CN1508511A - A Calibration Method for Structured Light Vision Sensor - Google Patents
A Calibration Method for Structured Light Vision Sensor Download PDFInfo
- Publication number
- CN1508511A CN1508511A CNA021565996A CN02156599A CN1508511A CN 1508511 A CN1508511 A CN 1508511A CN A021565996 A CNA021565996 A CN A021565996A CN 02156599 A CN02156599 A CN 02156599A CN 1508511 A CN1508511 A CN 1508511A
- Authority
- CN
- China
- Prior art keywords
- target
- structured light
- point
- sensor
- wli
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000013519 translation Methods 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims 4
- 230000009977 dual effect Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 10
- 238000001514 detection method Methods 0.000 abstract description 4
- 238000003384 imaging method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000011179 visual inspection Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明属于测量技术领域,涉及对结构光三维视觉检测中传感器标定方法的改进。本方法的步骤是设定靶标—固定传感器—采集图像—提取靶标坐标—投射结构光—提取结构光光条上点的坐标—提取结构光光条上任意一点的坐标,利用双重交比不变式求取该点的三维物坐标—求取R和t—求取a,b,c,d。本方法的标定点精度高、数量可任意多,标定的三个传感器的测量精度高,并适合现场标定。
The invention belongs to the technical field of measurement and relates to the improvement of a sensor calibration method in structured light three-dimensional vision detection. The steps of this method are setting the target—fixing the sensor—collecting images—extracting target coordinates—projecting structured light—extracting the coordinates of points on the structured light strip—extracting the coordinates of any point on the structured light strip, using double cross-ratio invariance Find the three-dimensional object coordinates of the point—find R and t—find a, b, c, d. The calibration point of the method has high precision, and the number can be arbitrarily many, and the measurement precision of the three sensors to be calibrated is high, and is suitable for on-site calibration.
Description
技术领域technical field
本发明属于测量技术领域,涉及对结构光三维视觉检测中传感器标定方法的改进。The invention belongs to the technical field of measurement and relates to the improvement of a sensor calibration method in structured light three-dimensional vision detection.
背景技术Background technique
在诸多的视觉检测方法中,结构光三维视觉检测广泛地应用于工件的完整性、表面平整度的测量;微电子器件(IC芯片、PC板、BGA)等的自动检测;软质、易碎零部件的检测;各种模具三维形状的检测;机器人的视觉导引等。结构光视觉检测技术以其大量程、大视场、测量速度快、光条图像易于提取及较高精度等特点在工业环境中得到了愈来愈广泛的应用。结构光视觉传感器模型参数的有效标定方法一直是一个重要的研究内容。目前主要有以下方法:一是锯齿靶法。段发阶等在文章“一种新型线结构光传感器结构参数标定方法”(仪器仪表学报,Vol.21No.1,2000)及刘凤梅等在文章“利用齿形靶标标定线结构光传感器结构参数的新方法”(计量技术,No7.pp.3~6,1999)中陈述了这种方法。该方法的原理见图1。该方法主要是让光平面投射到锯齿状的靶标上,从而在齿棱上形成一些亮点作为标定点。此种方法存在如下问题:一是且因齿棱易反光,造成像点的提取精度较低。二是因亮点本身表现的一种光强分布,用电子经纬仪在空间中瞄准的亮点与图像中的亮点很难严格对应。三是因齿棱有限,获取的标定点数目少。另一种方法是一次交比不变法。1995年,清华大学的徐光祐等在文章“一种新的基于结构光的三维视觉系统标定方法”(计算机学报,Vol.18 No.6,1995)提出了利用一次交比不变性原理来获取标定点的方法,但是实现过于麻烦。1999年,D.Q.HUYNH在文章“线结构光系统的标定:一种新颖的方法”(Calibration a Structured Light Stripe System:A Novel Approach),计算机视觉国际期刊,第33卷,第1期,73~86页,1999年(InternationalJournal of Computer Vision,Vol.33 No.1,pp.73~86,1999)也提出了一种利用一次交比不变性原理的标定点获取方法,该方法使用了4组非共面点,每组3点且共线,由这些12个点利用一次交比不变性获取光平面上的4个点的三维坐标用于线结构光视觉传感器的标定。但这两者共同的问题是标定点数量还较少,因此标定精度还有待提高Among many visual inspection methods, structured light three-dimensional visual inspection is widely used in the measurement of workpiece integrity and surface flatness; automatic inspection of microelectronic devices (IC chips, PC boards, BGA), etc.; soft, fragile Detection of parts; detection of three-dimensional shapes of various molds; visual guidance of robots, etc. Structured light visual inspection technology has been more and more widely used in industrial environments due to its characteristics of large range, large field of view, fast measurement speed, easy extraction of light strip images and high precision. The effective calibration method of structured light vision sensor model parameters has always been an important research content. At present, there are mainly the following methods: one is the sawtooth target method. Duan Fajie et al. in the article "A New Method for Structural Parameter Calibration of Line Structured Light Sensor" (Journal of Instrumentation, Vol.21No.1, 2000) and Liu Fengmei et al. "(Measurement Technology, No7.pp.3~6, 1999) stated this method. The principle of this method is shown in Figure 1. This method is mainly to project the light plane onto the jagged target, so as to form some bright spots on the tooth edges as calibration points. This method has the following problems: firstly, the extraction precision of the image points is low because the tooth edges are easy to reflect light. Second, because of the light intensity distribution of the bright spot itself, it is difficult to strictly correspond to the bright spot in the space with the electronic theodolite and the bright spot in the image. Third, due to the limited tooth edges, the number of calibration points obtained is small. Another method is the cross-ratio invariant method. In 1995, Xu Guangyou of Tsinghua University proposed to use the principle of cross-ratio invariance to obtain The method of calibrating points, but the implementation is too troublesome. In 1999, D.Q.HUYNH wrote the article "Calibration of a Structured Light Stripe System: A Novel Approach" (Calibration a Structured Light Stripe System: A Novel Approach), International Journal of Computer Vision, Volume 33, Issue 1, 73-86 Page, 1999 (International Journal of Computer Vision, Vol.33 No.1, pp.73-86, 1999) also proposed a calibration point acquisition method using the principle of primary cross-ratio invariance. Coplanar points, each group of 3 points and collinear, use these 12 points to obtain the three-dimensional coordinates of 4 points on the light plane by using the cross-ratio invariance for the calibration of the line structured light vision sensor. But the common problem of both is that the number of calibration points is still small, so the calibration accuracy needs to be improved
发明内容Contents of the invention
本发明所要解决的技术问题是:提供一种精度高,适合现场标定的结构光视觉传感器标定方法,进一步提高其标定精度,改善其工程化应用的便捷性。The technical problem to be solved by the present invention is to provide a high-precision structured light vision sensor calibration method suitable for on-site calibration, further improve its calibration accuracy, and improve the convenience of its engineering application.
本发明的技术解决方案是:一种结构光视觉传感器的标定方法,其特征在于,The technical solution of the present invention is: a calibration method for a structured light vision sensor, characterized in that,
(1)设定靶标,靶标由两个平面组成,其夹角θ为45°≤θ≤135°,两个靶标面上有预先设置的特征点,靶标面为下述结构之一:(1) Set the target, the target is composed of two planes, the angle θ is 45°≤θ≤135°, there are pre-set feature points on the two target surfaces, and the target surface is one of the following structures:
A、靶标甲,在靶标面上有两列三行凸起的黑色的矩形块,每行中矩形块的数量为2~100个,矩形块的间距为10~200mm,每个矩形块的四个顶点为特征点;A. Target A. There are two columns and three rows of raised black rectangular blocks on the target surface. The number of rectangular blocks in each row is 2 to 100, and the distance between the rectangular blocks is 10 to 200mm. Four square blocks of each rectangular block vertices are feature points;
B、靶标乙,在靶标面上有成矩阵排列的圆孔,圆孔的行数和列数为3~100个,采用圆孔的中心作为特征点;B. Target B has circular holes arranged in a matrix on the target surface, the number of rows and columns of the circular holes is 3 to 100, and the center of the circular hole is used as the feature point;
C、靶标丙,在靶标面上有成矩阵排列的十字叉丝,十字叉丝行数和列数为3~100个,以十字叉丝的交叉点作为特征点;C. Target C, there are crosshairs arranged in a matrix on the target surface, the number of rows and columns of the crosshairs is 3 to 100, and the intersection points of the crosshairs are used as feature points;
(2)将传感器与靶标相距一定距离固定好,应保证传感器中激光器发射的光平面与两个靶标面相交;(2) Fix the sensor and the target at a certain distance, and ensure that the light plane emitted by the laser in the sensor intersects the two target surfaces;
(3)打开传感器中CCD摄像机的电源,采集标定靶标的一幅图像,存储到计算机中;(3) Turn on the power supply of the CCD camera in the sensor, collect an image of the calibration target, and store it in the computer;
(4)对于靶标甲,提取靶标上黑色方块的所有顶点的二维像坐标(Xi,Yi)及其对应的三维物坐标(xwi,ywi,zwi),存储到计算机中;(4) For target A, extract the two-dimensional image coordinates (X i , Y i ) of all vertices of the black square on the target and the corresponding three-dimensional object coordinates (x wi , y wi , z wi ), and store them in the computer;
(5)打开激光器的电源,使投射的结构光光平面与靶标两个平面相交形成两条结构光光条;(5) Turn on the power of the laser, so that the projected structured light plane intersects with the two planes of the target to form two structured light strips;
(6)提取结构光光条5与靶标体上黑色方块边缘的交点的二维像坐标(XLi,YLi),利用一次交比式r(Ai,Bi,Ci,Di)=r′(Ai′,Bi′,Ci′,Di′)计算像坐标(XLi,YLi)所对应的三维物坐标(xwLi,ywLi,zwLi)并存储,式中r(Ai,Bi,Ci,Di)表示Ai,Bi,Ci,Di四点的交比,r′(Ai′,Bi′,Ci′,Di′)表示Ai′,Bi′,Ci′,Di′四点的交比;(6) Extract the two-dimensional image coordinates (X Li , Y Li ) of the intersection point between the structured light strip 5 and the edge of the black square on the target body, and use the first-order cross ratio r(A i , B i , C i , D i ) =r′(A i ′, B i ′, C i ′, D i ′) calculate and store the three-dimensional object coordinates (x wLi , y wLi , z wLi ) corresponding to the image coordinates (X Li , Y Li ), and store them, the formula r(A i , B i , C i , D i ) means the cross ratio of A i , B i , C i , D i ’) represents the cross ratio of A i ′, B i ′, C i ′, D i ′;
(7)在结构光光条上任意取一点,提取其像坐标(XLi,YLi),结合一次交比求得的三维物坐标(xwLi,ywLi,zwLi),利用双重交比不变式r(D1,D2,D3,D4)=r′(D1′,D2′,D3′,D4′)来求取该点的三维物坐标并存储;(7) Take any point on the structured light strip, extract its image coordinates (X Li , Y Li ), combine the three-dimensional object coordinates (x wLi , y wLi , z wLi ) obtained by the first cross ratio, and use the double cross ratio Invariant formula r(D 1 , D 2 , D 3 , D 4 )=r'(D 1 ′, D 2 ′, D 3 ′, D 4 ′) to obtain and store the three-dimensional object coordinates of the point;
(8)重复(7)的工作,可以得到所需的任意数量的结构光光平面上点的三维物坐标及其对应的二维像坐标;(8) Repeat the work of (7) to obtain the three-dimensional object coordinates and corresponding two-dimensional image coordinates of any number of points on the structured light plane;
(9)利用(4)中获取的顶点,对式(9) Using the vertices obtained in (4), the pair
(10)利用(6)、(7)、(8)中获取的结构光光平面上的点对下式a·xw+b·yw+c·zw+d=0进行标定,获得a,b,c,d,式中(a,b,c,d)表示光平面方程的系数及常数项。(10) Use the points on the structured light plane obtained in (6), (7), and (8) to calibrate the following formula a· xw +b· yw +c· zw +d=0, and obtain a, b, c, d, where (a, b, c, d) represent the coefficients and constant terms of the light plane equation.
本发明方法的优点是:本方法基于双重交比不变原理,对结构光视觉传感器进行标定,与现有的结构光视觉传感器的标定方法相比,本方法的标定点精度高、数量可任意多,标定的三个传感器的测量精度高分别可达0.1453mm、0.1524mm和0.1496mm。本方法适合现场标定。The advantage of the method of the present invention is: the method is based on the principle of double cross-ratio invariance, and the structured light visual sensor is calibrated. Compared with the existing calibration method of the structured light visual sensor, the calibration points of the method have high precision and the number can be arbitrary The measurement accuracy of the three calibrated sensors can reach 0.1453mm, 0.1524mm and 0.1496mm respectively. This method is suitable for on-site calibration.
附图说明Description of drawings
图1是现有的锯齿靶法原理示意图。图中,1是锯齿靶,2是激光投射器,3是CCD摄像机。Figure 1 is a schematic diagram of the principle of the existing sawtooth target method. In the figure, 1 is a sawtooth target, 2 is a laser projector, and 3 is a CCD camera.
图2是交比不变原理示意图。Fig. 2 is a schematic diagram of the principle of constant cross ratio.
图3是本发明方法一种标定靶标结构示意图。图中4是标定靶标体,5是结构光光条。Fig. 3 is a schematic diagram of the structure of a calibration target in the method of the present invention. In the figure, 4 is the calibration target body, and 5 is the structured light strip.
图4是本发明方法第二种标定靶标结构示意图。图中6是标定靶标体,7是结构光光条。Fig. 4 is a schematic diagram of the structure of the second calibration target in the method of the present invention. 6 in the figure is the calibration target body, and 7 is the structured light strip.
图5是本发明方法第三种标定靶标结构示意图。图中8是标定靶标体,9是结构光光条。Fig. 5 is a schematic diagram of the structure of the third calibration target in the method of the present invention. In the figure, 8 is the calibration target body, and 9 is the structured light strip.
图6是结构光视觉传感器的实物图,图中10是传感器壳体,11是CCD视窗,12是激光器出射口。Fig. 6 is a physical diagram of the structured light vision sensor, in which 10 is the sensor housing, 11 is the CCD window, and 12 is the laser exit.
具体实施方式Detailed ways
下面对本发明方法做进一步详细说明。本发明方法首次基于双重交比不变原理,对结构光视觉传感器进行了标定。本方法能够获得结构光光平面上所需任意数量的高精度的三维物点坐标,用于传感器的标定。首先简要说明双重交比不变的原理。在透视投影变换下,长度以及长度之间的比率是可以改变的,但两个关于长度的比率之间的比值具有不变性。如图2所示,平面π1上有三条非重合直线AiBiCi(i=1,2,3),直线D1D2D3与这三条直线分别交于点D1、D2、D3。通过透视投影中心o,它们在平面π2上的像分别为Ai′Bi′Ci′和D1′D2′D3′。根据透视投影定理,直线经过透视投影变换仍然为直线。因此点Ai′、Bi′、Ci′、Di′(i=1,2,3)共线。共线四点的交比定义为:
根据透视投影变换下交比不变原理,有下式成立:According to the principle of invariant cross ratio under perspective projection transformation, the following formula holds:
r(Ai,Bi,Ci,Di)=r′(Ai′,Bi′,Ci′,Di′) (2)r(A i , B i , C i , D i )=r′(A i ′, B i ′, C i ′, D i ′) (2)
在点Ai、Bi、Ci的坐标及点Ai′、Bi′、Ci′、Di′的坐标已知的条件下,利用式(2)可获得Di的坐标。这样可分别获得点D1、D2、D3的坐标。Under the condition that the coordinates of points A i , B i , C i and the coordinates of points A i ′, B i ′, C i ′, D i ′ are known, the coordinates of D i can be obtained by using formula (2). In this way, the coordinates of points D 1 , D 2 , and D 3 can be obtained respectively.
在直线D1D2D3上任取一点D4,对应O点的透视投影点为D4′。再次利用交比不变原理,有:Take any point D 4 on the straight line D 1 D 2 D 3 , and the perspective projection point corresponding to point O is D 4 ′. Using the principle of cross-ratio invariance again, we have:
r(D1,D2,D3,D4)=r′(D1′,D2′,D3′,D4′) (3)r(D 1 , D 2 , D 3 , D 4 )=r′(D 1 ′, D 2 ′, D 3 ′, D 4 ′) (3)
由式(2)一次交比不变可获得点D1,D2,D3的坐标,在其对应的像点D1′,D2′,D3′的坐标及点D4′的坐标已知的条件下,则再次利用交比不变式(3)可求出D4的坐标。依此类推,可获取直线D1D2D3上任意一点的坐标。本文把交比的上述特性称为双重交比不变性。The coordinates of points D 1 , D 2 , D 3 , the coordinates of the corresponding image points D 1 ′, D 2 ′, D 3 ′ and the coordinates of point D 4 ′ can be obtained from formula (2) with the same cross ratio. Under known conditions, the coordinates of D 4 can be obtained by using the cross-ratio invariant formula (3) again. By analogy, the coordinates of any point on the straight line D 1 D 2 D 3 can be obtained. In this paper, the above-mentioned characteristics of the cross-ratio are called double cross-ratio invariance.
结构光视觉传感器的数学模型。Mathematical model of structured light vision sensor.
结构光视觉传感器的数学的透视投影模型由两部分组成:摄像机的透视投影成像模型和结构光光平面方程。The mathematical perspective projection model of the structured light vision sensor consists of two parts: the perspective projection imaging model of the camera and the light plane equation of the structured light.
根据摄像机针孔成像原理及透视投影变换原理,摄像机的透视投影成像模型可描述如下:According to the principle of camera pinhole imaging and the principle of perspective projection transformation, the perspective projection imaging model of the camera can be described as follows:
其中
光平面方程的方程可描述为:a·xw+b·yw+c·zw+d=0 (5)The equation of the light plane equation can be described as: a x w + b y w + c z w + d = 0 (5)
式(4)和式(5)构成了结构光视觉传感器一完整的数学模型。根据这一模型,结构光视觉传感器的标定分为两步:一是摄像机成像模型参数R和t的标定,二是结构光光平面方程的标定。求解式(4)中的R和t至少需要6个非共面的三维世界点及其对应的二维像点;确定式(5)至少需要光平面上的3个非共线的三维物点。为了提高标定的精度,往往需要获取更多的高精度标定点。Formula (4) and formula (5) constitute a complete mathematical model of structured light vision sensor. According to this model, the calibration of the structured light vision sensor is divided into two steps: one is the calibration of the camera imaging model parameters R and t, and the other is the calibration of the structured light plane equation. Solving R and t in formula (4) requires at least 6 non-coplanar 3D world points and their corresponding 2D image points; determining formula (5) requires at least 3 non-collinear 3D object points on the light plane . In order to improve the calibration accuracy, it is often necessary to obtain more high-precision calibration points.
本发明方法的具体步骤如下:The concrete steps of the inventive method are as follows:
(1)设定靶标,靶标由两个平面组成,其夹角θ为45°≤θ≤135°,两个靶标面上有预先设置的特征点,靶标面为下述结构之一:(1) Set the target, the target is composed of two planes, the angle θ is 45°≤θ≤135°, there are pre-set feature points on the two target surfaces, and the target surface is one of the following structures:
A、靶标甲,在靶标面上有两列三行凸起的黑色的矩形块,每行中矩形块的数量为2~100个,矩形块的间距为10~200mm,每个矩形块的四个顶点为特征点;A. Target A. There are two columns and three rows of raised black rectangular blocks on the target surface. The number of rectangular blocks in each row is 2 to 100, and the distance between the rectangular blocks is 10 to 200mm. Four square blocks of each rectangular block vertices are feature points;
B、靶标乙,在靶标面上有成矩阵排列的圆孔,圆孔的行数和列数为3~100个,采用圆孔的中心作为特征点;B. Target B has circular holes arranged in a matrix on the target surface, the number of rows and columns of the circular holes is 3 to 100, and the center of the circular hole is used as the feature point;
C、靶标丙,在靶标面上有成矩阵排列的十字叉丝,十字叉丝的行数和列数为3~100个,以十字叉丝的交叉点作为特征点;C. Target C. There are crosshairs arranged in a matrix on the target surface. The number of rows and columns of the crosshairs is 3 to 100, and the intersection points of the crosshairs are used as feature points;
(2)将传感器与靶标相距一定距离固定好,应保证传感器中激光器发射的光平面与两个靶标面相交;(2) Fix the sensor and the target at a certain distance, and ensure that the light plane emitted by the laser in the sensor intersects the two target surfaces;
(3)打开传感器中CCD摄像机的电源,采集标定靶标的一幅图像,存储到计算机中;(3) Turn on the power supply of the CCD camera in the sensor, collect an image of the calibration target, and store it in the computer;
(4)对于靶标甲,提取靶标上黑色方块的所有顶点的二维像坐标(Xi,Yi)及其对应的三维物坐标(xwi,ywi,zwi),存储到计算机中;(4) For target A, extract the two-dimensional image coordinates (X i , Y i ) of all vertices of the black square on the target and the corresponding three-dimensional object coordinates (x wi , y wi , z wi ), and store them in the computer;
(5)打开激光器的电源,使投射的结构光光平面与靶标两个平面相交形成两条结构光光条;(5) Turn on the power of the laser, so that the projected structured light plane intersects with the two planes of the target to form two structured light strips;
(6)提取结构光光条5与靶标体上黑色方块边缘的交点的二维像坐标(XLi,YLi),利用一次交比式r(Ai,Bi,Ci,Di)=r′(Ai′,Bi′,Ci′,Di′)计算像坐标(XLi,YLi)所对应的三维物坐标(xwLi,ywLi,zwLi)并存储,式中r(Ai,Bi,Ci,Di)表示Ai,Bi,Ci,Di四点的交比,r′(Ai′,Bi′,Ci′,Di′)表示Ai′,Bi′,Ci′,Di′四点的交比;(6) Extract the two-dimensional image coordinates (X Li , Y Li ) of the intersection point between the structured light strip 5 and the edge of the black square on the target body, and use the first-order cross ratio r(A i , B i , C i , D i ) =r′(A i ′, B i ′, C i ′, D i ′) calculate and store the three-dimensional object coordinates (x wLi , y wLi , z wLi ) corresponding to the image coordinates (X Li , Y Li ), and store them, the formula r(A i , B i , C i , D i ) means the cross ratio of A i , B i , C i , D i ’) represents the cross ratio of A i ′, B i ′, C i ′, D i ′;
(7)在结构光光条上任意取一点,提取其像坐标(XLi,YLi),结合一次交比求得的三维物坐标(xwLi,ywLi,zwLi),利用双重交比不变式r(D1,D2,D3,D4)=r′(D1′,D2′,D3′,D4′)来求取该点的三维物坐标并存储;(7) Take any point on the structured light strip, extract its image coordinates (X Li , Y Li ), combine the three-dimensional object coordinates (x wLi , y wLi , z wLi ) obtained by the first cross ratio, and use the double cross ratio Invariant formula r(D 1 , D 2 , D 3 , D 4 )=r'(D 1 ′, D 2 ′, D 3 ′, D 4 ′) to obtain and store the three-dimensional object coordinates of the point;
(8)重复(7)的工作,可以得到所需的任意数量的结构光光平面上点的三维物坐标及其对应的二维像坐标;(8) Repeat the work of (7) to obtain the three-dimensional object coordinates and corresponding two-dimensional image coordinates of any number of points on the structured light plane;
(9)利用(4)中获取的顶点,对式(9) Using the vertices obtained in (4), the pair
(10)利用(6)、(7)、(8)中获取的结构光光平面上的点对下式a·xw+b·yw+c·zw+d=0进行标定,获得a,b,c,d,式中(a,b,c,d)表示光平面方程的系数及常数项。(10) Use the points on the structured light plane obtained in (6), (7), and (8) to calibrate the following formula a· xw +b· yw +c· zw +d=0, and obtain a, b, c, d, where (a, b, c, d) represent the coefficients and constant terms of the light plane equation.
实施例Example
实际设计的结构光视觉传感器的实物如图6所示。10为传感器的壳体,11为CCD观察景物的窗口,12为激光器的出射口。传感器中CCD和激光器的位置不同,其参数也不同。The actual design of the structured light vision sensor is shown in Figure 6. 10 is the housing of the sensor, 11 is the window for the CCD to observe the scene, and 12 is the exit port of the laser. The positions of CCD and laser in the sensor are different, and their parameters are also different.
按照上面叙述的步骤,利用图3所示的靶标(θ=90°)对三个具体的传感器进行了标定。According to the steps described above, three specific sensors were calibrated using the target (θ=90°) shown in Figure 3 .
传感器一:Sensor one:
·摄像机透视投影成像模型参数·Camera perspective projection imaging model parameters
·结构光平面方程系数·Structured light plane equation coefficient
[a b c d]=[-0.000769 0.056868 -0.584231 10.404217]。[a b c d]=[-0.000769 0.056868 -0.584231 10.404217].
该标定的传感器重构三维物坐标的重复性测试误差分别为:The repeatability test errors of the calibrated sensor reconstructing the three-dimensional object coordinates are:
测量空间中两点间距离的RMS误差为:ERMS=0.1453mm。The RMS error of the distance between two points in the measurement space is: E RMS =0.1453mm.
传感器二:Sensor two:
·摄像机透视投影成像模型参数:·Camera perspective projection imaging model parameters:
·结构光平面方程系数·Structured light plane equation coefficient
[a b c d]=[-0.00848 10.022128 -0.271455 7.8725557]。[a b c d]=[-0.00848 10.022128 -0.271455 7.8725557].
该标定的传感器重构三维物坐标的重复性测试误差分别为:The repeatability test errors of the calibrated sensor reconstructing the three-dimensional object coordinates are:
测量空间中两点间距离的RMS误差为:ERMS=0.1524mmThe RMS error of the distance between two points in the measurement space is: E RMS =0.1524mm
传感器三:Sensor three:
·摄像机透视投影成像模型参数·Camera perspective projection imaging model parameters
·结构光平面方程系数·Structured light plane equation coefficient
[α b c d]=[-0.013647 -0.013292 -0.190761 19.329410]。[α b c d] = [-0.013647 -0.013292 -0.190761 19.329410].
该标定的传感器重构三维物坐标的重复性测试误差分别为:The repeatability test errors of the calibrated sensor reconstructing the three-dimensional object coordinates are:
测量空间中两点间距离的RMS误差为:ERMS=0.1496mm。The RMS error of the distance between two points in the measurement space is: E RMS =0.1496mm.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 02156599 CN1216273C (en) | 2002-12-17 | 2002-12-17 | Method for calibrating structure optical vision sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 02156599 CN1216273C (en) | 2002-12-17 | 2002-12-17 | Method for calibrating structure optical vision sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1508511A true CN1508511A (en) | 2004-06-30 |
CN1216273C CN1216273C (en) | 2005-08-24 |
Family
ID=34236306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 02156599 Expired - Fee Related CN1216273C (en) | 2002-12-17 | 2002-12-17 | Method for calibrating structure optical vision sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1216273C (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1300548C (en) * | 2005-03-23 | 2007-02-14 | 天津大学 | Quick calibrating method for line structure optical sensor based on coplanar calibrated reference |
CN100357702C (en) * | 2005-07-12 | 2007-12-26 | 北京航空航天大学 | Three-dimensional in-situs vision measuring-value delivering method and device |
CN100388319C (en) * | 2006-07-25 | 2008-05-14 | 深圳大学 | Multi-view pose estimation and self-calibration method for 3D active vision sensor |
CN100412503C (en) * | 2005-09-30 | 2008-08-20 | 中国海洋大学 | Multi-view laser measuring head and its calibration method |
CN100453966C (en) * | 2005-01-10 | 2009-01-21 | 北京航空航天大学 | A method for measuring the three-dimensional position and attitude of the camera space |
CN100491903C (en) * | 2007-09-05 | 2009-05-27 | 北京航空航天大学 | A method for calibrating structural parameters of a structured light vision sensor |
CN101696876B (en) * | 2009-10-26 | 2011-05-18 | 宁波大红鹰学院 | Visual detection method for VCM magnetic steel |
CN102721376A (en) * | 2012-06-20 | 2012-10-10 | 北京航空航天大学 | Calibrating method of large-field three-dimensional visual sensor |
CN102980528A (en) * | 2012-11-21 | 2013-03-20 | 上海交通大学 | Calibration method of pose position-free constraint line laser monocular vision three-dimensional measurement sensor parameters |
CN103257342A (en) * | 2013-01-11 | 2013-08-21 | 大连理工大学 | Three-dimension laser sensor and two-dimension laser sensor combined calibration method |
CN103411553A (en) * | 2013-08-13 | 2013-11-27 | 天津大学 | Fast calibration method of multiple line structured light visual sensor |
CN103697811A (en) * | 2013-12-18 | 2014-04-02 | 同济大学 | Method of obtaining three-dimensional coordinates of profile of object through combining camera and structural light source |
CN103712572A (en) * | 2013-12-18 | 2014-04-09 | 同济大学 | Structural light source-and-camera-combined object contour three-dimensional coordinate measuring device |
CN104596443A (en) * | 2015-01-26 | 2015-05-06 | 长春师范大学 | Light plane equation fitting locating calibration method based on inherent characteristics of three-line laser |
CN105783773A (en) * | 2016-03-18 | 2016-07-20 | 河北科技大学 | Numerical value calibration method for line structured light vision sensor |
CN106109015A (en) * | 2016-08-18 | 2016-11-16 | 秦春晖 | A kind of wear-type medical system and operational approach thereof |
CN106525884A (en) * | 2016-11-15 | 2017-03-22 | 中国科学院高能物理研究所 | Optical system and fluorescence measurement and pre-positioning method thereof |
CN106705849A (en) * | 2017-01-25 | 2017-05-24 | 上海新时达电气股份有限公司 | Calibration method of linear-structure optical sensor |
CN107218904A (en) * | 2017-07-14 | 2017-09-29 | 北京航空航天大学 | A kind of line structured light vision sensor calibration method based on sawtooth target |
CN107449402A (en) * | 2017-07-31 | 2017-12-08 | 清华大学深圳研究生院 | A kind of measuring method of the relative pose of noncooperative target |
CN107730554A (en) * | 2016-08-10 | 2018-02-23 | 合肥美亚光电技术股份有限公司 | The scaling method and device of face battle array structure light imaging system |
CN110095105A (en) * | 2019-05-22 | 2019-08-06 | 福建工程学院 | A kind of coplanar detection method of four based on contactless building surveying point |
CN110470320A (en) * | 2019-09-11 | 2019-11-19 | 河北科技大学 | The scaling method and terminal device of oscillatory scanning formula line-structured light measuring system |
CN110708462A (en) * | 2019-10-08 | 2020-01-17 | 北京航空航天大学 | Light field camera focusing method and device |
CN114083536A (en) * | 2021-11-24 | 2022-02-25 | 易思维(杭州)科技有限公司 | Method for recovering hand-eye relationship of single-line structured light sensor by using three-dimensional block |
CN114509776A (en) * | 2022-04-08 | 2022-05-17 | 探维科技(北京)有限公司 | Synchronous measurement device, method, equipment and medium of hardware-level image fusion system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100462668C (en) * | 2005-09-07 | 2009-02-18 | 北京航空航天大学 | A flexible planar target for vision system calibration |
-
2002
- 2002-12-17 CN CN 02156599 patent/CN1216273C/en not_active Expired - Fee Related
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100453966C (en) * | 2005-01-10 | 2009-01-21 | 北京航空航天大学 | A method for measuring the three-dimensional position and attitude of the camera space |
CN1300548C (en) * | 2005-03-23 | 2007-02-14 | 天津大学 | Quick calibrating method for line structure optical sensor based on coplanar calibrated reference |
CN100357702C (en) * | 2005-07-12 | 2007-12-26 | 北京航空航天大学 | Three-dimensional in-situs vision measuring-value delivering method and device |
CN100412503C (en) * | 2005-09-30 | 2008-08-20 | 中国海洋大学 | Multi-view laser measuring head and its calibration method |
CN100388319C (en) * | 2006-07-25 | 2008-05-14 | 深圳大学 | Multi-view pose estimation and self-calibration method for 3D active vision sensor |
CN100491903C (en) * | 2007-09-05 | 2009-05-27 | 北京航空航天大学 | A method for calibrating structural parameters of a structured light vision sensor |
CN101696876B (en) * | 2009-10-26 | 2011-05-18 | 宁波大红鹰学院 | Visual detection method for VCM magnetic steel |
CN102721376A (en) * | 2012-06-20 | 2012-10-10 | 北京航空航天大学 | Calibrating method of large-field three-dimensional visual sensor |
CN102721376B (en) * | 2012-06-20 | 2014-12-31 | 北京航空航天大学 | Calibrating method of large-field three-dimensional visual sensor |
CN102980528A (en) * | 2012-11-21 | 2013-03-20 | 上海交通大学 | Calibration method of pose position-free constraint line laser monocular vision three-dimensional measurement sensor parameters |
CN102980528B (en) * | 2012-11-21 | 2015-07-08 | 上海交通大学 | Calibration method of pose position-free constraint line laser monocular vision three-dimensional measurement sensor parameters |
CN103257342A (en) * | 2013-01-11 | 2013-08-21 | 大连理工大学 | Three-dimension laser sensor and two-dimension laser sensor combined calibration method |
CN103257342B (en) * | 2013-01-11 | 2014-11-05 | 大连理工大学 | Three-dimension laser sensor and two-dimension laser sensor combined calibration method |
CN103411553A (en) * | 2013-08-13 | 2013-11-27 | 天津大学 | Fast calibration method of multiple line structured light visual sensor |
CN103411553B (en) * | 2013-08-13 | 2016-03-02 | 天津大学 | The quick calibrating method of multi-linear structured light vision sensors |
CN103712572A (en) * | 2013-12-18 | 2014-04-09 | 同济大学 | Structural light source-and-camera-combined object contour three-dimensional coordinate measuring device |
CN103697811B (en) * | 2013-12-18 | 2016-08-17 | 同济大学 | A kind of camera is combined the method obtaining contour of object three-dimensional coordinate with structure light source |
CN103697811A (en) * | 2013-12-18 | 2014-04-02 | 同济大学 | Method of obtaining three-dimensional coordinates of profile of object through combining camera and structural light source |
CN104596443A (en) * | 2015-01-26 | 2015-05-06 | 长春师范大学 | Light plane equation fitting locating calibration method based on inherent characteristics of three-line laser |
CN104596443B (en) * | 2015-01-26 | 2017-02-01 | 长春师范大学 | Light plane equation fitting locating calibration method based on inherent characteristics of three-line laser |
CN105783773A (en) * | 2016-03-18 | 2016-07-20 | 河北科技大学 | Numerical value calibration method for line structured light vision sensor |
CN105783773B (en) * | 2016-03-18 | 2019-05-10 | 河北科技大学 | A Numerical Calibration Method for Linear Structured Light Vision Sensors |
CN107730554A (en) * | 2016-08-10 | 2018-02-23 | 合肥美亚光电技术股份有限公司 | The scaling method and device of face battle array structure light imaging system |
CN107730554B (en) * | 2016-08-10 | 2020-11-24 | 合肥美亚光电技术股份有限公司 | Calibration method and device of area array structured light imaging system |
CN106109015A (en) * | 2016-08-18 | 2016-11-16 | 秦春晖 | A kind of wear-type medical system and operational approach thereof |
CN106525884A (en) * | 2016-11-15 | 2017-03-22 | 中国科学院高能物理研究所 | Optical system and fluorescence measurement and pre-positioning method thereof |
CN106705849A (en) * | 2017-01-25 | 2017-05-24 | 上海新时达电气股份有限公司 | Calibration method of linear-structure optical sensor |
CN107218904B (en) * | 2017-07-14 | 2020-03-17 | 北京航空航天大学 | Line structured light vision sensor calibration method based on sawtooth target |
CN107218904A (en) * | 2017-07-14 | 2017-09-29 | 北京航空航天大学 | A kind of line structured light vision sensor calibration method based on sawtooth target |
CN107449402A (en) * | 2017-07-31 | 2017-12-08 | 清华大学深圳研究生院 | A kind of measuring method of the relative pose of noncooperative target |
CN107449402B (en) * | 2017-07-31 | 2019-11-26 | 清华大学深圳研究生院 | A kind of measurement method of the relative pose of noncooperative target |
CN110095105A (en) * | 2019-05-22 | 2019-08-06 | 福建工程学院 | A kind of coplanar detection method of four based on contactless building surveying point |
CN110470320A (en) * | 2019-09-11 | 2019-11-19 | 河北科技大学 | The scaling method and terminal device of oscillatory scanning formula line-structured light measuring system |
CN110470320B (en) * | 2019-09-11 | 2021-03-05 | 河北科技大学 | Calibration method of swinging scanning type line structured light measurement system and terminal equipment |
CN110708462A (en) * | 2019-10-08 | 2020-01-17 | 北京航空航天大学 | Light field camera focusing method and device |
CN110708462B (en) * | 2019-10-08 | 2020-10-20 | 北京航空航天大学 | Light field camera focusing method and device |
CN114083536A (en) * | 2021-11-24 | 2022-02-25 | 易思维(杭州)科技有限公司 | Method for recovering hand-eye relationship of single-line structured light sensor by using three-dimensional block |
CN114083536B (en) * | 2021-11-24 | 2023-09-08 | 易思维(杭州)科技有限公司 | Method for recovering hand-eye relationship of single-line structure light sensor by utilizing three-dimensional block |
CN114509776A (en) * | 2022-04-08 | 2022-05-17 | 探维科技(北京)有限公司 | Synchronous measurement device, method, equipment and medium of hardware-level image fusion system |
CN114509776B (en) * | 2022-04-08 | 2022-07-29 | 探维科技(北京)有限公司 | Synchronous measuring device, method, equipment and medium of hardware-level image fusion system |
Also Published As
Publication number | Publication date |
---|---|
CN1216273C (en) | 2005-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1508511A (en) | A Calibration Method for Structured Light Vision Sensor | |
CN1566906A (en) | Construction optical visual sense transducer calibration method based on plane targets | |
CN1259542C (en) | Vision measuring method for spaced round geometrical parameters | |
CN103344182B (en) | A kind of confection physical dimension based on binocular vision measures system and method | |
CN101526337B (en) | Scanning system and method for three-dimensional images | |
CN103499302A (en) | Camshaft diameter online measuring method based on structured light visual imaging system | |
CN105678785A (en) | Method for calibrating posture relation of laser and camera | |
CN109238084B (en) | An Automatic Guidance Method for Micro-round Hole Measurement | |
CN110672037A (en) | Linear light source grating projection 3D measurement system and method based on phase shift method | |
CN106056620A (en) | Calibration board for line laser position calibration and line laser camera measurement system calibration method | |
CN1220866C (en) | Method for calibarting lens anamorphic parameter | |
CN102519400A (en) | Large slenderness ratio shaft part straightness error detection method based on machine vision | |
CN106949851A (en) | A kind of line structured light vision sensor calibration method based on SVMs | |
CN102506711A (en) | Line laser vision three-dimensional rotate scanning method | |
CN107229043A (en) | A kind of range sensor external parameters calibration method and system | |
CN100342210C (en) | Laser self-collimation zero reference error angle measuring method | |
CN105046715A (en) | Space analytic geometry-based line-scan camera calibration method | |
CN104123725B (en) | A kind of computational methods of single line array camera homography matrix H | |
CN101425185A (en) | Method for demarcating small-scale vision measuring video camera based on composite planar target drone | |
CN1620153A (en) | Method of non-metric digital camera calibration using planar control point field | |
CN1236277C (en) | Overall calibrating method for multi-vision sensor detecting system | |
CN115876083A (en) | A mobile projection type three-dimensional measurement method and device | |
CN104697552B (en) | Misalignment angle calibration method for two-dimensional autocollimator | |
CN109506629A (en) | A kind of method of underwater nuclear fuel assembly detection device rotation center calibration | |
CN1184531C (en) | Method for 3D camera to collect multi-viewing angle data and align resetting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20050824 Termination date: 20111217 |