CN1500071A - 特低密度的水泥浆 - Google Patents

特低密度的水泥浆 Download PDF

Info

Publication number
CN1500071A
CN1500071A CNA018230857A CN01823085A CN1500071A CN 1500071 A CN1500071 A CN 1500071A CN A018230857 A CNA018230857 A CN A018230857A CN 01823085 A CN01823085 A CN 01823085A CN 1500071 A CN1500071 A CN 1500071A
Authority
CN
China
Prior art keywords
volume
median size
grout
cement
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA018230857A
Other languages
English (en)
Inventor
��³ŵ��������
布鲁诺·德罗乔恩
斯莱希迪恩·基菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sofitech NV
Original Assignee
Sofitech NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sofitech NV filed Critical Sofitech NV
Publication of CN1500071A publication Critical patent/CN1500071A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/48Clinker treatment
    • C04B7/52Grinding ; After-treatment of ground cement
    • C04B7/527Grinding ; After-treatment of ground cement obtaining cements characterised by fineness, e.g. by multi-modal particle size distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • C04B20/0036Microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00068Mortar or concrete mixtures with an unusual water/cement ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

一种密度在750-1000kg/m3之间的水泥浆,包括固体组分和占总体积37-50%(体积)的液体组分,其中固体组分包括:75%-90%(体积)的平均粒径在10-60μm之间的轻质颗粒;和10%-25%(体积)的平均粒径在10-50μm之间的波特兰水泥或平均粒径在0.5-5μm之间的微水泥;或:20%-50%(体积)的平均粒径在10-60μm之间的轻质颗粒;10%-25%(体积)的平均粒径在10-50μm之间的波特兰水泥或平均粒径在0.5-5μm之间的微水泥;和35%-65%(体积)的平均粒径在100-200μm之间的轻质颗粒。尽管这种水泥密度非常低,但由于其极低的空隙率而具有显著的机械性能。

Description

特低密度的水泥浆
本发明涉及用于油井、天然气井、水井、地热井等井类的水泥浆。更确切地,本发明涉及具有低密度和低空隙率的水泥浆。
钻井如钻油井后,一般将套管沉入到井内并在其整个或部分高度灌注水泥。这特别适用于消除井延伸方向的不同岩层间的流体互换,如阻止气体通过套管周围的环隙逸出,或限制水进入产烃井。灌注水泥的另一个目的是巩固井并保护套管。
当制备水泥浆然后注入井内并置于要注水泥的区域时,水泥浆必须具有相当低的粘度和有效的恒定流变性。一旦置于其位置,理想的水泥快速产生高压强。
希望能调整水泥的密度以使在井的底部岩层上的水泥所施加的压力至少能很好补偿岩层空隙流体压力,从而避免任何灌注危险。由水泥柱产生的流体静压的上限加上由于泵输送的流体循环造成的液压损失必须保持低于正灌注水泥区域中的岩石的断裂压力。有些地质岩层非常脆弱,需要低于水密度的水泥密度以避免这种断裂。
由于灌注危险随着柱的高度减小,如果使用柱的高度大时,补偿孔隙压力所需的密度就可低一点。另外,以大的高度灌注水泥是有利的,因为这可减少必须注水泥的区域数。
所有这些因素促成了低密度水泥浆的应用。
油井和天然气井最广泛使用的水泥浆的密度约为1900kg/m3,约为要避免一些矿床断裂所需密度的2倍。为生产较轻(较低密度)的水泥浆,最简单的已知方法是制造与常规水泥浆相比其水含量增加的缓凝水泥浆,同时为了避免颗粒料沉降和/或在浆体表面形成游离水而向浆体中添加稳定剂(通常所说的“缓凝剂”)。但是,这种方法不能用于生产密度接近1000kg/m3的水泥浆。另外,由这种水泥浆形成的硬化水泥的抗压强度大大降低,渗透性高,并且粘合度差。由于这些原因,这种方法不能用于有效地生产密度低于1300kg/m3且同时仍保持良好区域层隔离并为套管提供足够增强作用的水泥浆。
另外一种已知方法在于通过在浆体开始产生泡沫前向浆体内注入气体(一般用空气或氮气)使水泥浆变轻。调整空气或氮气的加入量以达到所需的浆体密度。由于气体密度比水低,因而需要加入量较少,所以这种方法提供了比前面所述的缓凝水泥浆稍好的性能。尽管如此,在石油工业应用中,密度实际仍限制在大于1100kg/m3,即使在开始时使用已用水减轻的水泥浆。超过一定的“泡沫程度”,即一定的气体体积与泡沫浆体体积比,泡沫稳定性就急剧下降,凝固水泥的压缩强度就变的太低,并且其透气性变得太高,因而耐久性降低,尤其是在含有对水泥在一定程度上有侵蚀性离子的热水溶性介质中,这在油井和气井中是常见的。
因各种原因,前人建议向水泥浆中加入玻璃或陶瓷珠或球。US5571318中建议在水泥浆中包含陶瓷珠以用于失水量的控制。US3804058中建议使用60-325μm和<40->250μm粒度范围内的玻璃微球以制备低密度水泥浆。WO00/29359中建议在用于低温或深水井的水泥浆中使用平均粒径在120-150μm范围内的煤胞。这些建议中没有一个描述密度低于水的浆体。
国际专利申请号PCT/EP/00/06459公开了密度在0.9-1.3g/cm3范围内的低密度水泥浆,并由固体组分和液体组分构成,具有空隙率(液固体积比)在38%-50%范围内,所述固体组分包括:60%-90%(体积)的平均粒径在20-350μm范围内的轻质颗粒;10%-30%(体积)的平均粒径在0.5-5.0μm范围内的微水泥;0%-20%(体积)的平均粒径在20-50μm范围内的波特兰水泥;及0-30%(体积)的石膏。
本发明的一个目的是提供同时具有低密度和低空隙率并且不用引入气体就可得到的水泥浆。
本发明提供密度在750kg/m3-1000kg/m3之间的水泥浆,包括占总体积37%-50%数量(体积)的液体组分,和由水泥组分与平均粒径在10-60μm之间的轻质颗粒组分组成的固体组分。
固体组分可为两元混合物或三元混合物。在两元形式中,固体组分包括:
75%-90%(体积)的平均粒径在10-60μm之间的轻质颗粒;
10%-25%(体积)的平均粒径在10-50μm之间的波特兰水泥或平均粒径在0.5-5μm之间的微水泥。
在三元形式中,固体组分包括:
20%-50%(体积)的平均粒径在10-60μm之间的轻质颗粒;
10%-25%(体积)的平均粒径在10-50μm之间的波特兰水泥或平均粒径在0.5-5μm之间的微水泥;
35%-65%(体积)的平均粒径在100-200μm之间的轻质颗粒。
平均粒径在10-60μm之间的轻质颗粒优选为密度小于500kg/m3如380kg/m3的玻璃微球。尤其优选平均粒径大于25μm的原料。
通过使液固相比小于50%、优选小于45%来获得低空隙率,以达到最佳机械性能和渗透性。通过提供比常规轻化体系好得多的机械性能和低渗透性,超轻质水泥的防漏和粘合性能及这种配方的抗化学腐蚀性大大好于目前使用的低密度体系,即使本发明可能达到异常低的密度特别是明显低于水的密度时也是如此。另外,本发明的水泥浆不需要使用气体,这就可能避免生产泡沫水泥还另外需要的补给问题(logistical problems)。
本发明的特征在于颗粒添加剂是混合在水泥浆中,与浆体中的另外一种或其它颗粒组分结合,特别是与水泥、微水泥(或类似水硬性粘合剂)的颗粒结合,这种结合产生了可大大改善水泥浆性能的粒度分布。颗粒添加剂可为有机物或无机物,特别选择密度低的。通过结合轻质颗粒和水泥(或类似水硬性粘合剂)而获得低密度。通过选择颗粒的粒度和颗粒体积分布以使固体混合物的紧密度最大,从而得到适宜的流变和机械性能。
对于含有两组分(轻质颗粒和水泥/微水泥)的固体混合物,最大的紧密度一般在轻质颗粒与水泥体积比在70∶30到85∶15,优选在75∶25到80∶20范围内得到,当使用微水泥时,选用的轻质颗粒的粒度至少是微水泥粒度的10倍。这些参数可以改变,具体取决于轻质颗粒粒度分布的分散度。平均粒径为30μm的颗粒可与微水泥以85∶15的比例(体积)结合使用,能得到850-880kg/m3(取决于液固比)的密度级。
本发明使用的术语“微水泥”是指由平均粒径大约3μm的颗粒组成的任何水硬性粘合剂,且不包含粒度大于15μm的颗粒或至少没有大于15μm的有效数。这种材料通过透气度试验所测得的单位重量的比表面积一般为0.8m2/g左右。
微水泥可主要由波特兰水泥组成,特别是由典型的包括65%石灰、22%硅石、4%氧化铝、4%氧化铁和少于1%的氧化锰的G级波特兰水泥组成,或同样地通过由波特兰微水泥与微矿渣的混合物组成,即主要由包括45%石灰、30%硅石、10%氧化铝、1%氧化铁和5%-6%氧化锰的熟料制成组合物所构成的混合物(这里只提到主要氧化物;它们的浓度当然随来源有轻微变化)。对于特别低的温度应用(<30℃),优选波特兰微水泥,因其反应性超过微水泥和矿渣的混合物。
通常的轻质颗粒密度小于1g/cm3,一般小于0.7g/cm3。可使用合成材料如中空玻璃珠,尤其优选具有高抗压强度的钠-钙-硅酸硼玻璃珠,也可使用真正的陶瓷微球,如硅-铝类。这些轻质颗粒还可以是塑料材料如聚丙烯颗粒。也可以使用中空微球,尤其是称为煤胞的硅铝酸盐,一种平均粒径大约为150μm的煤燃烧后的残渣。
通常,调整水泥浆密度主要与已选择的轻质颗粒相关,但也可改变水固比(保持水体积分数在38%-50%范围内)和(微)水泥或类似水硬性粘合剂的量(在10%-30%范围内)。
根据本发明制备的水泥的机械性能大大好于具有同样密度的泡沫水泥。抗压强度非常高,空隙率非常低。因此,渗透性比同样密度的泡沫的水泥小几个数量级,从而使这类体系具有显著的硬度性能。
本发明的方法由于避免了发泡所需的这类补给,因而大大简化了灌浆操作。
根据本发明制备的水泥浆还具有能在浆体注于井内前就可测定全部浆体性能(流变性、凝结时间、抗压强度....)的优点,而不象泡沫水泥浆只能在气体引入前的浆体中测量某些参数(凝结时间)。
根据本发明的水泥浆可以包含一种或多种下列类型的添加剂:分散剂、防冻剂、保水剂、缓凝剂(extenders)、水泥促凝剂或阻凝剂、泡沫稳定剂。这些添加剂以液体形式(本身为液体或溶于液体载体)存在并作为液体组分的一部分。水泥浆中也可存在少量的不改变如前所述的两元或三元性质的固体材料。
以下非限制其范围的实施例用于说明本发明。
给出根据本发明制备的两种水泥浆的性能,并与泡沫水泥体系相比较。
水泥浆A:制备粉末混合物。它包括90vol%的平均粒径为30μm、密度为380kg/m3的玻璃微球,和10vol%的波特兰微水泥与平均粒径大约为1.5μm的矿渣的混合物。
使用的玻璃微球为3MTM公司出售的名为ScothchliteTM Glass Bubbles的S38HS;这种微球的密度为380kg/m3,粒度分布为:10%(体积)的颗粒的粒度小于20μm,50%的小于45μm,90%的小于75μm;特别选用这些颗粒是因为其高抗压强度(90%的颗粒承受38.5MPa或5500psi的等静压压力)。
水和添加剂(每袋粉末含0.05加仑的消泡剂和每袋粉末0.08加仑的基于聚萘磺酸盐的超增塑剂)和这种粉末混合以确保液体在浆体中的体积百分比为42%。应注意到一袋粉末的定义同水泥的袋类似,即一袋装有45.359kg混合物,换句话说,每公斤混合物有1加仑/秒=0.0834升(1)的添加剂。
水泥浆B:制备粉末混合物。它包括85vol%的平均粒径为30μm、密度为380kg/m3的玻璃微球S38HS,和15vol%的波特兰微水泥与平均粒径大约为1.5μm的矿渣的混合物。
水和添加剂(每袋粉末0.05加仑的消泡剂和每袋粉末0.12加仑的基于聚萘磺酸盐的超增塑剂)和这种粉末混合以确保液体在浆体中的体积百分比为42%。
水泥浆C:制备粉末混合物。它包括45vol%的平均粒径为150μm、密度为680kg/m3的中空煤胞,43vol%的平均粒径为30μm、密度为380kg/m3的玻璃微球S38HS,和12vol%的波特兰微水泥与平均粒径约1.5μm的矿渣的混合物。
水和添加剂(每袋粉末0.05加仑的消泡剂和每袋粉末0.1加仑的基于聚萘磺酸盐的超增塑剂)同粉末混合并确保液体在浆体中的体积百分比为42%。
水泥浆D:制备基于G级波特兰水泥的密度为1900kg/m3的常规水泥浆。
用50%泡沫量使浆体泡沫化,以得到最终密度为950kg/m3的水泥浆。
水泥浆 A B C D
密度 790(6.6) 910(7.57) 900(7.5) 950(7.9)
空隙率 42% 42% 42% 78%*
塑性粘度 73 62 68
Ty 3(6) 2.5(5) 3(6)
渗透性 <5μD <5μD <5μD >10mD
CS 2.8(410) 8.2(1200) 5.5(800) 4.6(670)
密度单位为kg/m3(圆括号内为磅/加仑)。
应用宾汉流体模型,以单位为帕斯卡(圆括号内为磅/100平方英尺)的流动阀值和单位为mPa.s或厘泊的塑性粘度表示流变能力。这些参数在室温下测定。CS代表水泥在室温常压下凝结四天后的抗压强度,单位为MPa(圆括号内为磅/平方英寸)。
*这种情况下,空隙率的计算按照气+水的体积/浆体总体积。
根据本发明制备的水泥浆可看出,对如此低的密度,抗压强度仍特别高,而且尽管空隙率低,但这些水泥浆仍呈现出良好流变能力。

Claims (14)

1.一种密度在750-1000kg/m3之间的水泥浆,包括占总体积37-50%(体积)的液体组分和由水泥组分与平均粒径在10-60μm之间的轻质颗粒组分组成的固体组分。
2.如权利要求1要求的水泥浆,其中固体组分包括:
75%-90%(体积)的平均粒径在15μm以上的轻质颗粒;和
10%-25%(体积)的平均粒径在10-50μm之间的波特兰水泥或平均粒径在0.5-5μm之间的微水泥。
3.如权利要求1要求的水泥浆,其中固体组分包括:
20%-50%(体积)的平均粒径在10-60μm之间的轻质颗粒;
10%-25%(体积)的平均粒径在10-50μm之间的波特兰水泥或平均粒径在0.5-5μm之间的微水泥;和
35%-65%(体积)的平均粒径在100-200μm之间的轻质颗粒。
4.如权利要求3要求的水泥浆,其中平均粒径在100-200μm之间的轻质颗粒的密度不大于1000kg/m3
5.如权利要求4要求的水泥浆,其中平均粒径在100-200μm之间的轻质颗粒的密度不大于700kg/m3
6.如权利要求3、4或5要求的水泥浆,其中平均粒径在100-200μm之间的轻质颗粒包括煤胞。
7.如前述任一权利要求要求的水泥浆,其中水泥组分包括平均粒径不大于3μm的微水泥。
8.如权利要求7要求的水泥浆,其中固体组分包括平均粒径是微水泥平均粒径至少10倍的轻质颗粒。
9.如前述任一权利要求要求的水泥浆,其中平均粒径在10-60μm之间的轻质颗粒的密度不大于500kg/m3
10.如权利要求9要求的水泥浆,其中平均粒径在10-60μm之间的轻质颗粒的密度大约为380kg/m3
11.如前述任一权利要求要求的水泥浆,其中平均粒径在10-60μm之间的轻质颗粒的粒度分布为:至少10%(体积)的颗粒的粒度小于20μm,至少50%(体积)的颗粒的粒度小于45μm,至少90%(体积)的颗粒的粒度小于75μm。
12.如前述任一权利要求要求的水泥浆,其中液体组分占总体积的45%(体积)。
13.如前述任一权利要求要求的水泥浆,其中平均粒径在10-60μm之间的轻质颗粒包括玻璃微球。
14.如前述任一权利要求要求的水泥浆,另外还包含一种或多种下列类型的添加剂:分散剂、防冻剂、保水剂、缓凝剂、水泥促凝剂或阻凝剂、泡沫稳定剂。
CNA018230857A 2001-02-15 2001-12-12 特低密度的水泥浆 Pending CN1500071A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01400405.5 2001-02-15
EP20010400405 EP1236701A1 (en) 2001-02-15 2001-02-15 Very low-density cement slurry

Publications (1)

Publication Number Publication Date
CN1500071A true CN1500071A (zh) 2004-05-26

Family

ID=8182627

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA018230857A Pending CN1500071A (zh) 2001-02-15 2001-12-12 特低密度的水泥浆

Country Status (13)

Country Link
US (1) US20040112255A1 (zh)
EP (2) EP1236701A1 (zh)
CN (1) CN1500071A (zh)
AR (1) AR034016A1 (zh)
BR (1) BR0116891A (zh)
CA (1) CA2438463A1 (zh)
DZ (1) DZ3497A1 (zh)
EA (1) EA200300887A1 (zh)
EG (1) EG23010A (zh)
MX (1) MXPA03007053A (zh)
NO (1) NO20033607L (zh)
OA (1) OA12443A (zh)
WO (1) WO2002064528A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103509539A (zh) * 2012-06-30 2014-01-15 李越 一种减轻剂
CN104986993A (zh) * 2015-06-04 2015-10-21 中国石油化工股份有限公司 一种用于地热成井的低导热水泥浆及其制备方法

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2796935B1 (fr) * 1999-07-29 2001-09-21 Dowell Schlumberger Services Coulis de cimentation des puits petroliers ou analogues a basse densite et basse porosite
AU2001256356A1 (en) * 2000-05-15 2001-11-26 Drochon, Bruno Permeable cements
DE60135322D1 (de) * 2001-08-06 2008-09-25 Schlumberger Technology Bv Faserverstärkte Zementzusammensetzung mit niedriger Dichte
NO324113B1 (no) * 2002-11-08 2007-08-27 West Lab Services As Betongblanding for anvendelse i olje- og gassbronner
US7048053B2 (en) * 2002-12-10 2006-05-23 Halliburton Energy Services, Inc. Zeolite compositions having enhanced compressive strength
US6989057B2 (en) * 2002-12-10 2006-01-24 Halliburton Energy Services, Inc. Zeolite-containing cement composition
US7073584B2 (en) 2003-11-12 2006-07-11 Halliburton Energy Services, Inc. Processes for incorporating inert gas in a cement composition containing spherical beads
US7607482B2 (en) 2005-09-09 2009-10-27 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and swellable particles
US9512346B2 (en) 2004-02-10 2016-12-06 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-hydraulic cement
US20050241538A1 (en) * 2004-04-28 2005-11-03 Vargo Richard F Jr Methods of making cement compositions using liquid additives containing lightweight beads
US7398827B2 (en) * 2005-03-11 2008-07-15 Halliburton Energy Services, Inc. Methods for high temperature lightweight cementing
US8333240B2 (en) 2005-09-09 2012-12-18 Halliburton Energy Services, Inc. Reduced carbon footprint settable compositions for use in subterranean formations
US9051505B2 (en) 2005-09-09 2015-06-09 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US7789150B2 (en) 2005-09-09 2010-09-07 Halliburton Energy Services Inc. Latex compositions comprising pozzolan and/or cement kiln dust and methods of use
US9006155B2 (en) 2005-09-09 2015-04-14 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US8522873B2 (en) 2005-09-09 2013-09-03 Halliburton Energy Services, Inc. Spacer fluids containing cement kiln dust and methods of use
US9676989B2 (en) 2005-09-09 2017-06-13 Halliburton Energy Services, Inc. Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use
US9023150B2 (en) 2005-09-09 2015-05-05 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US8672028B2 (en) 2010-12-21 2014-03-18 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US8505629B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Foamed spacer fluids containing cement kiln dust and methods of use
US7478675B2 (en) 2005-09-09 2009-01-20 Halliburton Energy Services, Inc. Extended settable compositions comprising cement kiln dust and associated methods
US8505630B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US7607484B2 (en) 2005-09-09 2009-10-27 Halliburton Energy Services, Inc. Foamed cement compositions comprising oil-swellable particles and methods of use
US8950486B2 (en) 2005-09-09 2015-02-10 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and methods of use
US7743828B2 (en) 2005-09-09 2010-06-29 Halliburton Energy Services, Inc. Methods of cementing in subterranean formations using cement kiln cement kiln dust in compositions having reduced Portland cement content
US8609595B2 (en) 2005-09-09 2013-12-17 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use
US8403045B2 (en) 2005-09-09 2013-03-26 Halliburton Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8281859B2 (en) 2005-09-09 2012-10-09 Halliburton Energy Services Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US9150773B2 (en) 2005-09-09 2015-10-06 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US9809737B2 (en) 2005-09-09 2017-11-07 Halliburton Energy Services, Inc. Compositions containing kiln dust and/or biowaste ash and methods of use
US8555967B2 (en) 2005-09-09 2013-10-15 Halliburton Energy Services, Inc. Methods and systems for evaluating a boundary between a consolidating spacer fluid and a cement composition
US8297357B2 (en) 2005-09-09 2012-10-30 Halliburton Energy Services Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US8327939B2 (en) 2005-09-09 2012-12-11 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and rice husk ash and methods of use
US8307899B2 (en) 2005-09-09 2012-11-13 Halliburton Energy Services, Inc. Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite
US7296626B2 (en) * 2005-11-08 2007-11-20 Halliburton Energy Services, Inc. Liquid additive for reducing water-soluble chromate
US7799129B2 (en) * 2005-12-02 2010-09-21 Thuan Bui Lightweight structural concrete provided with various wood properties
EP1876154A1 (en) 2006-06-29 2008-01-09 Services Pétroliers Schlumberger Cement slurry with low water to cement ratio
US7789149B2 (en) * 2006-11-03 2010-09-07 Halliburton Energy Services, Inc. Methods of servicing wellbore with composition comprising ultra low density thermatek® slurries
US8685903B2 (en) 2007-05-10 2014-04-01 Halliburton Energy Services, Inc. Lost circulation compositions and associated methods
US9206344B2 (en) 2007-05-10 2015-12-08 Halliburton Energy Services, Inc. Sealant compositions and methods utilizing nano-particles
US9512351B2 (en) 2007-05-10 2016-12-06 Halliburton Energy Services, Inc. Well treatment fluids and methods utilizing nano-particles
US8476203B2 (en) 2007-05-10 2013-07-02 Halliburton Energy Services, Inc. Cement compositions comprising sub-micron alumina and associated methods
US8586512B2 (en) 2007-05-10 2013-11-19 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-clay
US9199879B2 (en) 2007-05-10 2015-12-01 Halliburton Energy Serives, Inc. Well treatment compositions and methods utilizing nano-particles
US8496056B2 (en) 2007-07-25 2013-07-30 Schlumberger Technology Corporation System and method for low damage fracturing
US10011763B2 (en) 2007-07-25 2018-07-03 Schlumberger Technology Corporation Methods to deliver fluids on a well site with variable solids concentration from solid slurries
US8490699B2 (en) 2007-07-25 2013-07-23 Schlumberger Technology Corporation High solids content slurry methods
US7784541B2 (en) 2007-07-25 2010-08-31 Schlumberger Technology Corporation System and method for low damage fracturing
US8936082B2 (en) 2007-07-25 2015-01-20 Schlumberger Technology Corporation High solids content slurry systems and methods
US8119574B2 (en) 2007-07-25 2012-02-21 Schlumberger Technology Corporation High solids content slurries and methods
US9040468B2 (en) 2007-07-25 2015-05-26 Schlumberger Technology Corporation Hydrolyzable particle compositions, treatment fluids and methods
US9080440B2 (en) 2007-07-25 2015-07-14 Schlumberger Technology Corporation Proppant pillar placement in a fracture with high solid content fluid
US8490698B2 (en) 2007-07-25 2013-07-23 Schlumberger Technology Corporation High solids content methods and slurries
DE102007042078A1 (de) * 2007-09-05 2009-03-12 Epg (Engineered Nanoproducts Germany) Ag Hyperfeiner Zement
US8393395B2 (en) * 2009-06-03 2013-03-12 Schlumberger Technology Corporation Use of encapsulated chemical during fracturing
US9290689B2 (en) * 2009-06-03 2016-03-22 Schlumberger Technology Corporation Use of encapsulated tracers
US7833947B1 (en) 2009-06-25 2010-11-16 Schlumberger Technology Corporation Method for treatment of a well using high solid content fluid delivery
US7923415B2 (en) 2009-08-31 2011-04-12 Schlumberger Technology Corporation Methods to reduce settling rate of solids in a treatment fluid
US8662172B2 (en) 2010-04-12 2014-03-04 Schlumberger Technology Corporation Methods to gravel pack a well using expanding materials
US9169158B2 (en) 2010-04-16 2015-10-27 Cidra Corporate Services Inc. Non-chemical air entrained admix
US8511381B2 (en) 2010-06-30 2013-08-20 Schlumberger Technology Corporation High solids content slurry methods and systems
US8505628B2 (en) 2010-06-30 2013-08-13 Schlumberger Technology Corporation High solids content slurries, systems and methods
US8607870B2 (en) 2010-11-19 2013-12-17 Schlumberger Technology Corporation Methods to create high conductivity fractures that connect hydraulic fracture networks in a well
US9272953B2 (en) * 2010-11-30 2016-03-01 Roman Cement, Llc High early strength cement-SCM blends
US9133387B2 (en) 2011-06-06 2015-09-15 Schlumberger Technology Corporation Methods to improve stability of high solid content fluid
USRE49415E1 (en) 2011-10-20 2023-02-14 Roman Cement, Llc Particle packed cement-SCM blends
US9863228B2 (en) 2012-03-08 2018-01-09 Schlumberger Technology Corporation System and method for delivering treatment fluid
US9803457B2 (en) 2012-03-08 2017-10-31 Schlumberger Technology Corporation System and method for delivering treatment fluid
US9528354B2 (en) 2012-11-14 2016-12-27 Schlumberger Technology Corporation Downhole tool positioning system and method
US9388335B2 (en) 2013-07-25 2016-07-12 Schlumberger Technology Corporation Pickering emulsion treatment fluid
US10730805B2 (en) 2017-01-10 2020-08-04 Roman Cement, Llc Use of quarry fines and/or limestone powder to reduce clinker content of cementitious compositions
US10737980B2 (en) 2017-01-10 2020-08-11 Roman Cement, Llc Use of mineral fines to reduce clinker content of cementitious compositions
US10131575B2 (en) 2017-01-10 2018-11-20 Roman Cement, Llc Use of quarry fines and/or limestone powder to reduce clinker content of cementitious compositions
US11168029B2 (en) 2017-01-10 2021-11-09 Roman Cement, Llc Use of mineral fines to reduce clinker content of cementitious compositions
BR112019014451A2 (pt) * 2017-02-22 2020-04-28 Halliburton Energy Services Inc método para analisar um particulado sólido, método de cimentação e sistema

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3804058A (en) * 1972-05-01 1974-04-16 Mobil Oil Corp Process of treating a well using a lightweight cement
US3902911A (en) * 1972-05-01 1975-09-02 Mobil Oil Corp Lightweight cement
US3844351A (en) * 1973-06-01 1974-10-29 Halliburton Co Method of plugging a well
RO78647A (ro) * 1978-08-08 1982-03-24 Standard Oil Co,Us Procedeu de cimentare a puturilor de sonda
US5121795A (en) * 1991-01-08 1992-06-16 Halliburton Company Squeeze cementing
US5125455A (en) * 1991-01-08 1992-06-30 Halliburton Services Primary cementing
US5571318A (en) * 1995-08-31 1996-11-05 Halliburton Company Well cementing methods and compositions for use in cold environments
MY119906A (en) * 1996-06-18 2005-08-30 Sofitech Nv Cementing compositions and applications of such compositions to cementing oil (or similar) wells.
FR2796935B1 (fr) * 1999-07-29 2001-09-21 Dowell Schlumberger Services Coulis de cimentation des puits petroliers ou analogues a basse densite et basse porosite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103509539A (zh) * 2012-06-30 2014-01-15 李越 一种减轻剂
CN104986993A (zh) * 2015-06-04 2015-10-21 中国石油化工股份有限公司 一种用于地热成井的低导热水泥浆及其制备方法

Also Published As

Publication number Publication date
EG23010A (en) 2003-12-31
MXPA03007053A (es) 2004-04-02
EP1362018A1 (en) 2003-11-19
NO20033607L (no) 2003-10-14
EP1236701A1 (en) 2002-09-04
DZ3497A1 (fr) 2002-08-22
AR034016A1 (es) 2004-01-21
NO20033607D0 (no) 2003-08-14
BR0116891A (pt) 2005-02-09
WO2002064528A1 (en) 2002-08-22
EA200300887A1 (ru) 2004-12-30
OA12443A (en) 2006-05-22
CA2438463A1 (en) 2002-08-22
US20040112255A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
CN1500071A (zh) 特低密度的水泥浆
CN1223544C (zh) 用于油井等的低密度和低孔隙度的灌注泥浆
EP1159234B1 (en) Cementing compositions and application of such compositions to cementing oil wells or the like
US6106603A (en) Stable suspension of hydrocolloids and superplasticizer
CN101269943B (zh) 含有超细粉末的高强灌浆料及其制备方法
EP1900704A2 (en) Low density cements for use in cementing operations
CN102093898A (zh) 复合土壤固化剂
CN1721353A (zh) 一种高强低密度油井水泥
CN102491667B (zh) 一种水泥基材料收缩补偿用塑性膨胀剂及其制备和应用
CN111019616A (zh) 一种固井作业用低密度水泥浆和固井作业用水泥组合物
CN115159946A (zh) 一种流动性强的高强石膏基无砂自流平砂浆及其制备方法和应用
CN108164207A (zh) 一种新型混凝土
KR20180083696A (ko) 그라우팅 약액 조성물 및 이의 제조방법
CN114149225A (zh) 一种膨胀致密抗渗混凝土及其制备方法
CN106747018A (zh) 一种固井胶乳水泥浆体系及其制备方法
US20040107875A1 (en) Low-density cementing slurry
CA2635925A1 (en) Cement blend
Galiyev et al. Cement-polymer materials for well casing
CN116462473A (zh) 一种全机制砂防水型水泥基自流平砂浆及其制备方法
CN114436605A (zh) 一种高强抗冻建筑用灌浆材料及其制备方法
CN115124315A (zh) 一种以磷石膏为主要原料的灌入式无砂自流平砂浆及其制备方法和应用
AU2002235782A1 (en) Very low-density cement slurry

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication