the response of detecting device greater than some threshold values, is taken as 6 by calculating in the Cox algorithm, then think to detect watermark.
Though this spread spectrum water mark method has proposed to strengthen the cardinal principle of watermark robustness and anti-attack method, promptly watermark signal should embed human eye vision part and parcel in the raw data, and has certain security, but still has the following disadvantages:
(1) this method is regarded image as whole scene, does not take into full account most important sensation target zone in the image, has significant limitation;
(2) employing of this method is on the low frequency component with the important component visual of watermark embedded images, not quite identical with people's visual effect, most important parts should be the outstanding target area of image on the image vision, and this target area can not fully be reflected the conversion DCT low frequency deal from discrete surplus the revolving of image;
(3) this method requires accurate localization is carried out in the position of watermark when watermark extracting, be the synchronous of watermark information, need utilize original image, if original image can not obtain, then the view data in the watermark detection process presents noise signal with respect to watermark information, be that view data itself can produce very big interference to watermark detection, cause the extraction difficulty of watermark;
(4) watermark that embeds of this method is distributed in the whole spatial domain of image, make to the robustness of shearing attack very a little less than, as shown in Figure 8, the left side figure among Fig. 8 be an original image, right side figure is a watermarking images.
The invention technology contents:
The objective of the invention is to overcome the deficiency of above-mentioned prior art, propose a kind of wavelet field digital watermark method, to realize copyright protection the Internet images based on image target area.
The present invention is when design technology project, take into full account the time to the image embed watermark on the Internet, the target area vision is very important, and the background area smoothly is difficult for embed watermark, and the entire image embed watermark easily causes all multifactor of shearing background area havoc watermark.Its technical thought is to adopt the image understanding technology, the most important part of vision that watermark is embedded into image reality, to improve the effect that watermark can be resisted common attack, adopting target area feature with watermark and image to be closely connected simultaneously is in the same place, and in the process of embed watermark, make the interior watermark deal that only embeds seldom of subrange of image, with the blind Detecting of realization watermark and the subjective quality of assurance image.Realize that the object of the invention key problem in technology is that original image is carried out wavelet decomposition; Determine the embedding territory of watermark; When watermark embeds, earlier the BCH Error Correction of Coding is carried out in watermark, in embedding the territory, select high frequency coefficient that it is quantized the back embed watermark.The concrete steps that its watermark embeds, detects are as follows:
1. watermark embed step:
(1) to image block, and the embedding territory of definite watermark, be about to original image and carry out wavelet decomposition earlier, make an image in the spatial domain corresponding with three blocks of images in the high-frequency sub-band of image wavelet territory, characteristic according to the image high frequency coefficient, again the variance of the wavelet coefficient of each image block is asked average, in the wavelet field of entire image, this average is carried out cluster, and obtaining sensation target zone and background through last handling process, the set of the high frequency wavelet coefficient that this sensation target zone is corresponding is the embedding territory of watermark;
(2) produce the binary watermarking random series with secret key, carry out Error Correction of Coding with BCH code;
(3) in embedding territory Ω, adopt the quantification modulation to embed a watermark corresponding to each spatial domain image block;
(4) in each image block that embeds territory Ω correspondence, embed all watermarks, the image wavelet coefficient after obtaining embedding successively;
(5) wavelet coefficient to embed watermark carries out inverse wavelet transform, obtains the image of embed watermark;
2. the watermark extracting step is:
(1) carries out piecemeal to containing watermarking images, determine the embedding territory Ω of watermark, promptly will contain watermarking images earlier and carry out wavelet decomposition, characteristic according to the image high frequency coefficient, again it is carried out cluster, and obtaining sensation target zone and background through last handling process, the set of the high frequency wavelet coefficient that this sensation target zone is corresponding is the embedding territory of watermark;
(2) use the secret key identical to produce watermark random sequence with the watermark embedding;
(3) embedding corresponding to containing watermark of each piece extraction in the watermarking images spatial domain;
(4) in each image block that embeds territory Ω correspondence, extract all watermarks successively, and decode the watermark that obtains extracting with BCH code;
(5) watermark and the original watermark that extracts carried out coherent detection by Normalized Cross Correlation Function NC, obtain the court verdict of watermark, promptly
In the formula: w (i) represents original watermark
The present invention really is embedded into the most important target area of image vision to watermark, thereby can resists shearing attack effectively owing to adopt the image understanding technology; Owing to adopting the embedding of watermark and the target area feature of image are combined closely simultaneously, so can realize the blind Detecting (promptly not needing original image) of watermark; In addition owing to adopted wavelet transform DWT, therefore can with Joint Photographic Experts Group JPEG2000 compatibility.
Diagram shows that watermark is embedded in the important goal zone of image among the present invention, and watermark energy is very little in subrange, and the vision distortion that causes is also little.
Description of drawings:
Fig. 1 is telescopiny figure of the present invention
Fig. 2 is testing process figure of the present invention
Fig. 3 is the watermark embedding territory figure that obtains of the present invention.1 is in the original image spatial domain one among the figure; 2,3,4 be respectively original image, in the 1 pairing image wavelet territory high-frequency sub-band of original image spatial domain three through after the one-level wavelet decomposition; Variance to image wavelet high frequency coefficient piece is carried out cluster, obtains 5,6,7, and they comprise a plurality of small echo high frequency coefficient pieces, constitutes the embedding territory of watermark.
Fig. 4 is the telescopiny figure of a watermark of the present invention
Fig. 5 is the embedding instance graph of watermark of the present invention
Fig. 6 is prior art watermark embed process figure
Fig. 7 is the prior art watermark detection process
Fig. 8 is the prior art simulation result
Fig. 9 is the present invention and prior art effect comparison diagram
Embodiment:
With reference to Fig. 1, Fig. 3, Fig. 4, watermark embed step of the present invention is:
The first step is obtained the embedding territory of watermark
Original image by piecemeal shown in Figure 3, through the one-level wavelet transformation, is made in the spatial domain one 1 in corresponding wavelet field medium-high frequency subband corresponding three 2,3,4.The wavelet coefficient variance of the respective image piece among subband HL, LH, the HH 2,3,4 is asked average, in the wavelet field of entire image, this average is carried out cluster, the pairing small echo high frequency coefficient of the set that the cluster centre that obtains is bigger piece is the embedding territory of watermark
If it is Ω that watermark embeds domain representation, total num piece in the spatial domain of Ω correspondence, wherein one is expressed as U
K, block, U
K, blockCorresponding three 2,3,4 in Ω among subband HL, LH, the HH are respectively V
K, block_HL, V
K, block_LH, V
K, block_HH
Second step, use secret key K to produce watermark frequency expansion sequence W, and carry out Bose-Chaudhuri-Hocquenghem Code,
Watermark length is N
w=num, value is-1 and+1, average is 0.Be W=(w
1, w
k..., w
Num), w
k∈ 1 ,+1};
The 3rd step embedded among the Ω of territory in watermark, corresponding to watermark of each piece embedding of target area in the image;
Consider image block U
K, block, coefficient block corresponding in Ω is respectively V
K, block_HL, V
K, block_LH, V
K, block_HH, then the watermark bit that will embed is w
kConcrete grammar is as follows:
1) at V
K, block_HL, V
K, block_LHAnd V
K, block_HHIn find the wavelet coefficient of numerical value maximum, be designated as V
K, block_HL, x, and the coefficient that is located at relevant position in LH and the HH subband is designated as V respectively
K, block_LH, x, V
K, block_HH, x
2) to 1) in three coefficients arrange from small to large;
V
k,block_HH,x≤V
k,block_LH,x≤V
k,block_HL,x
3) to middle coefficient V
K, block_LH, xQuantize with embed watermark according to Fig. 4.Earlier V
K, block_HH, xAnd V
K, block_HL, xBetween distance by the step delta five equilibrium:
Δ=(V
K, block_HL, x-V
K, block_HH, x)/(2Q-1) wherein, Q is a quantization parameter, the size given by the user,
If w
k=1, V
K, block_LH, xBe quantified as from the represented numerical value of the nearest solid line of itself; If w
k=-1, then V
K, block_LH, xBe quantified as from the represented numerical value of the nearest dotted line of itself.
The 4th step embedded all watermarks successively in all images piece of watermark embedding territory Ω correspondence,
Image wavelet coefficient after obtaining embedding;
The 5th step, the wavelet coefficient behind the embed watermark is carried out secondary discrete wavelet inverse transformation, obtain the image of embed watermark.
With reference to Fig. 2, watermark detection of the present invention does not need original image, but need use secret key K and the given quantization parameter Q of user, and concrete steps are as follows:
The first step obtains Ω (because this important images feature of target area has unchangeability before and after watermarking images is attacked, therefore can with identical method) to containing watermarking images identical method when embedding;
In second step, use secret key K to produce original watermark sequence W;
In the 3rd step, in embedding territory Ω, each piece 2,3,4 extracts a watermark successively in the watermarking images spatial domain corresponding to containing, and considers that wherein one is expressed as
Then in Ω, correspondingly get 2,3,4 three coefficient block, be expressed as respectively
Watermark bit w then
kLeaching process as follows:
1) exists
With
In find the wavelet coefficient of numerical value maximum, be designated as
Corresponding coefficient is designated as respectively in LH and HH subband
2) to 1) in three coefficients arrange from small to large;
3) to middle coefficient
Value judge, earlier right
Between distance quantize with Q, obtain Δ, then
If the r value is odd number, then w
k=1, the r value is even number, then w
k=-1;
In the 4th step, in embedding territory Ω, extract watermark in all images piece of correspondence, and carry out BCH decoding, the watermark that obtains extracting
In the 5th step, the watermark of original watermark W and extraction is adopted in the watermark judgement
Between Normalized Cross Correlation Function NC carry out coherent detection, obtain the court verdict of watermark, promptly
With reference to Fig. 5, a is the embedding original image of watermark, and b is the embedding territory of acquisition watermark, and is partitioned into its pairing image space zone, and c is the image behind the embed watermark, and d is the error image that contains watermarking images and original image.
With reference to Fig. 9, (a) be the image of embed watermark of the present invention and watermark distribution at image space; Figure (b) be the image of spread-spectrum watermark algorithm embed watermark of classics and the watermark distribution at image space.Can see that watermark is embedded in the important goal zone of image among the present invention, and within the scope of part, watermark energy is very little, thereby the vision distortion that watermark causes is also less.
Claims (3)
1. the wavelet field digital watermark method based on image target area comprises two kinds of processes of watermark embedding and watermark detection, wherein:
(1) watermark embed step is:
1) original image is carried out piecemeal, determine the embedding territory (Ω) of watermark, be about to original image and carry out wavelet decomposition earlier, make an image (1) and image wavelet territory high-frequency sub-band (HL) in the spatial domain, (LH), (HH) the three blocks of images (2) in, (3), (4) corresponding, characteristic according to the image high frequency coefficient, again to (2), (3), (4) variance of the wavelet coefficient of image block asks average, in the wavelet field of entire image, this average is carried out cluster, and obtaining sensation target zone and background through last handling process, the set of the high frequency wavelet coefficient that this sensation target zone is corresponding is the embedding territory of watermark;
2) produce the binary watermarking random series with secret key, and carry out Error Correction of Coding with BCH code;
3) in embedding territory (Ω), adopt the quantification modulation to embed a watermark to each spatial domain image block (2), (3), (4);
4) in embedding corresponding each image block (2) in territory (Ω), (3), (4), embed all watermarks, the image wavelet coefficient after obtaining embedding successively;
5) wavelet coefficient to embed watermark carries out inverse wavelet transform, obtains the image of embed watermark;
(2) the watermark extracting step is:
1) carries out piecemeal to containing watermarking images, determine the embedding territory (Ω) of watermark, promptly will contain watermarking images earlier and carry out wavelet decomposition, characteristic according to the image high frequency coefficient, again it is carried out cluster, and obtaining sensation target zone and background through last handling process, the set of the high frequency wavelet coefficient that this sensation target zone is corresponding is the embedding territory of watermark;
2) use the secret key identical to produce watermark random sequence with the watermark embedding;
3) in embedding territory (Ω), corresponding to containing each piece (2) in the watermarking images spatial domain, (3), watermark of (4) extraction;
4) in the image block (2) that embeds the territory correspondence, (3), (4), extract all watermarks successively, and decode the watermark that obtains extracting with BCH code;
5) watermark and the original watermark that extracts carried out coherent detection by Normalized Cross Correlation Function NC, obtain the court verdict of watermark, promptly
In the formula: w (i) represents original watermark
2. the wavelet field digital watermark method of image target area according to claim 1, it is characterized in that in embedding territory (Ω), adopting the quantification modulation to embed a watermark corresponding to each spatial domain image block, is that a graphical representation that will embed in the corresponding spatial domain in territory (Ω) is U
K, block, U
K, blockImage block (2), (3), (4) coefficient of the subband (HL) in embedding territory (Ω), (LH), (HH) correspondence are expressed as V respectively
K, block_HL, V
K, block_LH, V
K, block_HH, the watermark bit that embed is w
k, concrete grammar is as follows:
1) at V
K, block_HL, V
K, block_LHAnd V
K, block_HHIn find the wavelet coefficient of numerical value maximum, be designated as V
K, block_HL, x, and be located at subband (LH) and (HH) in the coefficient of relevant position be designated as V respectively
K, block_LH, x, V
K, block_HH, x
2) to 1) in three coefficients arrange from small to large, promptly
V
k,block_HH,x≤V
k,block_LH,x≤V
k,block_HL,x
3) to the coefficient V of centre
K, block_LH, xQuantize with embed watermark, promptly earlier V
K, block_HH, x
And V
K, block_HL, xBetween distance by the step delta five equilibrium:
Δ=(V
k,block_HL,x-V
k,block_HH,x)/(2Q-1)
Q: be quantization parameter, size is given by the user
3. the wavelet field digital watermark method of image target area according to claim 1, it is characterized in that in embedding territory (Ω), each piece extracts the method for a watermark in the watermarking images spatial domain corresponding to containing, and is that a graphical representation of establishing (Ω) corresponding spatial domain is
Three coefficient block (2), (3), (4) with the Ω correspondence are expressed as respectively
Watermark bit w then
kLeaching process as follows:
1) exists
With
In find the wavelet coefficient of numerical value maximum, be designated as
Corresponding coefficient is designated as respectively in LH and HH subband
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 03134437 CN1256705C (en) | 2003-07-28 | 2003-07-28 | Small wave region digital water marking mathod based on image target region |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 03134437 CN1256705C (en) | 2003-07-28 | 2003-07-28 | Small wave region digital water marking mathod based on image target region |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1514409A true CN1514409A (en) | 2004-07-21 |
CN1256705C CN1256705C (en) | 2006-05-17 |
Family
ID=34239960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 03134437 Expired - Fee Related CN1256705C (en) | 2003-07-28 | 2003-07-28 | Small wave region digital water marking mathod based on image target region |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1256705C (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007000103A1 (en) * | 2005-06-25 | 2007-01-04 | Huawei Technologies Co., Ltd. | Method for detecting the quality of the multimedia communication |
CN100340111C (en) * | 2005-03-28 | 2007-09-26 | 南方医科大学 | Medical image fragile watermark method based on wavelet transform |
CN100381293C (en) * | 2005-06-09 | 2008-04-16 | 上海交通大学 | Anti-counterfeiting method for printed product based on digital water print technique |
CN100385459C (en) * | 2006-07-11 | 2008-04-30 | 电子科技大学 | Image watermark method based on finite ridgelet transform |
CN100452091C (en) * | 2007-03-30 | 2009-01-14 | 西安电子科技大学 | Digital watermark method against geometrical attack based on image characteristic region |
CN100461213C (en) * | 2007-04-05 | 2009-02-11 | 上海交通大学 | Lossless digital watermark method having regioselectivity |
CN100583191C (en) * | 2005-06-17 | 2010-01-20 | 鸿富锦精密工业(深圳)有限公司 | Text encryption system and method |
CN100583190C (en) * | 2005-06-17 | 2010-01-20 | 鸿富锦精密工业(深圳)有限公司 | Text encryption system and method |
CN101833745A (en) * | 2010-04-15 | 2010-09-15 | 宁波大学 | Method for detecting embedding and extracting of multiple binary embedded watermarks of digital image |
CN101901470A (en) * | 2010-02-10 | 2010-12-01 | 桂林电子科技大学 | Image-tampering detection and recovery method based on energy-domain semi-fragile watermarking |
CN1885725B (en) * | 2006-07-12 | 2011-04-06 | 中国物品编码中心 | Error correction coding method |
CN101472170B (en) * | 2007-12-27 | 2011-12-21 | 华为技术有限公司 | Method and device for embedding and authenticating watermark |
CN102722857A (en) * | 2012-05-24 | 2012-10-10 | 河海大学 | Digital image watermark method based on visual attention mechanism |
CN104881668A (en) * | 2015-05-13 | 2015-09-02 | 中国科学院计算技术研究所 | Method and system for extracting image fingerprints based on representative local mode |
CN107194863A (en) * | 2017-04-07 | 2017-09-22 | 广东精点数据科技股份有限公司 | Image digital watermark embedded system and method |
CN107240059A (en) * | 2017-04-07 | 2017-10-10 | 广东精点数据科技股份有限公司 | The modeling method of image digital watermark embedment strength regressive prediction model |
CN110286813A (en) * | 2019-05-22 | 2019-09-27 | 北京达佳互联信息技术有限公司 | Picture mark position determines method and apparatus |
-
2003
- 2003-07-28 CN CN 03134437 patent/CN1256705C/en not_active Expired - Fee Related
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100340111C (en) * | 2005-03-28 | 2007-09-26 | 南方医科大学 | Medical image fragile watermark method based on wavelet transform |
CN100381293C (en) * | 2005-06-09 | 2008-04-16 | 上海交通大学 | Anti-counterfeiting method for printed product based on digital water print technique |
CN100583191C (en) * | 2005-06-17 | 2010-01-20 | 鸿富锦精密工业(深圳)有限公司 | Text encryption system and method |
CN100583190C (en) * | 2005-06-17 | 2010-01-20 | 鸿富锦精密工业(深圳)有限公司 | Text encryption system and method |
CN100461864C (en) * | 2005-06-25 | 2009-02-11 | 华为技术有限公司 | Multimedia video communication objective quality appraising method based on digital watermark |
US8184164B2 (en) | 2005-06-25 | 2012-05-22 | Huawei Technologies Co., Ltd. | Method for measuring multimedia video communication quality |
WO2007000103A1 (en) * | 2005-06-25 | 2007-01-04 | Huawei Technologies Co., Ltd. | Method for detecting the quality of the multimedia communication |
CN100385459C (en) * | 2006-07-11 | 2008-04-30 | 电子科技大学 | Image watermark method based on finite ridgelet transform |
CN1885725B (en) * | 2006-07-12 | 2011-04-06 | 中国物品编码中心 | Error correction coding method |
CN100452091C (en) * | 2007-03-30 | 2009-01-14 | 西安电子科技大学 | Digital watermark method against geometrical attack based on image characteristic region |
CN100461213C (en) * | 2007-04-05 | 2009-02-11 | 上海交通大学 | Lossless digital watermark method having regioselectivity |
CN101472170B (en) * | 2007-12-27 | 2011-12-21 | 华为技术有限公司 | Method and device for embedding and authenticating watermark |
CN101901470A (en) * | 2010-02-10 | 2010-12-01 | 桂林电子科技大学 | Image-tampering detection and recovery method based on energy-domain semi-fragile watermarking |
CN101833745B (en) * | 2010-04-15 | 2012-02-15 | 宁波大学 | Method for detecting embedding and extracting of multiple binary embedded watermarks of digital image |
CN101833745A (en) * | 2010-04-15 | 2010-09-15 | 宁波大学 | Method for detecting embedding and extracting of multiple binary embedded watermarks of digital image |
CN102722857A (en) * | 2012-05-24 | 2012-10-10 | 河海大学 | Digital image watermark method based on visual attention mechanism |
CN104881668A (en) * | 2015-05-13 | 2015-09-02 | 中国科学院计算技术研究所 | Method and system for extracting image fingerprints based on representative local mode |
CN104881668B (en) * | 2015-05-13 | 2018-08-10 | 中国科学院计算技术研究所 | A kind of image fingerprint extracting method and system based on representative local mode |
CN107194863A (en) * | 2017-04-07 | 2017-09-22 | 广东精点数据科技股份有限公司 | Image digital watermark embedded system and method |
CN107240059A (en) * | 2017-04-07 | 2017-10-10 | 广东精点数据科技股份有限公司 | The modeling method of image digital watermark embedment strength regressive prediction model |
CN110286813A (en) * | 2019-05-22 | 2019-09-27 | 北京达佳互联信息技术有限公司 | Picture mark position determines method and apparatus |
CN110286813B (en) * | 2019-05-22 | 2020-12-01 | 北京达佳互联信息技术有限公司 | Icon position determining method and device |
US11574415B2 (en) | 2019-05-22 | 2023-02-07 | Beijing Dajia Internet Information Technology Co., Ltd. | Method and apparatus for determining an icon position |
Also Published As
Publication number | Publication date |
---|---|
CN1256705C (en) | 2006-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1256705C (en) | Small wave region digital water marking mathod based on image target region | |
Kang et al. | A DWT-DFT composite watermarking scheme robust to both affine transform and JPEG compression | |
Kaur et al. | Steganographic approach for hiding image in DCT domain | |
Divecha et al. | Implementation and performance analysis of DCT-DWT-SVD based watermarking algorithms for color images | |
CN101038771A (en) | Novel method of digital watermarking for protecting literary property of music works | |
CN108648134B (en) | Spatial domain color digital image blind watermarking method fusing discrete wavelet transform | |
Ho et al. | Robust digital image-in-image watermarking algorithm using the fast Hadamard transform | |
CN101833745B (en) | Method for detecting embedding and extracting of multiple binary embedded watermarks of digital image | |
Huai-bin et al. | A new watermarking algorithm based on DCT and DWT fusion | |
CN1960428A (en) | Implementation method of anti printing and scanning meaningful digital watermark with large capacity | |
Bekkouch et al. | Robust and reversible image watermarking scheme using combined DCT-DWT-SVD transforms | |
CN1251140C (en) | Encrypting orthogonal transformation method for digital watermark | |
CN1276387C (en) | Synchronous self-adaptable watermark method based on image continuity | |
CN1529282A (en) | Method and device for uniting digital water print based on singular value analysis and spread spectrum technique | |
Maity et al. | An image watermarking scheme using HVS characteristics and spread transform | |
CN112488903B (en) | Spatial domain color digital image blind watermarking method fusing multilevel discrete Fourier transform | |
CN111242828B (en) | Spatial domain color digital image blind watermarking method fused with discrete Fourier transform | |
Tomar et al. | A statistical comparison of digital image watermarking techniques | |
Phadikar et al. | Multibit QIM watermarking using M-ary modulation and lifting | |
CN104143173A (en) | Image self-adaption blind watermarking algorithm based on DWT-DCT | |
Xing et al. | A digital watermarking method based on classified labeled-bisecting-k-means clustering | |
Wu et al. | Robust watermarking for text images based on Arnold scrambling and DWT-DCT | |
Abdelhedi et al. | A Novel Robust Spread Spectrum Watermarking Scheme for 3D Video Traitor Tracing | |
Phadikar et al. | QIM data hiding for tamper detection and correction in digital images using wavelet transform | |
Ho et al. | Character-embedded watermarking algorithm using the fast Hadamard transform for satellite images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |