CN1484814A - 用于建立不随传感器状态的系统性变换而变化的激励表示的自参照方法和装置 - Google Patents

用于建立不随传感器状态的系统性变换而变化的激励表示的自参照方法和装置 Download PDF

Info

Publication number
CN1484814A
CN1484814A CNA018162738A CN01816273A CN1484814A CN 1484814 A CN1484814 A CN 1484814A CN A018162738 A CNA018162738 A CN A018162738A CN 01816273 A CN01816273 A CN 01816273A CN 1484814 A CN1484814 A CN 1484814A
Authority
CN
China
Prior art keywords
sensor states
sensor
vector
state
states
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA018162738A
Other languages
English (en)
Other versions
CN100511273C (zh
Inventor
N
大卫·N·雷文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1484814A publication Critical patent/CN1484814A/zh
Application granted granted Critical
Publication of CN100511273C publication Critical patent/CN100511273C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00603Reinspection of samples
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/02Feature extraction for speech recognition; Selection of recognition unit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00712Automatic status testing, e.g. at start-up or periodic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Quality & Reliability (AREA)
  • Software Systems (AREA)
  • Immunology (AREA)
  • Nanotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Artificial Intelligence (AREA)
  • Pathology (AREA)
  • Evolutionary Computation (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Biology (AREA)
  • Molecular Biology (AREA)
  • Multimedia (AREA)
  • Computing Systems (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Medical Informatics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Complex Calculations (AREA)

Abstract

本发明方法及装置的感应设备激励表示不随造成传感器系统性变换的外部过程而改变。此类外部过程包括:1)设备检测器的变化,2)感应设备及激励的外部观测环境的改变,以及3)激励表示本身的某些更改。本发明项下的一个具体装置为具有由此类激励表示“引擎”组成的“前端”的智能感应设备。此类感应设备检测器不需要重新校准,其模式分析模块不需要经过重新训练来抵销上述变换过程带来的影响。本发明项下的另一个具体装置为讲激励表示信号编码成传输信息的通讯系统。在各种外部过程对发射机,接收机,以及二者之间信道产生影响并导致信号变换时,该通讯系统仍可保持信息的可靠传输。

Description

用于建立不随传感器状态的系统性变换 而变化的激励表示的自参照方法和装置
本申请要求取得序列号为60/235,695的临时申请文件中提到的主要权益。该临时申请文件提交日期为2000年9月27日,标题为《(用于建立不随传感器状态的系统性变换而变化的激励表示的自参照方法和装置》。该文件全文引述如下。
本专利文件所公开的部分内容含有受版权保护的信息资料。版权拥有人不反对任何人复印在美国商标专利局归档记录的本专利文件或专利公开内容,但保留除此之外的所有版权。
                        技术领域
本发明涉及一种可被用来感应激励、建立激励的内部表示、并利用传感器信息和信息表示来确定激励特征(激励识别)的方法和装置。更具体来说,本发明涉及一种不随设备传感器状态的系统性变换而变化的感应激励表示方法和装置。这样,在外部程序的变化(如对设备检测器使用环境产生影响的程序、激励信号与设备的联系通道、激励表示方式等变化)引起传感器状态变换时,无需重新校准设备检测器和/或重新训练设备的模式分析模块。
                        发明背景
大多数智能传感设备都带有模式识别软件,用来分析对设备环境下的激励进行检测的传感器状态。这类软件通常可通过“训练”对将要经常遇到的代表“未知”传感器状态的一套传感器状态进行分类。例如,光学字符识别(OCR)仪器可经由训练识别印刷图形上的字母和数字,而语音识别设备则可通过训练识别某一特定说话人的口音。但是,一旦激励信号和传感器状态之间的对应关系因激励的外部过程而改变,则这些经过训练的设备功能可能会退化。例如,OCR仪器可能会因其像机的光学/电子路径紊乱所导致的像素图案失真而产生“困扰”,或因打印纸上的文字照明度改变所导致的像素密度改变而感到无能为力。同样,语音识别设备可能会因拾音器的内部响应特性变化所导致的输出信号变化而使其性能受损,或因说话人口唇与拾音器之间的“信道”传导函数关系的改变所导致的声音频谱变化而无法辨别声音。这些外部因素可使激励引发的传感器状态产生系统性畸变,并使传感器状态映射互相重叠。如果此类变换导致训练集的某一传感器状态映射到另一传感器状态上(比如某一字符的像素密度模式被映射到另一字符上),则模式识别软件将会对相应的激励进行错误分类。同样,如果设备的原始传感器状态已被变换到训练集状态之外,则设备也将无法识别训练集内的激励。
要解决这些问题,可以定期重新校准设备检测器来抵消由于外部条件的变化导致的传感器状态变换。例如,可以将含有在“正常”条件下可产生某一已知传感器状态的测试模式激励信号输入到设备中。所观测到的实际传感器状态和理想传感器状态之间的差别可被用来对后续出现的传感器状态进行校正。或者,设备的模式分析(如模式识别)模块可经过重新训练来识别变换后的传感器状态。由于传感器状态畸变随时间改变,这些校准程序必须在可观测条件下于每次畸变发生后实施。但鉴于设备不一定能够检测到传感器状态畸变,因此有必要在较短的固定时间间隔内对设备重新进行校准或训练。但这样势必造成设备因频繁“脱机”而减少工作时间。此外,在某些应用场合(如远端计算机视觉和话音识别设备),实施此类重新校准或重新训练程序并不现实。
在电子通讯中也存在类似的问题,即信号在发射机、接收机、发射/接收信道传播时因信号畸变而使保真度下降。为消除影响,大部分通讯系统采用定期发射校准信息(如测试图案等)的方法,使接收机能够掌握畸变特性然后通过“矫正”后续接收的信号对畸变进行补偿。如上所述,这些补偿方法需要定期使系统“脱机”或降低系统工作效率而有些得不偿失。
                        发明内容
本发明提供一种新颖的、用于建立不随传感器状态的系统性变换而变化的激励表示的自参照方法和装置,从而在很大程度上克服了上述传感设备的缺点。由于激励表示的不变性,传感设备可有效地“滤除”由外部因素(如影响传感设备运行条件的各种因素、激励与传感设备之间的传播通道、激励自身表示方式等)导致的传感器状态变换所带来的影响。这意味着感应设备可利用不变的激励表示来掌握激励的特性(如对激励进行识别),而无须明确激励变换过程(无须重新校准设备检测器,也无须对设备的模式识别模块进行再训练)。
本发明装置在某些方面模仿人类的感知方式,即所感知的事物在相当程度上独立于在观测条件下因多种外部变化所导致的原始信号的畸变。这一现象已通过实验被充分验证。例如,当受测试者戴上可对观察场景产生严重几何变形的变形镜时,扭曲、颠倒、左右换位等现象出现在有些受试者的视觉中。尽管受试者最初感觉到场景扭曲,但经过数周连续使用变形镜观测类似场景后,受试者所感知的场景又回到实验前所感知的场景。比如,对实验前所感知的直线,受试者在实验开始时报告直线被扭曲。但经过数周通过变形镜片观测类似场景后,受试者报告所看到的线条为直线。同样,在实验结束摘掉变形镜后出现了相似的结果,即对因镜片原因产生变形而实际没有变形的场景,受试者最终没有感知到变形。这些实验表明人类能够利用近期的感觉经历来对其后续感觉信息进行造应性“重新校准”。还有许多其它实例说明人类的感觉系统通常独立于变化的观测条件。例如,人类观察事物时通常不会受制于场景的照明强度。尽管观察者的原始感觉状态会因此改变,但通常不会将此改变归因于所关心的激励信号(场景)内在特征的变化。类似地,人类能够相当独立地感知普通话音承载的信息内容,即使送话人的语音信号,受话人的语音设备,以及二者之间的信号通道发生重大改变时这一能力仍然存在。尽管如此,没有证据表明送话人与受话人交换校准信息以便对掌握语音变形特性并加以补偿。实际上,上述观察结果说明,在某种意义上语音信号为冗余信号,因为受话人可从多种变换后的声音信号中提取相同的信息内容。最后,值得注意的是存在这样一种倾向,即不同的人尽管在感觉器官和处理途径方面具有明显差异,但对场景的感知是相同的。这种感知的“普遍性”可能还源于每个人所明显具有的“滤除”系统性传感状态变换影响的能力,包括消除与个人传感状态有关的变换的能力。
本发明旨在建立一种不随可重新映射传感器状态的外部过程变化的激励表示的自参照方法和装置。这些激励表示具有人类感知系统的如下特性:即在外部过程开始作用时,激励表示可能会受到影响,但最终会适应传感器状态变换的现实并返回到该变换过程不存在时的形态。为清楚阐释本发明装置的设计过程,可对系统改变激励和传感器状态之间对应关系的任一外部过程加以研究。例如考虑:1)设备检测器内部性能改变(如检测器回路增益漂移或摄影头电子图像扭曲等),2)检测器和激励的外部观测条件改变(如场景照明强度变化或检测器相对激励的定位变化等),3)激励表示本身的系统性修改(如打印纸的系统性变形或话音形态的系统性变化)等情况。由于此类改变,原来导致产生传感器状态x的激励信号改为诱发传感器状态x′。令对应于某一传感器状态的x阶阵列代表该状态在传感器状态集合的坐标。在这种表达方式下,上述外部过程对与各自激励有关的传感器状态的绝对坐标进行系统性变换。但是,在外部过程存在的情况下,传感器状态的集合坐标之间存在的一定关系仍可保持不变。这好比一个平面粒子经过物理旋转或平移后,即使每一粒子的绝对坐标发生变换,其粒子之间的相对关系并没有受到影响。例如,欧几里得坐标几何可被用来描述这些粒子在存在于集合内在结构里的“自然”内部坐标系(或定标)中的相对位置,该内部坐标系以集合“质心”为原点并以其主要“惯性”力矩为坐标轴。这一自参考描述体系不随改变每一粒子绝对坐标的全局性旋转和平移过程而改变。这表明我们可以采取如下策略:即如果我们依据传感器状态之间的关系来描述激励,则可能做到使激励表示不受上述变换过程的影响。我们特别注意到在时间序列中密度足够大的传感器状态集合具有一套轨迹定义结构,可用来描述每一传感器状态和整个时间序列的关系。由于描述的参照物为时间序列中的传感器状态集合的轨迹结构,因此当集合中的所有状态经历任何线性或非线性变换时,描述并不随之变化。现在考虑本发明的一个具体装置,即利用本发明方法和装置根据近期激励信息来对激励进行描述。如果在变换过程开始后经过了足够长时间,则每一激励将可由变换后的传感器状态和近期遇到的变换后传感器状态集合之间的关系来表示。所得出的激励表示将同变换过程不存在时应得出的激励表示完全一样。也就是说,所得出的激励表示为描述相应的未经变换的传感器状态和近期遇到的未经变换的传感器集合之间关系的激励表示。进一步地说,激励的表示方式将同变换过程加入之前的表示方式相一致,前提是两种激励表示的参照物均为同组激励产生的(经过变换和未经变换的)传感器状态集合。实质上,此类激励表示的时间稳定性源于设备近期“经验”的稳定性(即作为描述参照物的设备近期遇到的激励集的稳定性)。在开始施加变换过程的过渡时间内,设备描述的参照物为包含未经变换和已经变换的传感器状态的混合集合,此时激励表示可能发生漂移。但是,同人类的感知过程一样,当近期遇到的状态集合包含全部已变换传感器状态时,每一激励表示终将回复到原始状态。
在此类感应设备中,传感器信号由非线性瞬时电平函数来表示,而该定标函数状态由一定时间段(如最近一段时间)内遇到的信号电平集合确定[D.N.列文,“独立于传感器校准之外且随时间变化的信号表示方法”,美国声学学会学报,第108卷,第2575页,2000年;D.N.列文,“不随传感器信息可逆变换而变化的激励表示”,光电仪表工程师学会论文集,第4322卷,第1677-1688页,2001年;D.N.列文,“异质听说系统之间的普适交流”,有关网上电子商务、科学和教育基础设施发展的国际会议论文集,Scuola Superiore G.Reiss Romoli S.p.A.,L′Aquila,意大利,2001年8月6日至12日]。如果在所有相关时间内信号电平经过同一变形函数的可逆转换,则再定标信号保持不变。这是因为每一未经转换的信号电平与未经转换的信号电平集合派生出的定标信号之间的关系等同于相对应的转换后信号电平与转换后信号电平集合派生出的定标信号之间的关系。这一关系也可通过以前描述的平面内粒子位置关系来加以理解。在外部坐标系中对粒子集合进行刚性旋转和平移时,所有粒子的坐标均随之改变,但每一粒子在其内在坐标系中的位置却保持不变。这是因为每一粒子和粒子集合的内在坐标系均以相同方式进行旋转和平移。在本发明中,在适当时间段内由感应设备检测到的信号电平具有在可能的信号电平集合中定义非线性坐标系(定标)的内在结构。目前检测的信号电平在该内在坐标系中的“位置”在整个信号时间序列进行任何(线性或非线性)可逆转换时均保持不变。这是因为任意时刻的信号电平和同一时刻的定标函数的转换方式能够确保再定标信号电平保持不变。
上述表明,以不变形式对激励进行表示可以归结为使用数学方法来描述不受传感器状态集合的系统性变换影响的传感器状态关系。现在假设观测条件同传感器状态变换存在一对一的对应关系。这一假设的目的是排除可能出现使原本不可区分的激励变成可区分激励或使原本不可区分的激励之间的差别变得模糊不清这样的变换过程(如场景照明度的谱变化等)。这样,变换过程对传感器状态坐标的影响就完全等同于变换过程不存在时坐标系变化(x →x′)对传感器状态坐标的影响。这同平面内粒子阵列的物理旋转对粒子坐标的影响等同于坐标轴逆转的道理一样。因此,找出独立于变化过程的传感器状态关系在数学上相当于找出与坐标系无关的传感器状态关系描述方法。换句话说,对传感器状态之间的关系描述必须与标示传感器状态的坐标系无关。本发明装置运用差分张量演算和差分几何来建立一套数学架构,由此导出在时间序列集上的与坐标系无关的传感器状态表达式。
                     附图简要说明
本发明具有新颖性,其特征描述参见附录的权利要求书。下述对所附图例的描述为本发明及其相关装置和发明优势提供了最好注解。
图1为根据本发明设计的感应设备图解。在本装置中,传感器检测并处理激励能量,以确定传感器状态。传感器状态特征由x阶阵列表示。本发明所描述的方法和装置用于从传感器状态x和选定时刻遇到的传感器状态中产生激励表示s。然后,该激励表示再经过高级分析(如模式识别)。检测器、处理器、激励表示发生器、以及分析模块同计算机相连。计算机包括中央处理器、存储器、显示器、鼠标、键盘等硬件;
图2为发明装置中参考传感器状态x0与目标传感器状态之间的路径x(u)(0≤u≤1)图解。如果在路径每一点上定义矢量ha,则每一线段δx可分解为沿该点矢量方向上的分量δsa
图3a为未经变换的信号x(t)图解。该信号描述具有均匀时间间隔的长序相同脉冲;
图3b为信号表示S(t)图解。该信号表示为第II A节中描述的重新定标方法运用于图3a中信号或图3c描述的变换后信号产生的信号表示;
图3c为变换后信号图解。该信号为图3a信号经过x′(x)=g1ln(1+g2x)变形后获得的信号。式中g1=0.5,g2=150;
图4a为单词“门”的声音信号经过数字化处理后获得的信号图解。该单词发音出自一位说美国英语的成年男性。图中显示的是334毫秒信号中间的40毫秒片段,时间单位为毫秒。水平线表示信号振幅,其定标后数值为s=±50n,其中n=1,2,…;
图4b为信号S(t)(单位为微秒)图解。该信号通过对图4a信号重新定标获得,其定标参数为T=10毫秒;
图4c为非线性函数x′(x)图解。该函数用于将图4a中信号变换到图4d中的信号;
图4d为图4a信号经过变换后的信号图解。该信号经过图4c的非线性变换获得;
图4e对图4d信号进行重新定标后获得的信号图解。定标参数为T=10毫秒;
图5a-c为信号变换突然变化所产生的效应图解;
图5a为非线性信号变换图解;
图5b为在上半时(167毫秒)实施图4c所示针对图4a信号的变换过程,以及在下半时对该信号实施图5a所示变换过程后产生的信号图解;
图5c为通过对图5b信号重新定标所获得的信号图解,定标参数为T=10毫秒;
图6a-b为重新定标过程中的噪声效应图解;
图6a为图4d所示信号增加白噪声后的信号图解。白噪声振幅由-200至+200之间均匀分布振幅中随机选取;
图6b为图6a所示信号经过重新定标后所得到的信号图解。定标参数为T=10毫秒;
图7a-d为1号送话人和1号受话人的语音信号图解;
图7a为在某一特定发声阶段,描述1号送话人语音设备状态的参数g随时间变化的过程图解。时间单位为秒;
图7b为在图7a由g(t)描述的发生阶段中,1号送话人产生的声谱图图解。时间单位为秒;
图7c为1号送话人声道经过所有可能的设置时(即当参数g扫过所有可能数值时)由声谱中的第三、第四、第五倒谱系数确定的曲线图解;
图7d为1号送话人通过图7a依次设定的声音装置发声时在1号受话人上诱发的传感器信号(左图)。这里,x表示声谱倒谱系数在沿图7c所示曲线坐标系中的瞬时位置。时间单位为秒。右图为左图原始感应信号经过重新定标后的信号表示;
图8a-b为1号送话人和2号受话人的语音信号图解;
图8a为1号送话人声道经过所有可能的设置时由声谱中的第二、第三、第六DCT系数确定的曲线图解;
图8b为1号送话人通过图7a依次设定的声音装置发声时在2号受话人上诱发的传感器状态信号(左图)。这里,x′表示声谱DCT系数在沿图8a所示曲线坐标系中的瞬时位置。时间单位为秒。右图为左图原始感应信号经过重新定标后的信号表示;
图9a-c为2号送话人和2号受话人的语音信号图解;
图9a为2号送话人发出以图7a“姿态”函数g(t)描述的声音时所产生的声谱图解。时间单位为毫秒;
图9b为2号送话人声道经过所有可能的设置时(即当参数g扫过所有可能数值时)由声谱中的第二、第三、第六DCT系数确定的曲线图解;
图9c为2号送话人通过图7a依次设定的声音装置发声时在2号受话人上产生的传感器状态信号(左图)。这里,x′表示声谱DCT系数在沿图9b所示曲线坐标系中的瞬时位置。时间单位为秒。右图为左图原始感应信号经过重新定标后的信号表示;
图10a为近期遇到的传感器状态x(t)模拟轨道图解。每一轨道分段的横越速度以同等时间间隔的实点表示。近似水平和垂直的线段移动方向分别为从左至右和从下至上。图中描述的状态范围为-5≤xk≤5;
图10b为应用第II.B节描述的方法和装置从图10a所示信息中产生的轨迹优先矢量ha图解。近似水平和垂直的线段表示矢量方向分别指向右方和上方;
图10c为s(x)的水平集合图解。该图解显示应用第II.B节描述的方法和装置从图10a所示信息中产生的内在坐标系或定标。近似垂直的曲线为-11(左)至12(右)区间等间隔下的常数s1的运行轨迹;近似水平的曲线为-8(下)至8(上)区间等间隔下的常数s2的运行轨迹;
图11为通过利用图10c重新定标传感器状态而获得的与坐标系无关的网格状传感器状态阵列(左图)的激励表示(右图);
图12a为近期遇到的、经过式(25)坐标变换后的图10a传感器状态x(t)模拟轨道图解。每一轨道分段的横越速度以同等时间间隔的实点表示。近似水平和垂直的线段移动方向分别为从左至右和从下至上。图中描述的状态范围为-5≤xk≤5;
图12b为应用第II.B节描述的方法从图12a所示信息中产生的轨迹优先矢量ha图解。近似水平和垂直的线段表示矢量方向分别指向右方和上方;
图12c为s(x)的水平集合图解。该图解显示应用第II.B节描述的方法和装置从图12a所示信息中产生的内在坐标系或定标。垂直曲线为-12(左)至11(右)区间等间隔下的常数s1的运行轨迹;水平曲线为-9(下)至7(上)区间等间隔下的常数s2的运行轨迹;
图13为通过利用图12c重新定标传感器状态而获得的与坐标系无关的传感器状态阵列(左图)的激励表示(右图)。左图为图11中左图代表的阵列经过式(25)坐标变换后所得阵列。我们注意到右图同图11几乎一模一样,由此证明这些激励表示经过坐标变换后仍保持不变。
图14a为近期遇到的传感器状态x(t)模拟轨道图解。每一轨道分段的横越速度以同等时间间隔的实点表示。近似水平和垂直的线段移动方向分别为从左至右和从下至上。图中描述的状态范围为-10≤xk≤10;
图14b为s(x)的水平集合图解。该图解显示应用第III节描述的方法和装置从图14a所示信息中产生的内在坐标系或定标。近似垂直的曲线为-16(左)至16(右)区间等间隔下的常数s1的运行轨迹;近似水平的曲线为-16(下)至16(上)区间等间隔下的常数s2的运行轨迹;
图15为通过利用图14b重新定标传感器状态而获得的与坐标系无关的网格状传感器状态阵列(左图)的激励表示(右图);
图16a为近期遇到的、经过式(27)坐标变换后的图14a传感器状态x(t)模拟轨道图解。每一轨道分段的横越速度以同等时间间隔的实点表示。近似水平和垂直的线段移动方向分别为从左至右和从下至上。图中描述的状态范围为-10≤xk≤10;
图16b为s(x)的水平集合图解。该图解显示应用第III节描述的方法和装置从图16a所示信息中产生的内在坐标系或定标。垂直曲线为-24(左)至10(右)区间等间隔下的常数s1的运行轨迹;水平曲线为-22(下)至16(上)区间等间隔下的常数s2的运行轨迹;
图17为通过利用图16b重新定标传感器状态而获得的传感器状态阵列(左图)的激励表示(右图)。左图为图15中左图代表的阵列经过式(27)坐标变换后所得阵列。我们注意到右图同图15几乎一模一样,由此证明这些经过重新定标的激励表示经过坐标变换后仍保持不变。
图18为通过发射机和接收机分别进行自参照编码和解码的激励表示方式进行交流的系统图解。反相激励表示发生器(inverserepresentation generator)寻找与要交流的激励表示s相对应的发射机状态x。同时,发射机状态x控制由发射机播放单元发射的能量波形。接收机检测并处理穿越发射信道的能量波形,然后建立接收机状态x′。接收机中的激励表示发生器将x′解码成激励表示s。
                     发明详细描述
在本发明书面描述中,所使用的转折连词包含连词。所使用的定冠词或不定冠词同名词基数无关。尤其需要强调,使用单数描述“该”物体或事物或“某一”物体或事物时也包括此类物体或事物的复数状态。
需要进一步说明,本节使用“发明详细描述”标题乃出于美国商标专利局的规定,并不意味或暗示,也不应被推断对在此披露的事项或本发明范围有所限制。
            I.与坐标系无关的传感器状态描述
本发明具体涉及一种感应方法和装置。该装置带有多个检测器,可感应激励的不同特性(图1)。例如,这些检测器可对不同波长的电磁能量,或通过邻近介质(如空气或水)振动方式传播的机械能量作出反应。这些检测器还可将检测信号输出到某一处理器上,由处理器将信号以可能的非线性方式组合在一起。例如,在成像系统中,处理器可确定某一特别图像特性的坐标。在语音识别系统中,处理器可对描述送话人信号的短项傅里叶频谱特征的参数进行运算。令设备传感器状态x表示组成处理器输出的完整xk(k=1,…,N,N≥1)阶阵列。
我们的目的是建立独立于某一坐标系(如坐标系x)的传感器状态描述。换句话说,如果我们使用另外一个坐标系(如坐标系x′),则所得出的传感器描述必须一致。  在建立此类与坐标系无关的描述时,可借助以下独立于坐标系之外的方法:1)确定参考传感器状态(x0),2)通过连接参考传感器状态与目标传感器状态(x(0)=x0,x(1)=x)的传感器状态集合确定路径x(u)(0≤u≤1),3)在沿路径的每一点上确定N维线性独立的逆变矢量ha(a=1,…,N)(D.N.列文,用于对知觉进行测量、分析、定性、仿真、平移的方法及装置,美国第5,860,936号专利,1999年1月19日;D.N.列文,用于对知觉进行测量、分析、定性、仿真、平移的方法及装置,美国第6,093,153号专利,2000年7月25日;D.N.列文,知觉间关系的差分几何描述,数学心理学学报,第44卷,第241-284页,2000年)。这里,如果矢量h在坐标系进行x →x′变化后变换成 h → h ′ = ∂ x ′ ∂ x h ,则该矢量可认为是逆变矢量。如果前述条件得到满足,则沿路径的每一无穷小线段δx均可被分解成沿矢量ha方向的的分量δs(图2):
δx = Σ a = 1 , . . . , N h a δs a
                                         (式1)
我们注意到δx和ha为逆变矢量,故δs为独立于坐标系的量(标量)。因此,如果沿着连接x0和x的特定路径对分量δs进行积分,则可得到与坐标系无关的传感器状态x表达式:
s = ∫ x 0 x δs
                                          (式2)
以下两节阐述如何从由所选时间点遇到的传感器状态建立的轨迹数据库结构中导出所需要的表达式信息(包括参考状态、连接参考状态和其它传感器状态的路径、以及矢量ha)。
         II.具有轨迹指向性的传感器状态集合
在本节中,我们探讨本发明的具体方法,即从所选时间间隔内遇到的近处传感器状态中直接导出矢量ha。为方便起见,我们先从一维(N=1)传感器状态集合开始,然后说明如何运用类似程序处理任意维数的状态集合。
II.A.具有轨迹指向性的一维传感器状态集合
在本发明描述的特别方法中,x用于描述设备传感器受到激励时的状态特征。例如,x可以代表在某一空间位置的场景数字图像的像素强度,或代表送话人输出信号的振幅。假设设备受到一系列与时间有关的激励,进而产生传感器状态x(t)。此处,t表示时间。令X为T时刻的传感器信号。在本段,我们解释如何在该特定时间点上对信号电平重新进行定标。我们可以运用同样原理对其它时刻的信号电平重新进行定标,从而导出整个信号时间序列的表达式。假设x(t)在选定的时间间隔ΔT(如T-ΔT≤t<T)中一次或数次经过[0,X]区间的所有信号电平。这里,T为可自由选择的参数,但该参数对本发明方法的适应性和噪声敏感度有影响(见下文)。对每一y∈[0,X],函数h(y)值定义为
h ( y ) = < dx dt > y
                                              (式3)
右式表示当x(t)经过y值时在时间域T-ΔT≤t<T上的平均微分。如果h(y)在所有y∈[0,X]区间内不趋于零,则可被用来求出该时间域的定标函数s(x)
s ( x ) = &Integral; 0 x dy h ( y )
                                             (式4)
参量S=s(X)可被认为表示未经变换的信号X经过函数s(x)的非线性重新定标后在T时刻的电平值。现在,我们考虑将未经变换的信号进行与时间无关的变换x→x′=x′(x)。该变换x′(x)的起因可以是信号通过检测器和其它感应设备电路时,以及通过激励与感应设备之间的信道时对信号产生影响的、与时间无关的(线性或非线性)畸变。此外,假设x→x′为可逆变换(即x′(x)为单调函数),并假设该变换保持零信号(即x′(0)=0)。如前所述,可逆性要求仅意味畸变不损害感应设备分辨信号电平的能力,因此并不难达到。已变换信号x′(t)=x′[x(t)]在t=T时刻的值为X′=x′(X)。根据x(t)在T-ΔT≤t<T时间间隔内可得到[0,X]区间所有取值的假设,x′(t)在[0,X′]区间经过所有取值。因此,对于每一y′∈[0,X′]集合,式(3)处理过程可用于已变换信号上以便确定T时刻的函数h′(y′)
h &prime; ( y &prime; ) = < dx &prime; dt > y
                                              (式5)
右式表示当x′(t)经过y′值时在时间域T-ΔT≤t<T上的平均微分。将x′(t)=x′[x(t)]代入式(5),运用微分链原理并注意到当x′(t)经过y′=x′(y)值时,x(t)正好经过y值,我们得到 h &prime; ( y &prime; ) = dx &prime; dx | y h ( y ) 。由于x′(x)的单调性意味着dx′/dx≠0,则函数h′(y′)在y′∈[0,X′]集合内为不趋于零函数。这意味着式(4)可被用来计算该区间内的定标函数s′(x′)
s &prime; ( x &prime; ) = &Integral; 0 x &prime; d y &prime; h &prime; ( y &prime; )
                                          (式6)
S′=s′(X′)代表已变换的信号X′经过函数s′(x′)重新定标后在T时刻的电平值。该函数从x′(t)中导出,恰如s(x)从x(t)中导出一样。由于我们假设x=0变换成x′=0,式(4)中变量的改变(y→y′)意味着s′(x′)=s(x),故S′=S。这意味着信号的重新定标值经过信号变换x→x′后保持不变。换句话说,从近期遇到的未畸变信号电平集合中计算得出的T时刻未畸变信号电平的重新定标值S将同从近期遇到的畸变信号电平集合中计算得出的T时刻畸变信号电平的重新定标值S′完全一样。现在,我们同样可以按照上述步骤对T以外时刻的信号电平进行重新定标。以此得到的感应设备从未经变换的信号x(t)中导出的、经过重新定标的信号电平S(t)时间序列将同感应设备从变换后的信号x′(t)中导出的、经过重新定标的信号电平S′(t)时间序列完全相同。我们注意到在一维传感器状态集合特例下,由式(4)定义的定标函数与式(1,2)所定义的定标函数相同。从更广泛意义上说,h(y)为一维传感器状态集合上每一点确定的逆变矢量,而零信号为每一相关坐标系统的参考传感器状态。
我们注意到,定标函数s(x)和s′(x′)(包括h(y)和h′(y′))在形式上通常同时间有关,原因是这些函数是根据以前时间过程遇到的信号计算得出的。有时,感应设备可能无法计算重新定标的信号电平。出现这种情况的原因是在一些y∈[0,X]区间,h(y)趋于零,造成式(4)的定标函数不存在,或者由于目标信号电平近期没有出现而造成在某些  y值上根本无法对函数h(y)进行运算。由于x′(x)的单调性,处于此类情况下的信号不变量不能通过未变换或已变换信号运算得出。这种在某些时间点上无法计算信号不变量的情况意味着独立的信号不变量个数(即可运算S(t)的时间点数)可能会少于用于不变量运算的原始信号的自由度个数(即测量信号x(t)的时间点数)。前述的粒子类比说明出现这种情况并不奇怪。我们注意到在以粒子集合的“质心”坐标系中,粒子坐标之间存在多个线性关系。例如,粒子坐标和趋于零。因此,独立的不变量个数(即内在坐标系中独立的粒子位置个数)少于粒子集合的自由度个数(即外在坐标系中粒子位置个数)。这是因为集合的一些自由度已被用来定义内在坐标系本身。
下面我们用一个简单举例做进一步说明。假设未经变换的信号x(t)为一三角形长周期序列,如图3a所示。如果传感器状态代表某一场景数字图像的像素强度,则图3a可代表一系列相同物体以恒定速率穿过场景时的像素强度响应。或者,如果传感器状态代表送话人输出振幅,则图3a可代表一系列均匀分布的相同脉冲作用时的振幅响应。令a和b分别为三角形左右两边线段的斜率。在图3a所示举例中,a=0.1,b=-0.5(以逆时单元测量)。如果我们选择ΔT为x(t)的整数周期,从式(3,4)中可容易看出在每一时间点上,未经变换的信号为h(y)=(a+b)/2,并且S(t)=s[x(t)]=2x(t)/(a+b)。图3b显示的是在每一时间点上已经根据前期信号定标过的未经变换的信号S(t)。现在,考虑未经变换的信号经过下述非线性函数变换后得到的信号:x′(x)=g1ln(1+g2x),这里g2>0。例如,如果g1=0.5且g2=150,则变换后的信号x′(t)类似图3c所示。在上述举例中,该变换可代表检测器增益(检测器或送话人像素强度)的非线性变化效应。在使用式(5)从变换后信号中计算h′(y′)时,可得每一时间点的函数值为:
h &prime; ( y &prime; ) = 1 2 ( a + b ) g 1 g 2 e - y &prime; / g 1
                                          (式7)
式(6)表示经过重新定标的变换后信号为:
S &prime; ( t ) = s &prime; [ x &prime; ( t ) ] = 2 ( e x &prime; ( t ) / g 1 - 1 ) g 2 ( a + b ) ,
                                                 (式8)
将x′(t)=x′[x(t)]代入式(8)后显示S′(t)=S(t)。换句话说,从变换后信号x′(t)中导出的经过重新定标的信号S′(t)与从未经变换的信号x(t)中导出的经过重新定标的信号S(t)完全一样。这是由于在任意给定时间(x(t)→x′(t))可逆信号转换对信号电平的影响已被当时(s(x)→ s′(x′))信号转换对定标函数形式的影响所补偿。我们注意到在本例中,s(x)和s′(x′)(以及h(y)和h′(y′))恰好为与时间无关的函数,进0而说明x(t)和x′(t)被重新定标的方式与时间无关。这是因为,为计算方便,x(t)被定为周期信号同时ΔT被定为周期的整数倍。在一般情况下,定标函数是以信号的前期时间过程确定的时间函数。但是,正如本节开始时所证明的那样,恒等自定标信号(即S(t)=S′(t))仍将从未经变换和变换后的信号中导出。
在以上讨论中,零信号被认作为参考传感器状态x0,而信号转换被假设在零信号下进行。一般来说,只要用来对变换后信号的时间序列进行重新定标的参考传感器状态x0′是用来对未经变换信号的时间序列进行重新定标的参考传感器状态的变换版本,即只要x0′=x′(x0),则任何传感器状态均可被认作为参考传感器状态。在数学上,这意味着参考状态的选择必须与坐标系无关。例如,参考传感器状态可选择某一函数轨迹最大的传感器状态,而该函数被定义为在选定时间间隔内遇到的每一传感器状态的频率的函数。或者,可以运用先验知识来确定参考传感器状态。如上所述,我们可能了解零信号传感器状态总是对应相同的激励,因此可被选定为参考传感器状态。例如,目标变换的发生可能总是对应场景照明度的变化或送话人电路增益的改变。最后,参考传感器状态可以选择由用户确定的、“显示”给感应设备的激励所产生的传感器状态。如前所述,参考传感器状态作为对其它传感器状态进行重新定标的定标函数的起点。因此,这一最后步骤类似于合唱团指挥奏响定音管音符向每位成员“显示”希望唱出的音调起点。应该注意到,不同的参考传感器状态使激励表示反映出的“观点”不同。例如,假设设备在观察半杯饮料时使用的参考传感器状态分别为空杯或满杯,则设备将会相应“感知”到杯中饮料为半空或半满。
如前所述,只有在h(y)被明确定义且在每一y值上不趋于零时才可利用式(1)寻找δs。换句话说,这一方法要求在所选时间间隔内遇到的传感器状态在传感器状态集合的每一点上有确定的、不趋于零的一维矢量,即在所选时间间隔内遇到的传感器状态必须在每一点上冠以指向性和标度。在第III节和第IV节,我们将说明解除这一要求的方法,即利用传感器的既往状态以与坐标系无关的方式(“平移”方式)来定义状态集合上的移动矢量。在此情况下,状态集合只需要在一点上完整定义的指向性和标度即可。然后,在该点定义的矢量可被迁移到状态集合上的所有其它点上来定义其它点的矢量h(y)。
最后需要说明,上述讨论是基于这样的假设,即感应设备所遇到的或者是未经变换的信号电平的时间序列或者是所对应的变换后的信号时间序列,而且二者之间通过与时间无关的变换相关联。现在,假设突然施加一个外部过程造成后续遇到的传感器状态发生变换,同时假设信号的重新定标由最近时间段ΔT内遇到的信号电平来决定。那么,在变换开始后的过渡时间段ΔT内,感应设备将记录到未经变换和变换后的混合信号电平(如图3a和图3c的混合波形)。在此过渡阶段,设备的定标函数将从未经变换信号中导出的形式演化到变换后信号中导出的形式(如从s(x)演化到s′(x))。与此同时,变换后的传感器状态表示可能不同于在未经变换的时间序列中的相应信号表示。但是,变换开始后经过时间ΔT,设备的定标函数将完全从变换后传感器状态时间序列中导出。这样,变换后的信号电平将重新回到在未经变换的时间序列中的相应时间信号表示方式。正如人类一样,设备系统经过一段调整后即可适应信号变换的现实。
II.B.具有轨迹指向性的多维传感器状态集合
在本节中,我们描述如何将上述方法推广到具有多个检测器的本发明项下的感应设备中。令x阶阵列(xk,k=1,...,N,N≥1)代表设备的传感器状态,令x(t)代表在所选时间间隔内(如最近期的时间间隔ΔT)遇到的传感器状态时间序列。该序列函数描述跨越传感器状态集合的轨道。我们现在证明如何运用这些信息来定义与坐标系无关的轨迹矢量ha(x)。假设有多条轨道线段从至少N个不同方向通过点x,这里N为状态集合的维数。对通过点x的线段求时间导数可得在点x的逆变矢量hi集合:
h i = dx dt | t i
                                                 (式9)
式中,ti表示轨道通过点x的第i时刻。如果所得导数值倾向落入状态集合中面向不同方向的集群中,则这些导数值可被用来定义x点的N维向量。为此,选择一个整数C≥N并将幂i分解成C组非空幂,称为Sc,c=1,…,C。然后,计算对应于各组幂的矢量N×N协方差矩阵Mc
M c = 1 N c &Sigma; i &Element; S c h i h i
                                                      (式10)
式中,Nc为Sc中的幂个数。每一矩阵变换成带两个逆变幂的张量,每一矩阵|Mc|的行列式变换成重量的标量密度,其值为-2。也就是说,如果状态集合坐标变换为x→x′,则
| M c | &RightArrow; | M c &prime; | = | &PartialD; x &prime; &PartialD; x | 2 | M c |
                                           (式11)
接下来,我们计算这些行列式的乘方和E:
E = &Sigma; c | M c | p
                                        (式12)
式中,p为正实数。式11说明E变换成值为-2p的重量标量密度。在本发明项下的其它实例中,E可有不同的定义。比如可被定义为可被变换成重量标量密度的另一量值。现在,将以所有可能方式将矢量hi集合分解成C组非空集合后得到的E值列表,并从中找出使E值最小的分解部分。该分解部分倾向于将矢量归组到具有最少矩阵行列式的子集中。因此,每组矢量将呈现线性或近线性特性,并倾向形成单一指向的群组。接下来,我们通过在每一最优分解部分中寻找平均矢量来计算x点的矢量hc
h c = 1 N c &Sigma; i &Element; S c h i
                                               (式13)
由于h,为逆变矢量,hc只要在任一坐标系中以同样方式分解,则也会变换成逆变矢量。但是,由于E经由正乘法因子变换,在任何坐标系中进行同样的分解都会使E为最小。因此,最优分解与坐标系无关,且hc确实为逆变矢量。最后,hc幂可被重新标记以使相应的行列式|Mc|按照上升的量值顺序排列。由于行列式经过正乘法因子(式(11))变换,因此其排序过程也和坐标系无关。故此,上述运算无论在何种坐标系下完成都会得到相同的矢量hc结果,而且这些矢量提供的经过x点的轨道指向性的特征与坐标系无关。
最初的N维线性独立向量可被定义为式(1)中的ha。这些向量可被用于计算经过点x的任意线段表示δs,且该表示与坐标系无关。一旦指定好联接参考传感器状态x0和任意传感器状态x的路径后,我们可对式(2)进行积分得到与坐标系无关的状态表示s。鉴于式(2)可能同路径有关,因此联接路径必须完整指定。为此,可将式(1)转化成如下形式:
δsa=ha·δx                         (式14)
式中,协变矢量ha通过解 &Sigma; a = 1 , . . . , N h ak h a l = &delta; k &prime; 方程求出,δk l为Kronecker三角函数。根据式(2),s的每一分量均为ha在a=1,…,N上的线积分。Stoke原理表明除非ha的“旋量”趋于零,否则这些线积分将与路径有关:
&PartialD; h ak &PartialD; x l - &PartialD; h al &PartialD; x k = 0
                                                  (式15)
由于有些传感器状态集合不一定满足上式,因此我们必须创建一种与坐标系无关的方法来指定集合中由点x0到任意点x的路径。本发明具体装置采用以下方式确定路径:首先,在点x0沿轨道h1方向运动,然后在每一后续遇到点上沿h1方向运动产生通过点x0的“类型1”轨道。下一步,在该点和每一后续点上沿轨迹h2方向运动,产生通过类型1轨道上每一点的“类型2”轨道。如此下去,直到产生通过类型N-1轨道上每一点的类型N轨道为止。由于ha在每一点的线性独立性,n组(1≤n≤N)类型轨道上的点集合将包含n维集合子空间。因此,集合上每一点均在类型N轨道上,并可从x0点通过顺序横切类型1轨道线段、类型2轨道线段、…类型N轨道线段等类型路径到达该点。由于量值ha作为逆变矢量进行变换,因而该路径指定方式与坐标系无关。故此,如果将式(2)沿该“标准”路径积分,则所得s值即为近期所遇到的传感器状态的描述。该描述与坐标系无关,即不随重新映射传感器状态的外部过程而改变。
为了阐释这一路径指定过程,考虑传感器在集合上每一点沿几个特征方向运动的情况。例如,想像在一个大平面上观察到传感器状态以固定速度沿着看不见的笛卡尔网格的两个方向运动。或者,想像在一个球面上,传感器状态在分别以恒定极角速度和方位角速度沿着看不见的经线和纬线运动。通过观察传感器状态在每点附近的演化,我们可以应用式(13)来导出轨迹矢量(称为“北”轨迹和“东”轨迹)。然后,我们可以依此建立一条东-西轨道。该轨道穿过参考点并沿轨迹指定的东西方向远离参考点。下一步,我们通过东-西轨道上的每一点建立南-北轨道。该轨道沿轨迹指定的南北方向远离东-西轨道上的每一点。集合上的每一点可由sa表示,sa与沿两种轨道连接x0与x的横越距离有关。在上述平面集合举例中,轨迹点可由笛卡尔坐标系描述。在球面集合举例中,轨迹点可由经纬度表示(适于常定标系数和原点漂移)。不管是何种情况,所得出的状态表示均独立于最初用于记录传感器状态演化和用于从中导出轨迹矢量的坐标系。
严格地说,在式(2)中每一路径上的每一点x均需使用上述方法计算矢量ha。这意味着以前遇到的传感器状态的轨道x(t)必须高密度涵盖状态集合,以使轨道通过每一x点的次数至少为N次。但是,在大多数应用场合下这一要求可被解除。尤其是只在有限样点集合内计算ha以及从通过每一样点附近(不一定通过样点本身)的轨道微分中计算矢量时尤其如此。此外,可以考虑运用参数或非参数插值方法(如样条插值法或神经网络法等)来估计样点之间的ha值。只要样点间距小于使集合指向性出现变化的距离,则该算法即可认为是精确算法。这一结论适用于所有相关坐标系--即对应于重新映射设备传感器状态的所有目标过程变换效应的坐标系。有些情况可能会妨碍在状态集合上具有足够密度的样点集中导出ha,例如没有一种独特的方法以使每点上分解hi后E值达到最小,或与最小值E相关联的hc(式(13))不包含N个线性独立项。这些情况表明传感器状态x(t)的时间过程对状态集合不具有足够的指向性。但是即使这样,仍有可能运用第III节和第IV节提供的方法建立与坐标系无关的激励表示。这些方法只要求状态集合在单一点上具有内在指向性。该单一点矢量可被移到(平移)集合中的其它点上。
需要注意的是在集合上有有一些异常点可经由不止一条上述“标准”路径连接x0点。例如,在上述球面集合中,“北”极点可经由多条“标准”路径到达“赤道”上的参考点。具体来说,从参考点沿赤道(一条可能的东-西轨道)移动任何距离,然后沿相应的纬度线大圆(一条可能的“南-北”轨道)移动四分之一圆周均能到达北极。此类异常点具有多个与坐标系无关的表示方式(即多个s“坐标”)。
               III.支持平移的传感器集合
在本节中,我们讨论本发明项下的一种情况,即传感器状态x(t)的时间过程具有足够的内部架构来定义集合内矢量移动(“平移”)方法。在第二节中介绍的方法要求每一时间点都具有轨迹指向性。在本节中我们将证明即便缺乏这一特性,也存在在集合上确定平移规则的可能。只要集合支持平移并某单一点上具有指向性,则矢量ha可从该点出发在集合内移动,并以与坐标系无关的方式确定集合内所有其它各点的矢量ha。然后,可应用式(1-2)建立与坐标系无关的时间描述。大体上,矢量ha可被认为能够对集合内某一点做内部“标记”。平移过程使矢量能够“携带”标记信息在集合中移动并在其它点上做类似“标记”。
如第II.B节所述,考虑设备具有一个或多个检测器的情况。令x(xk,k=1,...,N,N≥1)阵列代表传感器状态,令x(t)代表在所选时间间隔内遇到的传感器状态时间序列。如前所述,该时间序列函数描述跨越传感器状态集合的轨道。根据仿射联络差分几何方法,如果能够确定轨迹的仿射联络参量Γlm k(x),则任意矢量均可以与坐标系无关的方式在集合上移动。该参量的变换方程为:
&Gamma; &prime; lm k = &Sigma; r , s , t = 1 , . . . , N &PartialD; x &prime; k &PartialD; x r &PartialD; x s &PartialD; x &prime; l &PartialD; x t &PartialD; x &prime; m &Gamma; st r + &Sigma; n = 1 , . . . , N &PartialD; x &prime; k &PartialD; x n &PartialD; 2 x n &PartialD; x &prime; l &PartialD; x &prime; m
                                                  (式16)
特别是在给出x点的任意逆变矢量V后,考虑V+δV阶阵列情况。此时:
&delta;V k = - &Sigma; l , m = 1 , . . . , N &Gamma; lm k V l &delta;x m
                                                   (式17)
可以证明只要仿射联络以式(16)方式进行变换,则V+δV即作为逆变矢量在x+δx点进行变换。在点x+δx的矢量V+δV为矢量V沿δx平移后的结果。我们的任务是利用传感器状态的时间序列x(t)导出传感器状态集合上的仿射联络。然后,仅根据集合上一点(如参考传感器状态点x0)的一个矢量ha,我们将能够利用仿射联络增加整个集合的平移矢量。通过这些平移矢量和式(1-2)即可导出任意传感器状态的与坐标系无关的状态表示。
考虑点x靠近至少N(N+1)/2长轨道线段的情况。这些轨道线段可被分割成对应于无穷小等时间间隔的无穷小线元dx。将这些线元作为逆变矢量进行变换。因此,我们可以寻找仿射联络,以将给定的线元沿其自身平移到处在相同轨道线段上的下一线元。换句话说,我们寻找仿射联络,使给定的轨道线段轨迹最短。式17显示此类仿射联络Γlm k必须满足以下N个约束条件:
&delta;dx k = - &Sigma; l , m = 1 , . . . , N &Gamma; lm k dx l dx m
                                              (式18)
式中,dx+δdx代表在点x+dx的轨道线元。现在考虑在点x的N(N+1)/2轨道线段的任意集合情况。使所有轨道线段轨迹最短的仿射联络必须满足式(1 8)所示的N2(N+1)/2线性约束。由于对称的仿射联络(Γlm k=Γml k)有N2(N+1)/2个分量,因此除非约束方程为矛盾方程(无解)或冗余方程(多解),否则只有唯一的对称仿射联络满足约束方程。我们注意到如果Γlm k为这些约束方程在一个坐标系下的解,则Γ′lm k即为对应方程在任何其它坐标系下的解。Γlm k与Γ′lm k的关系由式(16)来表达。因此,如果这些方程在一个坐标系下有唯一解,则所对应方程在任何其它坐标系下也有唯一解。这些解之间的关系由式(16)来表达。现在,考虑所有N(N+1)/2轨道线段的集合对这些约束方程具有唯一解的情况,即所有集合轨迹最短且在点x上具有唯一对称仿射联络的情况。令Γlm k为从轨道线段子集中运算得出的仿射联络的平均值:
&Gamma; lm k = 1 N T &Sigma; i = 1 , . . . , N T &Gamma; lm k ( i ) .
                                              (式19)
式中,Γlm k(i)为使第i个轨道线段集合轨迹最短的对称仿射联络,而NT为此类集合的个数。参量Γlm k以式(16)所示方式进行变换,这是因为每一加到式(19)右式的参量均以此方式进行变换。因此,Γlm k可被定义为传感器集合上点x的独一无二的仿射联络。我们注意到即使轨迹轨道线段不指向任何特定的“主要”方向,也有可能从传感器状态时间序列中导出仿射联络。换句话说,与第II节所述方法相比,本节所述方法不要求轨道线段在每一点上指向优先方向,因此在应用更具有普遍性。
现在,假设可在集合上以与坐标系无关的方式定义参考传感器状态x0和x0点的N个线性独立参考矢量ha。第II.A节给出了定义x0的几种方法。第II.B节描述了坐标系无关技术。这些技术可用于从所选时间段内在点x0附近遇到的传感器状态中导出参考矢量。或者,设备可能对点x0的某些矢量具有先验知识,而且已知这些矢量数值在所有相关坐标变换中均保持不变。因此这些矢量可被确定为参考矢量。或者,设备操作员可自行选择参考矢量并通过将设备置于相应的激励变化中来将这些矢量“显示”给设备。一旦参考传感器状态和参考矢量确定好后,可利用仿射联络将这些矢量平移到集合内任何其它点x上。如果集合具有非零曲率,即如果曲率张量Blmn k在某些点上不为零,则所得到的点x矢量将与用来建立矢量的路径有关。这里:
B lmn k = - &PartialD; &Gamma; lm k &PartialD; x n + &PartialD; &Gamma; ln k &PartialD; x m + &Sigma; i = 1 , . . . , N ( &Gamma; im k &Gamma; ln i - &Gamma; in k &Gamma; lm i )
                                               (式20)
由于在许多情况下该曲率张量不趋于零,因此必须以与坐标系无关的方式完整确定连接x0和x的路径。在本发明具体装置中,可采用下列方式规定此类路径。沿矢量h1自身方向重复平移该矢量以产生穿过点x0的轨道,称此轨道为类型1最短轨道。接下来,沿此轨道平移所有矢量ha。现在,沿矢量h2自身方向重复平移该矢量以产生穿过类型1最短轨道每一点的类型2最短轨道。然后,沿每一条轨道平移所有矢量ha,并沿矢量h3自身方向重复平移该矢量以产生穿过类型2最短轨道每一点的类型3最短轨道。以此类推,直到产生穿过类型N-1最短轨道每一点的类型N最短轨道为止。由于矢量ha在点x0的线性独立性,平移后的矢量ha也具有线性独立性。在类型n所有轨道上的点集合包含n维集合子空间,且类型N轨道可通达集合上的所有点。这意味着,可从x0点通过顺序横切类型1最短轨道、类型2最短轨道、…类型N最短轨道等“标准”路径到达任意点x。由于路径定义出自矢量平移并与坐标系无关,因而路径指定方式也与坐标系无关。在ha通过上述路径被“扩散”到集合其它点后,将式(2)沿x0至x之间的“标准”路径积分,即可得到与坐标系无关的任意点x的状态表示s。
为了直观了解上述整个过程,考虑集合包含单一点x0且在该点矢量ha最短的情况,如在点x0经过内部“标记”的一个平面或一小部分球面,且该点两个“指针”面向传感器集合上的优先方向(称为“北”方向和“东”方向)。式(19)可被用来从观测到的传感器状态的演变中导出每一点的仿射联络。例如,若传感器状态沿平面直线或球面大圆以恒定速度移动,则式(19)可导出平面或球面黎曼几何的一般平移规则。由此求出的仿射联络可用于将东指针沿其自身方向进行平移,以便生成通过点x0的“东-西”最短线。然后,我们可以平移北指针,在沿东-西最短线上每一点生成新的北指针。最后,我们可以沿其自身方向平移每一北指针以生成通过该指针的南-北最短线。此时,集合上的每一点可由sa表示。sa代表从点x0到达该点所需要的平移运算(东西方向平移加南北方向平移)的次数。如果集合为平面,上述传感器轨道为直线且在点x0的“北”/“东”指针互成直角,则sa代表笛卡尔坐标系下的每一点。另一方面,如果集合为球面,上述传感器轨道为大圆轨道,则sa代表以经度和纬度表达的每一点。无论是何种情况,所得出的状态表示均不依赖最初用于记录传感器状态和导出仿射联络的坐标系。
严格地说,必须运用式(2)使用的路径上的每一点的传感器状态来计算仿射联络Γlm k。这意味着在所选时间间隔内遇到的传感器状态的轨道x(t)必须高密度涵盖状态集合,以使轨道通过每一点的次数至少为N(N+1)/2次。但是,在大多数应用场合可以解除这一要求。尤其是只在有限样点集合内计算Γlm k以及从通过每一样点附近(不一定通过样点本身)的轨道微分中计算仿射联络时尤其如此。此外,可以考虑运用参数或非参数插值方法(如样条插值法或神经网络法等)来估计插入点的Γlm k值。只要样点间距小于使轨迹最短线仿射联络出现变化的距离,则该算法即认为是精确算法。这一结论适用于所有相关坐标系--即对应于描述在所有预期的变换过程存在的情况下所记录到的传感器状态的坐标系.如果上述变换以相对平缓的方式重新映射传感器状态,则仿射联络的取样和插值只要在一个坐标系中是准确的就可能在所有相关坐标系中是准确的。
我们在前面提到,上述方法比第II.B节描述的方法具有更广泛的适用性。以数学观点解释,这是因为在每一点上带有定义完整的指向性的集合(即第II.B节提到的集合)为支持平移的集合(即本节讨论的集合)的子集。要解释这一观点,我们研究在每一点上具有指向性的集合上点x的矢量V。V作为点x矢量ha的线性组合具有一定分量。在集合中任何其它点上,我们将经过平移的矢量V定义为相同的该点矢量ha线性组合。这相当于将仿射联络选为:
&Gamma; lm k = - &Sigma; a = 1 , . . . , N h al &PartialD; n a k &PartialD; x m
                                              (式21)
本表达式在两个低阶幂的对称部分同样构成集合的仿射联络。这样,具有轨迹指向性的集合就具有足够的“构架”来支持平移。
            IV.支持度量的传感器状态集合
第II.B节提到的方法要求集合上每一点均具有轨迹指向性。在本节中,我们描述本发明项下的一种情况,即在上述条件不满足时,仍在集合上传感器状态x(t)的时间序列中施加黎曼度量。该度量可被用来定义平移规则。只要集合具有足够的指向性来定义某一单一点的矢量ha,则这些矢量可被平移,以便定义所有其它点的矢量ha。然后,可应用式(1-2)建立与坐标系无关的传感器状态描述。
如第II.B节和第III节所述,考虑设备具有一个或多个检测器的情况。令x(xk,k=1,...,N,N≥1)阵列代表传感器状态,令x(t)代表传感器状态时间序列。考虑点x靠近至少N(N+1)/2长轨道线段的情况。每一条轨道线段确定一个无穷小线元dx=x(t+dt)-x(t),t为轨道线段穿过点x的时间,dt为无穷小时间间隔。现在考虑从线元中寻找赋予线元单位长度的度量。此类度量必须满足以下约束条件:
&Sigma; k , l = 1 , . . . , N g kl dx k dx l = 1
                                                 (式22)
接下来,我们考虑在点x的包含N(N+1)/2线元的任意集合情况。向所有线元赋予单位长度的度量必须满足式(22)所示的N(N+1)/2线性约束。由于度量具有N(N+1)/2个分量,因此除非约束方程为矛盾方程(无解)或冗余方程(多解),否则只有唯一的度量满足约束方程。如果这些方程在一个坐标系下有唯一解,则所对应方程在任何其它坐标系下也有唯一解,且这些解在不同坐标系下确定的协变张量相同。鉴于每一线元dx以协变矢量进行变换的事实,上述结果的出现是必然的。现在,考虑所有N(N+1)/2线元集合对约束方程具有唯一解的情况。令gkl为从线元子集中运算得出的度量平均值:
g kl = 1 N L &Sigma; i = 1 , . . . , N L g kl ( i ) .
                                                   (式23)
式中,gkl(i)为向第i个线元集合赋予单位长度的度量,而NL为此类集合的个数。我们注意到使式(22)无解或有多解的线元集对式(23)不起作用。参量gkl作为协变张量进行变换,这是因为每一加到式(23)右式的参量均以此方式进行变换。因此,gkl可被定义为传感器集合上点x的独一无二的度量。我们注意到即使轨迹轨道线段不指向任何特定的“主要”方向,也有可能从传感器状态时间序列中导出此类度量。换句话说,与第II.B节所述方法相比,本节所述方法不要求轨道线段在每一点上指向优先方向,因此在应用更具有普遍性。
现在,我们可利用上面导出的度量来定义传感器集合上的平移。例如,在本发明项下具体装置中,仿射联络被确定为下述在平移期间保持度量运算矢量长度的参量:
&Gamma; lm k = 1 2 &Sigma; n = 1 , . . . , N g kn ( &PartialD; g mn &PartialD; x l + &PartialD; g nl &PartialD; x m - &PartialD; g lm &PartialD; x n )
                                               (式24)
式中,gkl为gkl逆的协变参量。我们也可以对仿射联络进行其它定义并将定义用于本发明项下的其它具体装置中。现在,假设可在传感器状态集合上定义参考状态x0和点x0的N维线性独立矢量ha。第II.A节和第III节分别描述了有关定义方法和装置。上述仿射联络可用于将这些矢量平移到集合上任意其它点x。如果集合具有非零曲率,则所得到的点x矢量将与用来建立矢量的路径有关。总的来说,必须以与坐标系无关的方式完整指定连接x0和x的路径。在本发明项下具体装置中,可采用第III节描述的方法规定此类路径。也就是说,我们可以定义一条通向点x的“标准”路径,该路径顺序经由通过对点x0的矢量ha进行平移所建立的特定最短线。然后,将式(2)沿x0至x之间的标准路径积分,即可得到与坐标系无关的任意点x的状态表示s。
如第III节所述,必须运用式(2)使用的路径上的每一点的传感器状态信息来计算度量和仿射联络。这意味着在以前遇到的传感器状态轨道x(t)必须高密度涵盖状态集合,以使轨道通过每一点的次数至少为N(N+1)/2次。但是,这一要求通常可被解除,尤其是在通过每一样点附近(不一定通过样点本身)的轨道的有限样点集合内计算度量时尤其如此。然后,可运用参数或非参数插值方法(如样条插值法或神经网络法等)来估计插入点的gkl值。同以前一样,只要样点间距小于使度量出现变化的距离,则该算法即被认为是精确算法。
在本节和第II、III节所述的本发明项下具体装置中,参量hc,Γlm k,gkl由所选时间间隔内轨道数据经过运算并对hi,Γlm k(i),gkl(i)分别取平均值后得出。时间间隔可选为由t-ΔT至t。换句话说,在所选时间段的数据加权值为1,而在此时间段之前(t-ΔT时刻之前)和之后(t时刻之后)的数据加权值为0。在本发明项下的其它具体装置中,使用式(13),式(19)和式(23)对多个时间段(如以t-NΔT和t-(N-1)ΔT划分的时间段,N为任意整数)的数据进行处理,以便计算出每一时间段的hc(N),Γlm k(N),gkl(N)值。然后,通过处理hc(N),Γlm k(N),gkl(N)的加权和得到hc,Γlm k,gkl。加权因子w(N)可随N的量值增加而减小。
                 V.模拟数据试验
V.A.一维传感器状态集合
V.A.1.人类语音的声学波形
本节应用人类语音的声学波形举例来进一步阐明本发明的数学特性。试验采用美国成年男性以正常谈话语速和音量发出的英语单词。使用16位定深以11.025千赫采样率对所发出的声音进行数字化处理。图4a显示的是单词“门”的声音信号经过数字化处理后获得的334毫秒信号(x(t))中间的40毫秒片段。图4b显示的是通过第II.A节所述方法从图4a中导出的“s表示”(即经过重新定标的信号S(t))。在每一时间点上的S值由从前10毫秒信号(即T=10毫秒)中导出的定标函数确定。这些定标函数以图4a的水平线表示,每条线代表对应于s=±50n,n=1,2,…的x值。图4d为图4a信号经过变换后的信号图解。该信号经过图4c的非线性变换(x′(x))获得。图4e对图4d信号进行重新定标后获得的信号图解。定标参数为T=10毫秒。尽管图4a和图4d的“原始”信号差别很大,二者的s表示(图4b和图4e)却几乎一样。仅有的几处不同可认为是计算导数的离散方法所致。这样,如同第II.A节所推导的那样,s表示不随非线性信号变换而改变。通过收听图4所代表的话音,上述结论会更加明显。尽管图4的所有四种信号听起来都像单词“门”,两个“原始”信号的声音明显不同,但经过重新定标后,二者之间没有显而易见的差异。总的来说,经过重新定标的信号听起来像是经过轻微“静电”降级的语态发出的单词“门”。
上述举例启示我们运用动态重新定标技术可使系统多种发射机和接收机之间共通交流。为进一步说明,想象图4a和图4d为两台“收听”相同传输信号的接收机检测器回路内信号。产生与这些原始信号(图4c)有关的非线性变换的原因可以是接收机检测器回路的不同(如增益曲线的差异),或接收机与发射机之间信道的不同,或二者兼而有之。只要两台接收机均经由重新定标来对检测到的信号进行“解码”,则会从信号中得出相同的信息内容(即相同的S(t)函数)。如果其中一台接收机是产生传输信号的系统的一部分(即该系统“收听”自身传输信号),那么尽管接收机的“听觉”不同于传输系统,信号的s表示信息仍然被忠实地传送到其它接收机中。反之,想象图4a和图4d为单一接收机检测到的从不同发射机播出的信号。此时,产生与这些信号有关的非线性变换可以是两台发射机“语态”不同(即传送特性差异)所致。只要接收机经由重新定标来对检测到的信号进行“解码”,则会从信号中得出相同的信息内容(即相同的S(t)函数)。换句话说,接收机将可“感知”两台发射机一两种不同“语态”播出的相同信息。如上所述,发射机如果“收听”自身发出的传输信号并对其重新定标后,将会导出同样的信息内容。这样,带有异类发射机和接收机的系统无需经过校准程序测量其发射和接收特征即可相互沟通。
现对图4举例的技术情况作出说明。本发明使用第II.A节方法中的子式变量来计算动态定标信号。尤其是,我们假设所有变换均为单调正变换。此外,我们将式(3)和式(5)各项限制在信号分别通过y和y′值时具有正时间导数那样的时间点上。由于单调正变换不改变信号时间导数的符号,故经过重新定标的信号仍保持不变。因此,仍可从相同时间点集合的时间导数中建立函数h(y)和h′(y′)。在每一时间点处,我们都试图从最近的10微秒(ΔT=10微秒)时间段遇到的信号时间导数中计算经过重新定标的信号。在有些时间点上,信号电平在以前10微秒时间段内没有得到,故信号无法重新定标。因此,对有些y值来说式(3)右式没有变化。例如,在图4中,这样的情况发生在时间为t~163,174,以及185毫秒处。如第II.A节所述,这一情况发生在对未变换信号(如图4a)和任何已变换信号(如图4d)进行重新定标时的相同时间点上。这意味着在相同时间点上,所有这些信号的s表示均不存在,而在任何其它时间点上,这些信号的s表示存在并具有相同量值。因此,这一现象尽管造成信号表示的信息内容的减少,但没有破坏信号s表示的不变性。在本试验中,有92%的所有时间点可以进行信号的s表示运算。
图5显示信号变换突然变化所产生的效应。图5b显示在上半时(167毫秒)实施图4c所示针对图4a信号的变换过程,以及在下半时对该信号实施图5a所示变换过程后产生的信号。图5c显示当T=10时通过对图5b信号重新定标所获得的s表示。将后者与图4b相比较可知s表示在167≤t≤177毫秒时间段以外保持不变。对二者之间的差异可做如下解释:在该时间间隔内,图5c所示的经过重新定标的信号系从信号电平混合集合中导出。有些信号电平经由图4c所示变换而有些信号电平则经由图5a所示变换。这违反了(第II.A节中)不变性证明的信号变换与时间无关的假设。我们注意到s表示的破坏属于暂态性质。在经过足够长时间(ΔT)后,变换在进行重新定标的时间间隔内又变成与时间无关的变换,图4b和图5c所示的经过定标的信号又变成相同的信号。换句话说,重新定标过程能够适应新的变换形式,因此能够从扰动中“恢复”过来。这一调适行为类似于在发明摘要中提及的人类受试者带变形镜试验时的调适过程。
图6显示重新定标过程中的噪声效应。图6a为图4d所示信号增加白噪声后的信号图解。白噪声振幅由-200至+200之间均匀分布振幅中选取。噪声使得播放图6a所示全部334毫秒单词“门”声音时伴有嘶嘶声。图6b为图6a所示信号经过重新定标后所得到的信号图解。定标参数为□T=10毫秒。通过比较图6b,图4e和图4b可知,噪声造成了s表示不变性的某种退化。由于附加的噪声破坏了图6a,图4d和图4a所示信号的可逆性并进而违反了第II.A节的S不变性证明,因此这种退化也在预期之中。s表示的噪声敏感度随□T的增加而下降。这是因为□T的增加使式(3)右式项数量增加,结果是噪声效应“平均下降”。但是,□T的增加也意味着重新定标过程需要更多的时间来适应信号变换的突然变化。
V.A.2.合成类语音声谱
在上节阐述的本发明项下具体装置中,我们的讨论对象为通过可逆变换相互联系的时域内人类语音波形。但是,这些变换只涉及对相对小范围的送话人“语音”和受话人“听觉”的影响。例如,与此类变换相关的信号没有模仿音调范围很大的话音。实际上,通过使用多维非线性变换对声音的短项傅立叶声谱进行变换可以建立音调范围大得多的语音信号。在本节中,我们将证明如果由不同送话人产生并/或由不同受话人检测的语音声谱可通过此类变换相关联,则这些语音声谱将具有相同的经过重新定标的信号表示。为运算简便起见,我们考虑由单一自由度控制的“声门”和“声道”所产生的合成类语音信号这样的情况。这些信号模仿由多块发音肌产生的“一维语音”。发音肌的运动由与时间有关的单一参数值确定。我们可将同样方法应用到在第II.B节,第III节和第IV节提到本发明具体装置中由多自由度语音装置产生的人类语音信号。
“一维语音”信号由标准线性预期(LP)模型产生。换句话说,信号的短项傅立叶声谱等同于“全极点”传递函数和声门激励函数的积。传递函数具有六个极点,其中包括两个实数极点和四个复数极点(组成两组复数共轭对)。所得出的语音声谱特性由八个实数参量值决定,其中六个参量描述极点的为止,另外两个参量描述声门激励的声调和振幅(“增益”)。每一参量均为某一与时间有关的单一参数(g)的函数。这八个函数描述了送话人的“话音”性质,即定义了参数g扫过所有可能取值时送话人所能够产生的所有声谱的一维集合。在任何给定时间产生的实际声音均由此八个函数和g(t)值确定。g(t)函数定义送话人的“发音姿态”,即确定每次送话人发声装置如何设定配置。在音乐模拟中,LP模型中与参数g有关的函数描述用一个手指弹出的乐器的可能状态范围,而函数g(t)则描述在某一特定时间段乐手演奏乐器时手指的运动。在这些举例中,我们考虑的是送话人产生的由标准声门脉冲驱动的“语态”话音的情形。时间上,同样的方法可直接应用到由类似噪声的声门激励函数驱动的“非语态”话音的场合。第一送话人的声调假设为常数,其值为200赫兹。
第一受话人的“听觉”由其检测和处理时域语音信号的方法来描述。首先以10千赫频率将上述信号数字化,然后从以5毫秒增量增加的10毫秒汉明(Hamming)窗口内信号产生短项傅立叶声谱。图7b为在图7a由“姿态”函数描述的系列设定中,由第一送话人“话音”产生信号声谱图。在每一时间点上的声谱被倒谱系数参数化。倒谱系数产生于由等间距600赫兹接收器平均之后的声谱量值对数的离散余弦变换(DCT)。假设本段所描述的受话人(1号受话人)只检测到每一声谱的第三、第四、第五倒谱系数。每一短项声谱的倒谱系数确定三维空间内的单一点。每一点均落在与送话人发声装置的所有可能设定(即所有可能的g值)相对应的倒谱系数所定义的曲线上。该曲线的准确形状视乎送话人话音特征(由与g有关的语音模型极点和其它参数)而定。图7c为前段描述的送话人话音的曲线设定。通过将曲线上每一点投影到靠近曲线的相连的弦阵列上,可以在曲线上建立一个适宜的坐标系(称为x坐标系)。针对某一特定发声的“原始”传感器信号包括了倒谱横跨曲线时所产生的坐标x(t)的时间序列。由于图7b的声谱图由振荡的函数g(t)产生,因此以前产生的声谱(以及倒谱)被时时重访,且相对应的倒谱系数沿图7c曲线来回往返。图7d左图显示以此方式产生的振荡感应信号x(t)。
第二受话人的听觉按下述方式建模。假设第二受话人按上述方法求时域信号的短项傅立叶声谱。但是,假设第二受话人不计算每一声谱的倒谱,而是计算由等间距600赫兹接收器平均之后的声谱量值(非其量值对数)的DCT。该受话人只检测到第二、第三、第六项DCT系数。上述送话人的话音特征由(图8a)曲线描述。该曲线由发声装置所能够产生的所有可能声音(即所有可能g值)的声谱DCT系数确定。同样,通过将曲线上每一点投影到靠近曲线的相连的弦阵列上,可以在曲线上建立一个适宜的坐标系(称为x′坐标系)。图8b左图为图7b声音在2号受话人上诱发的传感器信号x′(t)。注意,x坐标系和x′坐标系对图7c和图8a曲线可分别存在任意关系,且二者之间不需存在任何确定或已知的关系。唯一的条件是x=0和x′=0须对应相同的声音(如相同的g值)。在本例中,为满足这一条件,可定义x和x′坐标系以使x=x′=0对应图7b发声的第一短项声谱,或者可使两位受话人收听由1号送话人产生的任意单一声音并同意将二者坐标系原点定在送话人“语音”曲线上的对应点。这类似于合唱团指挥奏响定音管以向确定音调起点。最后,每一受话人收到的原始感应信号,x(t)和x′(t)经过重新定标处理。定标参数为ΔT=500毫秒。图7d和图8b右图分别显示定标处理后的信号表示。我们注意到,尽管建立信号表示的传感器信号,x(t)和x′(t)不同,这些s信号表示仍具有相似性。这意味着两位受话人尽管具有相当不同的“听觉”机制(见图7c和图8a),但仍产生相同的、经过重新定标的发声信号表示。由于传感器信号,x(t)和x′(t)之间通过保持零振幅的可逆变换相互关联,所以经过重新定标的信号表示相同。这一结论之所以正确是因为每一受话人均对g所发生的所有变化导致的声谱变化保持敏感,故每一传感器信号与g(t)保持可逆关联。此外,出于同样原因,与图7a函数保持可逆关联的任何其它姿态函数g(t)将产生如图7d右图所示的经过重新定标的声音信号表示。换句话说,由这些“不同的”姿态函数产生的声音将被内部解释为以两种不同音调发出的相同信息。最后,我们注意到,经过重新定标的g1(t)≡g(t)-g(0)表示同经过重新定标的x(t)和x′(t)表示一模一样。由于g1(t)与每一传感器信号可逆关联,即g1=0可被变换为x=x′=0,因此上述结果在预期之内。这意味着,送话人对发出的声音和控制发声装置设置的“动力”信号建立有相同的内部表示。
我们通过为话音装置LP模型的8个参量选择不同的与g有关的函数来建立第二送话人话音模型。在本模型中,声门音调设定为125赫兹。声道极点传递函数为g的函数且与第一话音模型的传递函数显著不同。图9a显示第二个“话音”作出图7a所示“发音姿态”时产生的声谱图。图9b为该话音产生所有可能的声谱时(即对应于所有可能的g值)在2号受话人身上诱发的在DCT系数空间的信号曲线。图8a和图9b显示2号受话人在DCT系数空间描述的第一话音和第二话音特征曲线显著不同。图9c左侧描述图9a信号发出的声音在2号受话人身上诱发的传感器信号x′(t)。同以前一样,图9b中沿曲线的x′坐标系的原点的选择对应于由送话人发射的第一个声谱。最后,图9c右图显示该原始传感器信号经过重新定标的信号表示。我们注意到虽然图9c和图8b的信号源自不同话音发声并且对应于不同声谱图(图9a和图7b)原始传感器信号,但二者经过定标的信号表示没有明显差别。这是因为这些传感器信号通过可逆变换互相关联。由于每一传感器信号均与同一姿态函数(即图7a中的g(t)可逆相关,故存在这样的可逆变换。
V.B.具有轨迹指向性的多维传感器状态集合
在本节中,我们将第II.B节描述的本发明项下具体装置应用到二维传感器状态集合模拟数据中。令x=(x1,x2)代表设备的传感器状态,传感器状态可以是数字图像时间序列正在被跟踪的某一特性坐标,或某一音频信号短项傅立叶声谱中的振幅或峰值频率。假设图10a代表系统以前遇到的传感器状态轨道。我们注意到这些轨道线的走向几乎为水平或垂直方向,故认为集合在每一点具有指向性特质。我们利用这些数据在样点均匀网格上计算轨迹矢量ha。网格以原点对中,间隔为两个单位。计算时,我们考虑每一样点的小块邻域,并计算相等时间间隔内穿越此邻域的每一轨道线段的时间导数。然后,应用式(9-13)并使p=1以便从每一样点的时间导数的集合中推导出轨迹矢量。接下来,对导出的矢量ha(如图10b所示)进行插值运算以估计插入点的矢量。正如预期的那样,这些矢量反映了轨道的水平和垂直倾向性。最后,将ha代入式(1-2)计算相对于参考状态为x0=(0,0)的集合上每一传感器状态的与坐标系无关的状态表示sa。图10c所示的结果描述了与图10a的传感器状态历史有内在联系的定标函数sa(x)的水平集。图11显示在x坐标系的传感器状态“图像”在s坐标系中的表示。
接下来,我们讨论如果同一设备已经“经历”过图12a所示传感器状态会出现什么情况。图12a状态轨道与图10a状态轨道之间通过以下非线性变换相关联:
x &RightArrow; 0.1 + x 1 + 0.1 x 2 + 0.01 x 1 2 - 0.02 x 2 2 - 0.01 x 1 x 2
x 2 &RightArrow; 0.2 - 0.2 x 1 + x 2 - 0.01 x 1 2 + 0.02 x 2 2 + 0.01 x 1 x 2
                                                 (式25)例如,假设传感器状态为数字图像的某一特征位置。式(25)可代表传感器状态的变换方式。产生变换的致因可以是相机内光学/电子路径畸变,或相机聚焦的物体表面畸变(如打印纸变形)。我们运用上述程序计算样点均匀网格上的轨迹矢量。图12b显示矢量计算结果,其矢量明显指向沿图12a的主要方向。下一步,我们使用内插法来估计插入点的ha值并应用式(1-2)来计算相对于参考状态为x0=(0.1,0.2)的集合上每一传感器状态的与坐标系无关的状态表示sa。在计算中,我们采用了参考传感器状态已变换位置这类先验知识。换句话说,我们假设已具有在外部过程实施之前和之后对映射传感器状态进行辨识所必需的先验知识。图12c显示的计算结果描述了与图12a的传感器状态数据保持固有联系的定标函数sa(x)的水平集。这些函数用来计算图11左面经过变换的“图像”的sa表示。图13显示经过变换的图像及其sa表示。比较图11和图13后可知未经变换和经过变换的图像的sa表示几乎一模一样。这样,当存在如式(25)所示的未知可逆传感器状态变换时,本发明的方法和装置仍可能使激励表示保持不变。图11和图13之间的细微差别可归因于ha采样网格粗糙度引起的ha插值误差。这一误差可随采样点间距减小而减小。如果设备可检测更高密度的传感器状态(即具有比图10a和图12a所示更多的轨道线段)使极小邻域包含足够的计算出ha的数据,则有可能使误差减小。
V.C.支持平移的多维传感器状态集合
在本节中,我们将第III节描述的本发明项下具体装置应用到二维传感器状态集合模拟数据中。令x=(x1,x2)代表设备的传感器状态,传感器状态可以是数字图像正在被跟踪的某一特性坐标,或某一拾音器输出信号短项傅立叶声谱中的振幅和/或峰值频率。假设图14a代表系统以前遇到的传感器状态轨道。我们注意到这些轨道线恰好为以恒定速度穿越集合的直线。我们利用式(18-19)在样点均匀网格上计算仿射联络。网格以原点对中,间隔为两个单位。计算时,我们考虑维数为1.6单位的每一样点的小块方形邻域。每一穿越邻域的轨道线段被分成以等时间间隔穿越的线元。然后,我们寻找是否有可将每一线元平移到同对其它线元的唯一仿射联络Γlm k。设定在样点的仿射联络等于在邻域内为结对线元的所有可能三重态推导出的参量Γlm k的平均值。没有唯一解(如多解或无解)的结对线元三重态对平均值没有影响。我们依此推导出使邻域轨道线段平均最短的仿射联络。在本例中,所得出的仿射联络的所有分量均为零,即x坐标系为平面集合的零短程坐标系。由于趋于零的仿射联络是唯一能够平移等长直线线元的仿射联络,因此上述结果在预期之中。
我们选择参考状态为x坐标系原点(x0=0)并采用第II.B节(式(13))描述的方法从邻近轨道线段指向性中计算轨迹矢量。我们尤其考虑轨道线段穿过维数为1.0的x0的小方形邻域的情况。通过沿图14a(式(9))所示等间距时间点的轨道线段对时间求导,可以得到轨迹矢量hi。然后,我们尝试将矢量集合分割成两个子集的各种可能方式,并发现以最小值(式(12),p=1)进行分割的方式。最后,我们计算每一分割子集的平均矢量以找到点x0的主矢量hc。正如第II.B节所解释的那样,这些矢量代表轨迹轨道线段的指向。在本例子中,这些矢量为:
h1=(0.488,-0.013)和h2=(0.064,0.482)        (式26)这一结果说明了这样的事实,即图14a所示的轨道线段面向几乎水平和垂直方向。
通过沿类型1和类型2最短线将矢量平移,我们可利用仿射联络将矢量“扩散”到整个集合上。然后,利用式(1-2)计算包含与坐标无关的每一传感器状态x的表示值s。图14b所示的计算结果描述了s(x)水平集。由于该特别集合的平面特性,s坐标系通过仿射联络与x坐标系相关联。图15显示x坐标系中传感器状态“图像”在s坐标系中的表示。
接下来,我们讨论如果同一设备已经“经历”过图16a所示传感器状态会出现什么情况。图16a状态轨道与图14a状态轨道之间通过以下非线性变换相关联:
x 1 &RightArrow; 2.5 + x 1 + 0.01 x 1 2 - 0.02 x 2 2 - 0.01 x 1 x 2
x 2 &RightArrow; x 2 - 0.01 x 1 2 + 0.02 x 2 2 + 0.01 x 1 x 2
(式27)
例如,假设x为数字图像的某一特征位置。式(27)可代表传感器状态的变换方式。产生变换的致因可以是相机内光学/电子路径畸变,或相机聚焦的物体表面畸变(如打印纸变形)。我们运用上述程序计算样点均匀网格上的轨迹矢量。所得出的仿射联络在每一样点不趋于零。我们使用平滑内插法来估计插入点的值。下一步,我们仍按上述程序计算参考点(2.5,0)处轨道的主要方向。在计算中,我们选择了与未经变换的参考传感器状态x0=0相对应的变换后传感器状态。换句话说,我们假设已具有以与坐标系无关的方式对参考传感器状态进行辨识所必需的先验知识。参考点的优先方向为:
h1=(0.483,0.025)和h2=(0.058,0.486)       (式28)
正如预期的那样,由于式(27)意味着在x=0处_x′k/_xl=δl k,因此所计算出的矢量同式(26)计算出的矢量几乎一样。式(26)和式(28)之间的微小差异可归因于用来计算这些矢量的x0点的邻域宽度有限。我们运用仿射联络沿类型1和类型2最短线将这些矢量“推广”到整个集合上,并利用式(1-2)计算每一点的s表示。图16b显示所求出的函数s(x)的水平集。然后,我们运用函数s(x)计算图15左面的传感器状态“图像”的经过变换的s表示。图17显示经过变换的图像及其s表示。比较图15和图17后可知这些图像的s表示几乎一模一样。换句话说,这些表示不随通过式(27)对传感器状态进行变换的外部过程而改变,因此适合使用模式分析程序进行分析。图17和图15之间的细微差别可归因于仿射联络采样网格粗糙度引起的仿射联络插值误差。这一误差可随采样点间距减小而减小。如果设备可检测更高密度的传感器状态(即具有比图16a所示更多的轨道线段)使极小邻域包含足够的计算出仿射联络的数据。
                      VI.讨论
用于检测激励的设备传感器状态可能因外部物理过程引起可逆变换。此类外部过程包括1)设备感应装置的内部性能改变,2)检测器和激励的外部观测条件改变,3)激励表示本身的某些系统性修改等。显然,设备最好能够对每一激励建立不受上述传感器状态变换影响的的内部表示。并且不需要重新校准设备检测器(或重新训练检测器的模式分析模块)来抵消这些外部过程的影响。换句话说,感应设备最好以能够反映激励的内部特性而又独立于上述外部因素的方式对激励进行编码。
正如上述几节所讨论的那样,在此类变换存在的情况下,即使每一传感器都经过单独变换,集合内的传感器状态之间也可能保持一定的关系。在数学上存在描述这些关系并利用这些关系来产生不随此类传感器状态变换而改变的激励表示这样的可能性。这可通过开发在选定时间段内遇到的传感器状态集合的“天然”内在结构来实现。需要特别指出,此类传感器状态的时间序列可能具有本地内部结构,使我们有可能在集合上每一点确定矢量ha。实质上,这些矢量建立的是同粒子集合的全局“质心”坐标系相类比的本地坐标系(见发明摘要)。如果每一传感器的状态表示均以集合的本地坐标系为参照系,则状态表示在传感器状态进行任何本地变换时均保持不变。所以,此类状态表示将不受引起传感器状态变换外部过程的影响。这一结论奠定了本发明的基础。本发明据此开发出一种非线性信号处理技术,用于识别与时间有关的信号中不随信号变换而改变的“要素”。通过在所选定的时间间隔(如最近时间长度ΔT内)对信号进行重新定标,我们可以找到具有这些要素的信号。如果原始信号时间序列所经历的任何变换为与时间无关的可逆变换,则定标后的信号(称为信号的s表示)保持不变。
本发明项下具体装置包括有多种感应设备。这些感应设备具有不同的传感器但表示激励的方式相同。特别地,只要传感器状态时间序列之间存在可逆映射,则任意两台感应设备所建立的经过重新定标的状态表示将会完全一样。一般来说,多数感应设备都满足可逆映射条件。特别地,我们考虑设计用于感应具有d个自由度的激励的感应设备,即激励构形可确定d维集合的情况。此外,假设在这些激励组态和设备传感器状态的d维集合之间存在与时间有关的可逆映射。这一假设为弱假设,它仅意味设备对所有自由度的激励敏感。故此,在观测同一演变中激励的任意两台设备的传感器状态时间序列之间将存在与时间有关的可逆映射。因此,那些演变中传感器状态的定标后表示将完全一样并可置于相同的模式分析中。需要注意到,由于此类设备的传感器状态时间序列与演变中激励构形可逆相关,因此传感器状态时间序列与激励构形时间序列具有相同的变换后表示。在这个意义上,此类设备只对激励构形本身的时间序列“内部”特性进行编码,即只对与观测设备和观测条件性质无关的特性进行编码。举例说明,考虑设计用于检测某一特定面部表示的计算机视觉设备,并假设这些面部表示构成一个2维集合。满足这一假设的情况可以是每一面部表示由嘴和双眼的构形确定,且这些表示由两个参数控制。例如,计算机视觉系统V可以是这样一类设备,其传感器状态x包括一对特别的面部2维傅立叶分量。只要面部表示的每一变化造成该对傅立叶分量的变化,则在x和面部表示集合之间(即在x和控制面部表示的两个参数之间)存在与时间无关的可逆映射。现在,考虑另一套计算机视觉系统V′,该系统用来对面部图像2维贝塞尔展开中16个特定贝塞尔函数的系数进行运算。每一面部表示将对应于16维贝塞尔系数空间内的一点,且所有可能的面部表示将落在该空间的2维子空间上。现在假设系统V′的感应状态x′包括每一面部表示在该2维子空间上某一适当坐标系下的坐标。只要面部表示的每一变化造成该16个贝塞尔系数集合的变化,则在x′和面部表示集合之间存在与时间无关的可逆映射。同样,当系统V的传感器状态x和系统V′的传感器状态x′同时观测面部表示的任意时间序列时,二者之间也将存在与时间无关的可逆映射。因此,尽管这两套视觉系统具有相当不同的检测器,但仍将对每一面部表示导出相同的变换后表示。广而推之,传感器数量和类型完全不同的任意两组感应设备,只要都对同一自由度激励敏感并能其检测器输出重新定标,则“看到”场景的方式相同。此外,设备可对两个不同的激励(如S和S′)产生相同的定标后表示。不同激励的与时间有关的构形通过与时间无关的可逆映射相关联。为说明这一点,回想到S构形的时间序列和设备中由S产生的传感器状态x(t)的时间序列之间存在与时间无关的可逆映射。类似地,当设备观测S′时,S′构形的时间序列和传感器状态x′(t)的时间序列之间存在可逆映射。同样,x(t)和x′(t)之间也存在与时间无关的可逆映射。因此,这些时间序列具有同一经过变换后的状态表示。例如,假设将上述某一计算机视觉系统(如系统V)分别置于面部F表示的时间序列和不同的面部F表示的时间序列中。此外,在两个F控制参数和两个类似的F′控制参数之间存在与时间无关的可逆映射的前提下,假设上述两组时间序列描述相似的面部表示序列。同样可以推知,该时间系统产生的F和F′时间序列的定标后的表示会完全一样。
我们注意到可以有多种方式来描述这样的事实,即两组激励时间序列产生不同的传感器时间序列,但导致相同的定标后表示的时间序列。例如,假设上述视觉系统V观测两组演变中面部激励F和F′。这两组激励具有同一定标后表示时间序列,但具有不同的原始传感器状态x(t)和x′(t)的时间序列。如果没有其它信息,设备可能无法确定造成两组传感器状态时间序列差异的原因是:1)激励本身的物理差异;还是2)存在影响设备检测器或检测器与面部之间“通道”的外部过程。例如,上述计算机视觉设备可能无法确定x(t)和x′(t)是否出自:1)通过类似面部表示演变出的两个不同面部;还是2)经历相同表达顺序的同一面部。所谓的相同表达顺序指先不经历,然后再经历某些变换过程(如不加和施加图像变形镜片)的表达顺序。类似地,假设设备记录了具有不同定标因子但具有相同定标后表示的两组传感器状态时间序列。设备可将传感器状态差别归因于:1)所观测面部外观的变化;或者2)设备相机增益的变化或面部照明的变化。就象人类因相似混淆场景而可能产生错觉一样,只有在确知可能造成被观测传感器之间发生变换的各种外部过程的相似之处等额外信息,或只有在能够观测激励的额外自由度的情况下,设备才能将混淆场景区分开来。
在以上讨论中,我们假设在给定时间序列的传感器状态被与时间无关的可逆变换所重新映射。现在,考虑突然施加产生传感器状态可逆变换的外部过程所带来的影响。假设每一传感器状态所表示的是在最近时间段ΔT遇到的传感器状态集合的内在特性。施加可变换外部过程后,将会出现一段过渡时间ΔT,在此期间设备的激励表示将不同于从相应的未经转换的传感器状态时间序列中导出的激励表示。这是因为这些激励表示掺杂有经过变换和未经变换的传感器状态。但是,一旦变换后的数据主导传感器状态“数据库”后(即经过时间段ΔT后),所有激励表示将返回到从未经变换的传感器时间序列中导出的激励表示形式。这是由于每一随后遇到的传感器状态描述将涉及已变换传感器状态集合的特性。时间间隔ΔT应该足够长,以便在此间隔内观测到的传感器状态集合能够具有足够高的密度来导出传感器状态表示(见第II节,第III节,第IV节中有关该问题的讨论)。特别地,在每点附近必须具有足够的传感器状态轨道以使集合具有轨迹结构(轨迹矢量,仿射联络,或度量)性质。这样,就象人类一样,所描述的设备必须具有足够的“经验”以形成激励表示。增加ΔT可增加轨迹结构确定时的信号平均值,因此可进而减小本发明方法的噪音敏感度。在这些限制因素中,ΔT的选取应该越短越好以使设备快速适应变化中的观测条件。
我们注意到,如果每一时间点的状态表示是从某一“滑动时间窗口”(如最近期时间间隔ΔT)中遇到的传感器状态中导出的,则给定的传感器状态在不同时间可能有不同表示方式。这是因为不同时间的两组表示所参照的近期遇到的传感器状态集合可能并不相同。换句话说,由于激励表示从设备的近期“经验”中导出,而近期经验又可能与时间有关,因此未变化的激励表示也可能与时间有关。反之,只要两组激励表示所参照的是具有相同平均轨迹特性(即相同ha值)的激励集合,则在不同时间的给定激励表示方式相同。为形象说明这一问题,我们考虑以下举例。考虑某一粒子在平面内两组不同粒子团的质心坐标系中的位置。只要两个集合具有相同的质心坐标系,则关于粒子位置的两组描述就会一致。换句话说,只要这些描述所参照的粒子集合具有相同的平均特性,则粒子位置的两组表示就会完全一样。类似地,近期遇到的传感器状态的平均轨迹特性的稳定性将对每个激励表示起到稳定作用。如果时间稳定性重要,则激励表示应从具有稳定平均特性的足够大传感器状态集合中导出。这就要求有收集传感器状态的时间段(ΔT)下限。
构成本发明的设备在某些方面的表现同人类受试者在“变形镜”实验中的表现类似。变形实验显示近期体验的感应数据特性强烈影响受试者从后续感应数据中构建感知的方式。特别地,每一受试者在经过通过变形镜暴露于类似激励的一段适应期后,其激励知觉返回到未戴变形镜前的原始状态。类似地,本发明设备的近期对外界的“经验”决定其对随后遇到的激励的内在表示方式。设备对激励的表示尤其类似于外部变换过程未施加之前,以及在变换适应期之后的激励表示。
这里有必要对第III节和第IV节提到的本发明具体装置做一些技术说明。在所述发明具体装置中,仿射联络从选定时间间隔中遇到的传感器状态x(t)中直接导出,或从与那些传感器状态直接有关的度量中导出。不管哪种情况,仿射联络均被用来增加整个集合的矢量,即增加某一参考传感器状态的平移参考矢量(如从集合在参考传感器状态的指向性中导出的参考矢量)。然后,这些矢量被用来建立与坐标系无关的传感器状态表示。如第II节所述,这些方法有其优点,但要求轨迹矢量从集合上每一点的x(t)中直接导出。首先,集合上有些点的x(t)可能不具备指向性性质,因此在这些点上可能无法导出轨迹矢量。但是,有可能在这类点上确定一个仿射联络,以此将其它点上已确定的矢量移到上述各点。这样,基于仿射联络几何的方法具有更广泛的适用性。第III节描述的方法(即从传感器状态轨道中直接导出平移运算)由于具有代表大多数经常遇到的短程传感器状态轨道(欧几里得几何的直线综合)的倾向,因此尤其具有优越性。换句话说,通过将最近期观测到的x(t)线元沿其自身方向进行平移,激励倾向于沿此平移方向进行演变。这样,设备就具有一个简单规则,来为变化中激励的可能演变提供一些“直觉”。相比之下,基于第II节方法(即从传感器状态轨道中导出轨迹指向性)的设备对可能的激励演变过程没有“直觉”。设备纵然“知道”集合上每点的一个优先方向,也无法运用激励的过去行为来预测激励的未来走向。类似地,基于第IV节方法(从传感器状态轨道中导出度量)的设备从式(22)中“知道”传感器状态演变的平均速度为单位速度。但是,由于激励轨道不一定与导出的仿射联络短程轨迹相像,因此设备不可能对激励演变做出预测。从这个意义上说,第III节所描述的发明设备的“智能化”程度要高于第II节和第IV节所描述的发明设备。
在上述所有方法中,时间的作用非常重要。特别是,沿通过集合上每点的轨道的轨迹标度经由时间得以确立。在第II节中,用来导出每点轨迹矢量ha的参量hi(式(9))标度通过时间进行校正。在第III节中,时间被用来校正相互平移的线元标度。这些与轨道有关的标度恰好足以导出每点的仿射联络。如果没有时间标度,仿射联络就不能被传感器状态轨道完全确定。最后,在第IV节中,时间被用来校正每一线元的标度,使度量推导成为可能。
值得提及的是,本发明还可根据所述方法和设备的变化和综合导出许多其它应用实例。例如,在第II节中,可使用不同的集聚判据(如使用不同于式(12)的E的函数表达式)来确定每一点的主要矢量。在第IV节中,除式(24)之外,还存在使用度量来定义仿射联络的其它方法。此外,式(2)的积分路径可以不同于第II-IV节中指定的路径。如果集合具有不趋于零的挠率和/或曲率,则指定的路径不同,所产生的s值也不同。最后,在其它发明具体装置中,所发明方法和装置可采用多种重新定标过程。为说明这一点,我们考虑将重新定标到给定函数S(t)的所有信号x(t)的无穷集组成一个等价类。该等价类若包括某一给定信号,则也包括该信号的所有可逆变换。如果连续进行N次重新定标(N≥2),则信号可归到产生相同结果的所有信号的更大等价类中。连续应用重新定标可能导致最终建立起不在随定标变化的函数(即系列重新定标过程可能会达到某一固定“点”)。例如,我们容易看到,如果信号的自参照标度与时间无关(即如果h(y)和s(x)与时间无关),则信号将重新定标到该固定点上。打个不准确的比方,此类信号就如同音乐乐曲,因为乐曲音阶(如西洋音乐的等平均律音阶)也同样与时间无关。
本发明项下的一个具体装置为带可建立激励表示的“前端”的感应设备。该设备不受产生传感器变换的外部过程影响。此类激励表示“工具”的输出信号可用于更高层次的分析(如模式识别)而无需对设备检测器进行重新校准,也无需修改模式分析算法以抵消传感器状态变换的影响。例如,本发明项下的计算机视觉设备可容忍:1)设备中相机光学/电子路径的改变,2)光学环境的改变以及相机相对场景的方位和位置的变化,3)场景中激励的系统性变形等情况。本发明项下的另一个具体装置为语音识别设备。该设备可容忍:1)用于声音检测的拾音器和电路的响应漂移,2)传声环境的变化以及送话器和拾音器之间传声“通道”的改变,3)因送话器的条件变化或可能的送话器特性的变化引起的系统性声音变形。此类设备的下列特性颇具吸引力:即设备能够适应观测条件的大量变化而不会丢失任何数据,条件是变化的速率足够低。特别地,如果如果变化的步骤很小且间隔时间相对很长,则在激励表示返回到其基本状态之前,每一增量将在过渡期内造成激励表示的微小变形。如果模式分析软件能够容忍这些微小,暂时的变形,则即使观测条件在一段长时间内的累积变化很大,设备仍可继续对激励进行正确识别。实质上,设备通过连续进行必要的调整以保持不变的激励表示,能够“跟上”缓慢变换性变化的步伐。相比之下,常规的明确校准方法则要求设备多次“脱机”以便进入测试模式。
在第V.A.2节,我们通过对由各种“话音”产生并由各种“听觉器官”检测的合成类语音信号重新定标说明了自参照重新定标过程。这些实验显示任意送话人发出的声音在具有不同听觉(图7和图8)的受话人处产生相同的定标后激励表示。类似地,由两个不同送话人发出载有相同信息的声音(图8和图9)在任意受话人处产生相同的定标后激励表示。重新定标后的激励表示与受话人和送话人无关的这一特性即使对特定的声音和听觉模型集合也具有相当大的普遍性。只要每位受话人具有察觉到送话人语音装置的任意两组设定之间的差别的敏感度,则在那些设定和受话人产生的传感器状态之间存在可逆映射。因此,如果具有此类敏感度的两位不同受话人收听到送话人发出的声音,则在不同受话人身上产生的传感器状态将可逆关联并具有相同的经过重新定标后的激励表示。类似地,假设两位发出同样信息的送话人的语音设定之间存在可逆变换。例如,出现这一假设的情况可能是一位送话人始终模仿另一位送话人的发音,或者两位送话人始终“阅读”相同的“文本”。这样,两位送话人声音在受话人身上诱发的传感器信号也将为可逆相关。这是因为这些传感器信号与语音设定可逆相关,而语音设定本身为可逆相关。因此,受话人将对每位送话人的发声建立相同的经过重新定标后的激励表示。最后,如第V.A.2节所述,由于语音装置的设定与所产生的传感器信号可逆相关,控制语音设定(即g(t))时间序列的“姿态”参数将具有与发声本身相同的经过重新定标的激励表示。如果“姿态”参数被看作是送话人的“原动”信号,则所产生的结果同语音知觉的“原动”理论是一致的。
尽管第V.A.2节的实验所用的信号为1维语音信号,实验方法可直接推广到多自由度模型产生的信号中。例如,考虑由两个自由度的语音装置产生的声谱情况。每一声谱对应声谱参数(如倒谱系数)空间的2维子空间(即类似纸张一样的表面)上一点,且每一发声特性由此2维表面的轨道所确定。第II.B节,第III节和第IV节描述了对两自由度(或多自由度)信号进行重新定标的几种技术。为计算方便起见,这些技术可被用于具有较少自由度的语音装置中产生的人类语音这样的场合。根据以前的讨论结果,本发明项下的此类具体装置可针对繁多送话人发出的任何声音产生相同的内部(经过重新定标的)激励表示。因此,当送话人的话音或其它特定条件改变时,具有此类“前端”的语音识别设备可不需经过大量的再训练过程。此外,重新定标过程的适应性可使设备消除人类语音的共发音影响。我们回想起每一声音(即每一参数化声谱)被重新定标的方式可能与近期遇到的声音的性质有关。如果时间间隔ΔT被确定包括声音被重新定标之后的时间,则重新定标方式也可能与不久将要遇到的声音的性质有关。换句话说,同共发声现象中语音知觉与语音内容有关相类似,每一声谱经过重新定标后的激励表示与(由ΔT端点确定的)声谱的传声内容有关。最后,上述考虑不由得使人揣测人类大脑本身可能通过建立某种类型的经过重新定标后的语音声谱来译解语音信号。这也许可以解释人类在各种各样的送话人,受话人,以及传声环境下仍能容易进行交流的原因。
本发明项下的另一具体装置为一套通讯系统。该系统以激励表示的方式进行信息交流。通过上述自参照方法和装置将激励表示编码到发射能量中并从接收的能量中解译激励表示。由于信息被编码成不随可逆变换而变化的信号分量,因此信息内容不受接收机传感器的具体设定、发射机的广播模式、或二者之间的通讯信道等因素的影响。如图18所示,假设发射机具有控制所要发射能量波形(如控制天线激励)的状态x。发射机决定由时间序列S(t)代表的发射机状态x(t)的时间序列。构成所要交流信息这一时间序列是图18中“逆表示发生器”的函数。发射机利用所确定的x(t)对发射进行控制。所发射的能量经过接收机检测和处理,产生接收机状态x′(t)的时间序列。我们假设在发射机和接收机状态之间存在可逆的对应关系,即x _ x′为一对一关系。这意味着发射机不分辨接收机无法分辨的传输信号,而接收机也不分辨分辨发射机不分辨的传输信号。这一结论适用于多种场合。例如,假设x和x′分别为发射机和接收机天线中与时间有关的基波段信号的短项傅立叶信号谱。那么,如果发射机和接收机之间的“信道”特性可以表示为与时间无关的任意线性传递函数且该函数具有不趋于零的傅立叶分量和足够短的时间离散(如OFDM),则发射机与接收机状态存在一一对应的关系。接收机通过确定接收机状态表示的时间序列对所接受的信号进行解码。由于这一过程与坐标系无关,所以接收机产生相同的编码在传输信号中的状态表示S(t)的时间序列。例如,如果发射机欲发射图3b所示信息,则可将此信息以图3a所示发射机状态进行编码。即使信道使信号产生非线性畸变并产生图3c所示的接收机状态,接收机也会将传输信号进行解码并恢复到图3b所示状态。在本发明应用举例中,本发明可被用来建立异源发射机和接收机之间的通用通讯系统,且发射机和接收机的状态因未知可逆映射而有所不同。此类通讯系统从以下意义上讲同语音系统相类似:1)同样的信息由通过多种变换相互关联的信号承载;2)发射机和接收机不需要明确描述未知的变换特性;3)如果变换性质改变,则经过一段时间的调整后可重新恢复正确交流。在本类型通讯系统中,对每一信息增量的编码和解码“指示”分别包含在所发射和接收的信号中。从这个意义上讲,通讯信号如同包含音阶和即将到来的音键等固有信息的音乐一样。这一通讯过程也可通过以下类比来阐述。假设某人试图以直观数字方式向他人传送粒子在平面内变化中的位置坐标,并假设接收方的坐标系通过旋转和/或平移而异于发射方的坐标系。发射机可将P个最近显示的粒子位置作为粒子在内部坐标系(坐标系原点位于集合的“质心”,坐标轴指向惯性张量的主轴)中的坐标编码到信号中。由于接收方也可对集合的内部坐标系中的粒子坐标进行解算,因此信息传输真实可靠。我们注意到即便粒子分布和P个最近显示的粒子的内部坐标系存在与时间有关的变化,该通讯方法仍然准确无误。这是因为发射机和接收机使用相同的变化集合分别对每一后续信息增量进行编码和解码。因此,该方法对“激励”集合的内在结构的稳定性不做要求,而在以前描述的感应设备则有此要求以便保证产生随时间稳定的激励表示。为达到准确传输的目的,对系统唯一的要求是从以前传输信号中导出的发射机状态集合必须密集分布在后续信息增量准备使用的集合部分上。
人类具有感知激励的内在稳定性的非凡能力,即使在激励的“外表”因外部因素而不断变化的情况下也是如此。这一现象自柏拉图时代起就一直是哲学家的讨论课题,也自然引起了现代神经科学家的好奇。本发明涉及一套感应设备,使激励在外部过程对传感器状态产生系统性变换时仍保持不变。这些激励表示保持不变的原因是激励的编码包含的是激励构形本身的时间序列的“内部”特性,即包含不随观测设备或观测条件变化的特性。也许人类对激励感知的稳定性也是出于人类对所经历的激励时间序列“内部”结构的了解。重大进化优势能够增强生物体感知能力的进化。
                 VII.感应设备发明装置
VII.A.激励
激励发射和/或反射能量,使设备的一个或多个检测器产生信号。本发明装置可检测感应设备外部和/或内部的激励。外部激励包括含有多种有生命主体(如人类或其它生物)和/或无生命客体(如自然形成的“景物”和制造出的物品等)的“场景”。可对设备检测器产生影响的内部激励包括测量相对于周围环境的设备位置、方位、运动的要素,测量相对于设备其它部分的设备零件(如设备检测器)位置、方位、运动的要素,以及测量任意设备零件(包括检测器、处理器、激励表示发生器等)内部状态的要素等。
VII.B.能量
本发明装置检测由激励发射或反射的电磁能量。电磁能量频率可涵盖电磁谱任意部分,包括射频、微波、红外线、光频、紫外线、和/或x-射线等频谱部分。该激励能量可通过任意类型的介质传输到设备检测器中。这些介质包括真空、地球大气、波导、导线、以及光纤等。激励能量也可经由气相、液相、或固相介质中的压力变化和/或运动(如声学或机械振动)进行传输。
VII.C.检测器
作为设备传感器模块组成部分的一个或多个检测器可对激励发射和/或反射的能量进行检测。本发明装置使用的检测器包括射频天线、微波天线、红外和光学像机等,所使用的介质对紫外线和/或X-射线能量敏感。其它类型的检测器包括拾音器、水下测声仪、压力传感器、平移位置及角位置测量仪、平移速率及角速率测量仪、以及电压计和/或电流计等。检测器输出可保存或记录在存储设备中(如计算机存储器模块或神经网络加权等)。在本发明项下的具体装置中,所记录的检测器信号可被用来确定同样记录在存储设备中的合成(“虚构”)检测器信号的时间序列。例如,合成检测器信号可(在可能的检测器信号空间中)形成连接所观测到的检测器激励信号之间的路径,或连接检测器信号与对应“模板”激励的某一合成检测器信号的路径。在下文中,“检测器输出”意指由激励产生的设备检测器输出以及合成检测器信号。
VII.D.处理器
在本发明项下的具体装置中,检测器输出信号可由处理器以线性或非线性方式组合在一起。处理过程可由使用串行软件和/或并行软件程序(如带神经网格结构的软件程序)的通用中央处理器来完成,也可由包括神经网络电路在内的专用计算机硬件(如阵列处理器)来完成。此类信号处理过程包括滤波、卷积、傅立叶变换、沿特定基函数的信号分解、小波分析、降维、参数化、对时间进行线性或非线性重新定标、图像生成、以及图像重建等过程。经过处理的信号保存在存储设备中(如计算机存储器模块或神经网络加权等)。在本发明项下的具体装置中,所记录的处理后信号可被用来确定同样记录在存储设备中的合成(“虚构”)检测器信号的时间序列。例如,合成处理后信号可(在可能的检测器信号空间中)形成连接所观测到的处理后激励信号之间的路径,或连接处理后信号与对应“模板”激励的某一合成处理后信号的路径。在下文中,“处理后信号”意指由激励产生的信号处理器输出以及合成处理后信号。
VII.E.传感器状态
传感器状态为包含处理后信号的一个数值。在本发明项下的具体装置中,可能的传感器状态包括:数字图像一个或多个位置的像素值、表述变换后图像(如经过滤波的图像、经过卷积的图像、经过傅立叶变换的图像、经过小波变换的图像、经过形态变换的图像等)的一个或多个侧面特征的数值、表述原始图像或变换后图像的一个或多个侧面特性位置和/或强度特征的数值、表述特定时间的时域信号特征的数值、表述变换后时域信号(如经过滤波后的信号、经过卷积后的信号、经过傅立叶变换后的信号、经过小波变换后的信号等)的一个或多个侧面特征的数值、表述时域信号或变换后时域信号的一个或多个侧面特性位置和/或强度特征的数值、以及/或表述时域信号参数化特征的数值。
VII.F.激励表示发生器
本发明项下的具体装置可具有一个或多个激励发生器。每一激励表示发生器可被安装在通用中央处理器上和/或带有串行和/或神经网络结构型软件的专用传感器上(如阵列处理器,神经网络电路等)。激励表示发生器的输入包括在选定时间间隔内遇到的传感器状态x(t)时间序列,以及下面提及的某些先验知识。激励表示发生器的输出包括与坐标系无关的传感器状态表示S(t)的时间序列,以及输入的传感器状态x(t)时间序列。激励表示发生器的输入输出还可包括赖以建立传感器状态的检测器信号时间序列。在任何情况下,激励表示发生器将使用输入信息以与坐标系无关的方式来辨识传感器状态集合的如下一个或多个特性:即参考传感器状态x0、参考传感器状态下的参考矢量h0a、集合上所有其它目标点的矢量ha、以及连接x0与集合上任意其它目标点的路径。激励信号发生器将按照式(1-2)描述的步骤建立集合上任意目标点x的与坐标系无关的表示s。可以有一台或多台激励表示发生器来接收由一台或多台其它激励表示发生器产生的激励表示输入S(t),并利用这些输入来建立构成表述输入表示的其它函数S′(t)。
VII.F.1.参考状态
激励表示发生器可指定在选定时间间隔内遇到的传感器状态x(t)时间序列具有与坐标系无关的特性的传感器状态为参考传感器状态。例如,在本发明项下的某一装置中,发生器认定的参考状态为在特定时间段内由每一传感器状态被遇到的次数决定的函数轨迹最大值。此类状态可经由明晰的运算程序或通过设计用于从传感器状态x(t)时间序列中找到此一状态的神经网络来加以判定。例如,设备可选择某一预先已知的特殊状态为参考状态,该状态在所有相关坐标变换下(即存在所有预期变换过程情况下)保持不变。或者,设备可指定由设备操作员在特定时间“显示”给设备的特别激励所产生的传感器状态为参考状态。
VII.F.2.参考传感器状态处的参考矢量
激励表示发生器可指定在选定时间间隔内遇到的传感器状态时间序列具有与坐标系无关的特性的参考传感器状态矢量为参考矢量h0a。例如,在本发明项下的某一装置中,发生器认定的参考矢量为当传感器状态轨道x(t)在参考传感器状态(如第II.B节所示)附近时的最大特征值
Figure A0181627300841
。这些矢量可经由明晰的运算程序或通过设计用于从以前遇到的状态x(t)经历中找到此类矢量的神经网络来加以判定。同时,设备可运用先验知识来认定在参考传感器状态处的矢量h0a。例如,设备可选择某一预先已知的特殊矢量为参考矢量,该矢量在所有相关坐标变换下(即存在所有预期变换过程情况下)保持不变。或者,设备可指定由设备操作员在特定时间“显示”给设备的特别激励所产生的传感器状态变化为参考矢量。
VII.F.3传感器状态集合中其它点的矢量
在本发明项下的具体装置中,激励表示发生器可通过下来任何与坐标系无关的方式确定计划上其它点的矢量:
VII.F.3.a.具有轨迹指向性的传感器状态集合
激励表示发生器可指定在选定时间间隔内遇到的传感器状态时间序列具有与坐标系无关的特性的任意给定目标点的矢量ha。例如,在本发明项下的某一装置中,发生器认定的参考矢量为当传感器状态轨道x(t)在参考传感器状态(如第II.B节所示)附近时的最大特征值 。这些矢量可经由明晰的运算程序或通过设计用于从以前遇到的状态x(t)经历中找到此类矢量的神经网络来加以判定。可通过对短间隔点集合上的矢量值进行插值运算来估计集合上其它点的矢量值。在本发明项下的具体装置中,插值过程可经由参数技术(如样条法)或神经网络来完成。激励表示发生器可运用这些矢量来确定连接参考状态和任意目标传感器状态的特别路径。例如,可通过要求路径包括N个或更少线段(N为集合维数)来确定此类特别路径。这里,每一线段指向具有某一特定幂值a的轨迹矢量ha,且这些幂值以不重复的预定次序(如第II.B描述的a升幂值次序)分布在路径上。在该路径和沿该路径的矢量ha上可应用式(1-2)来产生与坐标系无关的目标传感器状态表示s。依此方式可算出与预定值x相对应的s值。对应x插入值的s值可通过对预定x值进行插值运算来求出。在本发明项下的具体装置中,可借助参数法(如样条法)或神经网络方法进行插值运算。
VII.F.3.b.支持平移的传感器状态集合
在本发明项下的具体装置中,激励表示发生器可使用在选定时间间隔内遇到的传感器状态x(t)轨道来导出传感器状态集合上某一局部的与坐标系无关的平移规则。例如,在本发明项下的具体装置中,通过要求在所讨论的集合部分上等传感器状态轨道线段为最短线或接近最短线(如第III节所述的平均或统计意义上的最短线),可推导出此类平移规则。这些平移规则(如相应的仿射联络平移规则)可经由明晰的运算程序或通过设计用于在选定时间间隔内遇到的传感器状态x(t)中找到此类规则的神经网络来加以判定。可通过对短间隔点集合上的平移规则进行插值运算来估计集合上其它点的平移规则。在本发明项下的具体装置中,插值过程可经由参数技术(如样条法)或神经网络来完成。所得出集合平移运算可经由明晰的运算程序(如第三节所述)或通过神经网络来完成。激励表示发生器可运用这些平移规则来确定连接参考状态和任意目标传感器状态的特别路径,并确定沿路径的矢量ha。例如,在本发明项下的具体装置中,可借助第III节所述步骤来确定此类路径。或者,在本发明项下的其它装置中,可对第III节所述步骤进行修改,其修改要点是建立并跟随N个或更少的已连接最短线段,且每一线段对应于一个不同的矢量幂a。此外,各线段以不同于第III节中使用的升幂次序的预定幂值次序相连接。在该路径和沿该路径的矢量ha上可应用式(1-2)来产生与坐标系无关的目标传感器状态表示s。依此方式可算出与预定值x相对应的s值。对应x插入值的s值可通过对预定x值进行插值运算来求出。在本发明项下的具体装置中,可借助参数法(如样条法)或神经网络方法进行插值运算。
VII.F.3.c.支持度量的传感器状态集合
在本发明项下的某一特定装置中,激励表示发生器可使用在选定时间间隔内遇到的传感器状态x(t)轨道来导出传感器状态集合上某一局部的与坐标系无关的度量运算。例如,在本发明项下的具体装置中,通过要求以单位时间间隔跨越集合的传感器状态轨道线段近似为单位长度,(如第IV节所述的平均或统计意义上的单位长度),可推导出此类度量运算。该度量运算(如相应的度量张量)可经由明晰的运算程序或通过设计用于在选定时间间隔内遇到的传感器状态x(t)中找到此类度量运算的神经网络来加以判定。可通过对短间隔点集合上的度量运算进行插值运算来估计集合上其它点的度量运算。在本发明项下的具体装置中,插值过程可经由参数技术(如样条法)或神经网络来完成。所得出的度量运算可经由明晰的运算程序或通过神经网络来完成。度量运算可被用来导出集合上的平移规则,所要求的条件是在平移过程中,每一最短线上的每一线段被平移到同样最短线上具有相等度量长度的线段上。在本发明项下的具体装置中,要求平移规则以相等度量长度(如式(24))将任意矢量平移到另一矢量上。平移过程可从度量运算和/或经由明晰的运算程序(如第IV节所述)或通过神经网络来完成。激励表示发生器可运用这些平移规则和参考传感器状态上的参考矢量来确定连接参考状态和任意目标传感器状态的特别路径,并确定沿路径的矢量ha。例如,在本发明项下的某一特定装置中,可借助第IV节所述步骤来确定此类路径。或者,在本发明项下的其它装置中,可对第IV节所述步骤进行修改,其修改要点是建立并跟随N个或更少的已连接最短线段,且每一线段对应于一个不同的矢量幂a。此外,各线段以不同于第IV节中使用的升幂次序的预定幂值次序相连接。在该路径和沿该路径的矢量ha上可应用式(1-2)来产生与坐标系无关的目标传感器状态表示s。依此方式可算出与预定值x相对应的s值。对应x插入值的s值可通过对预定x值进行插值运算来求出。在本发明项下的具体装置中,可借助参数法(如样条法)或神经网络方法进行插值运算。
我们注意到这样的事实,即本发明项下的某些特定装置可含有一个以上的上述激励表示发生器。每一发生器可接收由一个或多个其它激励表示发生器产生的传感器状态x(t)时间序列和/或激励表示S(t)时间序列。后者的时间序列可被看作为传感器状态时间序列进行处理。
我们还注意到这样的事实,即在本发明项下的某些方法和装置中,在预定时间间隔内遇到的传感器状态认为传感器状态具有轨迹结构特性(如矢量ha,平移运算,以及/或度量运算)。在集合某一部分中,如果距离超出标度|Δx|,则该结构可能发生变化。如果在较短距离范围内,该结构可能不会发生很大变化。在本发明项下优先装置中,任何样本传感器状态的轨迹结构可从预定时间间隔内在样本传感器状态的较小邻域中遇到的传感器状态中导出。较小邻域的尺寸可小于由小值正整数分割的|Δx|值,且样本传感器状态间距可小于|Δx|。可运用参数或非参数(如神经网络)插值技术,通过在样本传感器状态中进行插值运算来估计样本传感器状态集合之间的传感器状态轨迹结构。通过对式(2)相应各项求和可估计目标传感器状态与坐标系无关的激励表示。式中,每一微小位移δx的量值小于|Δx|的轨迹值。路径上每一点的轨迹矢量(式(1))可被认为是由小于|Δx|值的距离从路径点分隔开的某一点的矢量值,或通过上述插值方法进行估计。
VII.G.激励表示的高级分析
在本发明项下的具体装置中,激励表示发生器输出,包括在预定时间点的传感器状态和检测器信号,可构成进行高级分析的硬件和/或软件模块输入。通过此类分析可对激励特性(如模式识别和/或模式分类)的某些方面加以确定。
                   VIII.通讯系统发明装置
VIII.A.发射机
VII.A.1.逆表示发生器
在本发明项下的某一具体装置中,逆表示发生器的输入包括在选定时间点上准备传送的激励表示S(t),或许还包括在选定时间间隔内的发射机状态x(t)。该发生器确定其它时间间隔内的发射机状态以使得出的发射机状态时间序列在所选时间点的表示为S(t)。在本发明项下的某一具体装置中,激励表示由某一过程确定,而该过程从发射机状态时间序列中建立的表示与从发射机状态时间序列可逆变换中建立的表示相同。所确定的发射机状态x(t)的时间序列通过发射机广播单元来控制能量的传输。
VIII.A.2.广播单元
在本发明项下的某一具体装置中,广播单元使用上述发射机状态x(t)的时间序列来控制传输到接收机的能量。该广播单元可首先将x值进行各种线性和非线性处理运算。在本发明项下的具体装置中,检测器输出信号可由处理器以线性或非线性方式组合在一起。处理过程可由使用串行软件程序和/或带神经网格结构的软件程序的通用中央处理器来完成,也可由包括神经网络电路在内的专用计算机硬件(如阵列处理器)来完成。此类信号处理过程包括滤波、卷积、傅立叶变换、沿特定基函数的信号分解、小波分析、降维、参数化、以及对时间进行线性或非线性重新定标。处理器输出信号控制将能量传输到接收机的传感器的运算。该广播单元可使用经过处理的对振幅、相位、频率、和/或其它载波信号进行调制以生成传输能量波形。在本发明具体装置中,传输能量可以是电磁能量,其频率可涵盖射频、微波、红外线、光频、紫外线、和/或x-射线等频谱部分。能量可通过各种介质传输到设备检测器中。这些介质包括真空、大气、波导、导线、以及光纤等。在本发明具体装置中,所传输能量也可经由气相、液相、或固相介质中的压力变化和/或运动(如声学或机械振动)进行传输。广播单元可运用多种机制(如TDMA,FDMA,CDMA机制等)将能量传输到多个用户中。
VIII.B.接收机
在本发明项下的某一具体装置中,接收机为如同第VII节所描述的感应设备。接收机处理器可对检测到的信号进行解调和/或以第VII节所述的其它方式进行处理。由处理器建立的传感器状态x′同相应的经过可逆变换的发射机状态x相关联。接收机的激励表示发生器从所选时间间隔内遇到的传感器状态中确定传感器时间序列x′(t)的表示。在本发明项下的某一具体装置中,激励表示由某一过程确定,而该过程从传感器状态时间序列中建立的表示与从传感器状态时间序列可逆变换中建立的表示相同。激励表示发生器的输出包括表示S(t)的时间序列和传感器状态x′(t)的时间序列。在本发明项下的某一具体装置中,分析模块的输入包含准备分析的信息(如模式识别和分类等)。分析模块的输出以及激励表示发生器的输出可显示给接收机操作人员。在具体发明装置中,接收机包括多种机制(如TDMA,FDMA,CDMA机制等)来处理多用户同时发射和接收能量的情况。
上述每一步骤均可由一台或多台通用中央处理器和/或使用串行软件和/或并行软件程序(如带神经网格结构的软件程序)的专用计算机硬件(如阵列处理器)来完成。任何带有监视器、鼠标、键盘、RAM、ROM、光盘驱动器、以及通讯端子的合适计算机均可被用来实现本发明方法和装置。
           IX.做为“语音”识别设备的发明装置
IX.A.语音激励源或类语音激励源
语音激励或类语音激励可由人类,动物,或机器(包括本发明描述的装置)产生。
IX.B.能量与介质
在本发明具体装置中,由上述激励源发出的能量可经由气相、液相、或固相介质中的压力变化和/或运动(如声学或机械振动)进行传输,也可通过声频、射频、微波、红外线、光频、紫外线、和/或x-射线等频谱的电磁场进行传输。电磁场介质可以是真空、地球大气、波导、导线、以及光纤等。
IX.C.检测器
设备传感器模块有一个或多个检测器可对激励能量进行检测。在本发明项下具体装置中,检测器可以是拾音器、水下测声仪、压力传感器、电压计和电流计、射频天线、微波天线、红外及光学相机、以及对紫外线和/或X-射线能量敏感的介质等。
IX.D.处理器
检测器输出信号可由处理器以线性或非线性方式组合在一起。在本发明项下的具体装置中,此类信号处理过程可包括滤波、卷积、傅立叶变换、沿特定基函数的信号分解、小波分析、参数化、降维、以及对时间进行线性或非线性重新定标等。例如,在本发明项下的具体装置中,在任何给定时间间隔内的与时间有关的检测器信号可被用来导出一个构成“特性矢量”的参数。比如说,与时间有关的检测器信号可与任何汉明(Hamming)窗口或汉宁(Hanning)窗口等“窗口”函数进行乘法运算。所得到的加权数据可经过傅立叶变换或小波变换处理,或被投影到任何其它基函数组中。由此类变换产生的“频谱”可经过进一步处理,即在变换幂空间(如所运用的基函数的幂,或傅立叶基函数频率)的适当间隔内取频谱平均值。然后,可从处理后的频谱中推导出倒谱。或者,在任何给定时间间隔内的与时间有关的检测器信号可被用来导出线性预测系数。该系数可被用来导出有关联的滤波传递函数的极点位置。依此方式,在每一时间间隔内与时间有关的信号可被用来从某些或所有与时间有关的数据中,某些或所有相关的频谱值中,某些或全部相关的倒谱值中,某些或全部线性预测系数,某些或全部传递函数极点位置,和/或其它从给定时间间隔内与时间有关的数据中导出的其它参量中导出“特性矢量”。在本发明项下具体装置中,可通过确定包含特性矢量的空间的子空间以及确定将特性矢量投影到子空间的程序来对特性矢量进行处理。然后,可在此子空间下定义的任意适当坐标系中对特性矢量赋予投影坐标值。例如,子空间可以是包含特性矢量的空间中由超平面各部分集合组成的一块线性子空间。
本发明项下的具体装置中,上述每一步或全部处理过程可由通用中央处理器和/或使用串行软件和/或并行软件程序(如带神经网格结构的软件程序)的专用计算机硬件(如阵列处理器,神经网络电路)来完成。
IX.E.传感器状态
传感器状态为处理器从给定激励诱发的检测器信号中建立的一个数值。在本发明项下的具体装置中,传感器状态包括表述在选定时间间隔内时域信号特征的数值,表述处理后时域信号(如经过滤波的信号、经过卷积的信号、经过傅立叶变换的信号,经过小波变换的信号等)某一方面或多方面特征的数值,和/或表述原始时域信号或处理后时域信号某一或多个特性的位置和/或强度特征的数值。例如,传感器状态可包括第IX.D节描述的特性矢量,或在第IX.D节描述的低维子空间下的特性矢量投影坐标。
IX.F.激励表示发生器
本发明设备可具有一个或多个激励发生器。每一激励表示发生器可被安装在通用中央处理器上和/或带有串行和/或并行(如神经网络)结构软件的专用传感器上(如阵列处理器,神经网络电路等)。激励表示发生器的输入包括在选定时间间隔内的传感器状态x(t)时间序列,以及某些先验知识。激励表示发生器的输出包括与坐标系无关的传感器状态表示S(t)的时间序列,以及输入的传感器状态x(t)时间序列。激励表示发生器的输入输出还可包括赖以建立传感器状态的检测器信号时间序列,以及赖以将特性矢量投影其上以产生传感器状态的特性空间的子空间描述。在本发明项下具体装置中,激励表示发生器在任何情况下均将使用输入信息以与坐标系无关的方式来辨识传感器状态集合的如下一个或多个特性:即参考传感器状态x0,参考传感器状态下的参考矢量h0a,集合上所有其它目标点的矢量ha,以及连接x0与集合上任意其它目标点的路径。在本发明项下具体装置中,可通过第VII.F节和其它章节描述的方法来辨别传感器状态集合上的这些特性。在本发明项下具体装置中,激励信号发生器将使用第II节,第III节,以及第IV节描述的步骤建立集合上任意目标点x的与坐标系无关的表示s。可以有一台或多台激励表示发生器来接收由一台或多台其它激励表示发生器产生的激励表示输入S(t),并利用这些输入来建立构成表述输入表示的其它函数S′(t)。
IX.G.激励表示高级分析
在本发明项下具体装置中,激励表示发生器的输出可作为执行高级分析的硬件及/或软件模块的输入。此类高级分析包括模式识别和模式分类。例如,分析模块可将激励表示发生器输出与音素特征序列、音位、音位变体、半音节、音节、字词、短语、句子等相关联。分析模块可通过将每一送话人与激励表示发生器输出特征—包括特性矢量在其上投影以产生传感器状态的特性空间的子空间的特征—来识别特定送话人的话音。
             X.做为激励转化设备的发明装置
在本发明项下的某一具体装置中,发自激励源S的激励按照以下程序“转化”为激励源S′的激励。将被转化的激励由S产生。在以前章节中描述的方法和装置被用来寻找对应于从S激励导出的传感器状态x(t)时间序列的标度值S(t)时间序列。这些标度值从所选时间间隔内记录到的传感器状态中确定,而这些传感器状态由将被转化的S激励(即x(t))及可能由S产生的其它激励所产生。下一步是在传感器状态集合S′上寻找传感器状态x′(t)时间序列,而该集合在经过前述章节描述的过程时必然包括相同的标度值S(t)时间序列。此时,已确定的时间序列x′(t)标度值从所选时间间隔内的传感器状态中导出,而这些传感器状态包括已转化激励(即x′(t))的传感器状态及可能由其它S′激励产生的传感器状态。下一步,我们寻找对应于已确定的传感器状态x′(t)时间序列的特性矢量时间序列。然后,寻找由导出的特性矢量时间序列进行特征表述的S′激励时间序列。例如,假设激励源为两位送话人(S和S′),激励为送话人的语音声波波形。特性矢量的时间序列可以是:1)傅立叶频谱,或2)倒谱,或3)小波表示,或4)线性预测系数,或5)对应于线性预测系数的极点位置的时间序列。然后,可通过分别反演:1)短项傅立叶分析,或2)倒谱分析,或3)小波分析,或4)线性预测分析,或5)线性预测极点位置分析来合成S′的转化后声音波形。S′的合成声音波形即为S转化为S′语音后的发声波形。
在做为激励转化设备的本发明装置中,上述传感器状态x′(t)时间序列经由以下步骤加以确定。首先,按照第VIII节和以前各节描述的步骤,出自送话人S的非信息语音样本被用来在该送话人产生的传感器状态x的“话音”集合上建立定标函数sNM(x)。类似地,出自送话人S′的非信息语音样本被用来在该送话人产生的传感器状态x′的“话音”集合上建立定标函数sNM′(x′)。定标函数sNM(x)被用来由准备转化的S发声产生的传感器状态时间序列x(t)中导出s(t)=sNM[x(t)]。然后,定标函数sNM′(x′)被用来寻找x′(t)以使s(t)=sNM′[x′(t)]。
在本发明项下的所有具体装置中,每一步骤均可由一台或多台通用中央处理器和/或使用串行软件和/或并行软件程序(如带神经网格结构的软件程序)的专用计算机硬件(如阵列处理器,神经网络电路等)来完成。任何带有监视器、鼠标、键盘、RAM、ROM、光盘驱动器、以及通讯端子的合适计算机均可被用来实现本发明方法和装置。
为阐明本发明构成和使用方式,本文对根据本发明设计的用于建立激励表示的具体方法和装置做以上描述。可以认为,本领域专业人员可对本发明及其各个方面轻易进行改变和更改,且本发明并不局限于所描述的具体装置。因此可以预期,本发明涵盖在此披露和提出权利要求的本发明要义和基本原则范围之内的任何及所有修改,改变,或等效处理。

Claims (64)

1.一种检测并处理来自激励源的与时间有关的信号的方法,该方法包括以下步骤:
a)使用检测器在预定时间点上检测自激励源发出的激励信号能量;
b)处理检测器的输出信号,以在预定时间点集合内的每一时间点t上产生传感器状态x(t),所述传感器状态x(t)包括一个或多个数值;
c)存储所述检测器输出信号和所述集合内每一时间点上的传感器状态x(t)到计算机存储器中;
d)处理所存储的传感器状态x(t),以便在可能传感器状态空间中,产生预定传感器状态集合中每一传感器状态的状态表示,所述每一状态表示包括一个或多个数值;
e)存储所述预定传感器状态集合中的所述传感器状态和所述预定传感器状态集合中的所述传感器状态表示到计算机存储器中;
f)处理至少一个所存储的检测器输出信号、以及所述预定集合中的传感器状态和相应的状态表示,以确定在所述预定集合中产生传感器状态的激励的性质和特征。
2.如权利要求1所述的方法,其特征为对所存储的传感器状态x(t)的处理具有这样的特性,即每一所述传感器状态x的表示大体上等同于变换的传感器状态x′=x′(x)的表示,所述变换的传感器状态x′的表示从所述存储的传感器状态x′(t)=x′[x(t)]的变换的时间序列中产生,其中,x′(x)为可能的传感器状态空间下的状态变换。
3.如权利要求2所述的方法,其特征为所述状态变换x′(x)为在可能的传感器状态空间上的可逆变换。
4.一种检测并处理来自激励源的与时间有关的信号的方法,该方法包括以下步骤:
a)使用检测器在预定时间点上检测自激励源发出的激励信号能量;
b)处理检测器输出信号,以便在预定时间点集合内的每一时间点t上生成传感器状态x(t),所述传感器状态x(t)包括一个或多个数值;
c)存储所述检测器输出信号和所述集合内每一时间点上的传感器状态x(t)到计算机存储器中;
d)在可能的传感器状态空间中确定参考传感器状态x0
e)在参考传感器状态x0处确定一个或多个参考矢量h0a,参考矢量脚标a为整数值,而所述每一参考矢量包括一维或多维矢量;
f)处理至少一个所述存储的传感器状态x(t)、参考传感器状态x0、以及参考矢量h0a,以在预定传感器状态集合内每一传感器状态x处确定一个或多个优先矢量ha,所述每一优先矢量为一维或多维矢量;
g)处理至少一个所述存储的传感器状态x(t)、参考传感器状态x0、以及参考矢量h0a,以确定在可能的传感器状态的空间中的路径,每一所述状态路径在预定的传感器状态的集合内连接参考传感器状态x0和某一目标传感器状态;
h)在预定的传感器状态集合内确定每一传感器状态x的状态表示 s = &Integral; x 0 x &delta;s ,式中,所述积分路径从x0至x,所述路径上每一传感器状态的δs满足 &delta;x = &Sigma; a = 1 , . . . , N h a &delta;s a ,δx为路径上所述传感器状态处沿路径方向的小段位移,ha表示所述路径上所述传感器状态附近的优先矢量,N为可能的传感器状态空间的维数;
i)存储所述预定的传感器状态集合中的所述传感器状态和传感器状态表示到计算机存储器中;
j)处理至少一个所存储的检测器输出信号、以及所述预定的集合中的传感器状态和相应的状态表示,以确定在所述预定集合中产生传感器状态的激励性质和特征。
5.如权利要求4所述的方法,其特征为激励源至少为可对源自激励的信号能量进行检测和处理的设备外部激励源以及设备内部激励源之一。
6.如权利要求4所述的方法,其特征为激励源产生的激励至少包括电磁激励、听觉激励、或机械激励之一。
7.如权利要求4所述的方法,其特征为激励源承载激励源所产生的能量的介质至少包括真空、地球大气、波导、导线、光纤、气相、液相、固相之一。
8.如权利要求4所述的方法,其特征为检测器至少包括射频天线、微波天线、红外相机、光学相机、紫外线检测器、X-射线检测器、拾音器、水下测声仪、压力传感器、平移位置检测仪、角位置检测仪、平移运动检测仪、角运动检测仪、电压计、电流计之一。
9.如权利要求4所述的方法,其特征为对检测器输出信号进行处理以产生传感器状态的信号处理方法至少包括线性方法、非线性方法、滤波方法、卷积方法、傅立叶变换方法、沿基函数分解方法、小波分析、降维方法、参数化方法、以及以线性或非线性方式对时间进行重新定标方法之一。
10.如权利要求4所述的方法,其特征为通过对所述存储的传感器状态x(t)进行处理确定可能的传感器状态空间中的参考传感器状态x0,所述处理过程具有这样的特性,即通过处理变换的存储的传感器状态x′(t)=x′[x(t)]可大致确定变换后的参考传感器状态x0′=x′(x0),这里x′(x)为在可能传感器状态空间上的变换。
11.如权利要求4所述的方法,其特征为所述可能的传感器状态空间的参考传感器状态x0被确定为可能的传感器状态空间上函数的现场最大的传感器状态,所述传感器状态处的函数值由预定时间间隔内所述传感器状态在存储的传感器状态集合中出现的次数来决定。
12.如权利要求4所述的方法,其特征为可能的传感器状态空间中的所述参考传感器状态x0被确定为由用户确定的激励所产生的传感器状态。
13.如权利要求4所述的方法,其特征为通过对预定的所述存储的传感器状态x(t)的集合进行处理确定参考传感器状态x0处的参考矢量h0a,在所述预定的集合中存储的传感器状态位于传感器状态x0的微小邻域内。
14.如权利要求13所述的方法,其特征为所述处理具有这样的特性,即通过对预定集合x′(t)=x′[x(t)]内的变换的传感器状态进行所述处理可大致确定变换的参考传感器状态x0′=x′(x0)处的变换的参考矢量 h 0 a &prime; = &PartialD; x &prime; &PartialD; x h 0 a .
15.如权利要求14所述的方法,其特征为所述变换x′(x)为可能的传感器状态空间上的可逆变换。
16.如权利要求13所述的方法,其特征为参考传感器状态x0处的参考矢量h0a被确定为: h 0 a = &Sigma; j = 1 , . . . , N &Delta;T w j h 0 a ( j ) ,
式中,h0a(j)为从以j标注的预定时间间隔内所述传感器状态中确定的参考传感器状态x0处的参考矢量,NΔT为所述预定时间间隔数,而wj为依j而定的预定数值。
17.如权利要求4所述的方法,其特征为确定所述参考传感器状态x0处的参考矢量h0a还包括以下步骤:
a)确定在每一时间点ti处的时间导数 h i = dx dt | t i 的近似值,所述时间点取自预定的传感器状态x(t)存储的时间点的集合,i为整数标记,在所述时间点上的传感器状态x(ti)位于参考传感器状态x0的微小邻域内;
b)将幂值i分划成C个以Sc标识的非空分划集合,这里,c=1,...,C,C为预定整数;
c)针对建立分划集合Sc的每种可能的方法确定E值,E值与参量hi和分划集合Sc有关;
d)确定所述x0处的主要矢量hc
h c = 1 N c &prime; &Sigma; i&epsiv; S c h i ,
N′c为与c有关的预定数值,而Sc为导致最小E值的分划集合;
e)确定所述传感器状态x0处参考矢量h0a为所述x0处主要矢量的预定子集。
18.如权利要求17所述的方法,其特征为针对每一分划集合Sc的参量E为:
E = &Sigma; c = 1 , . . . , C | M c | p ,
|Mc|为Mc的行列式,Mc由下式给定:
M c = 1 N c &Sigma; i&epsiv; S c h i h i ,
Nc为与c有关的预定数值,p为预定正实数值。
19.如权利要求17所述的方法,其特征为确定所述参考传感器状态x0处的参考矢量h0a还包括以下步骤:
a)对所述主要矢量hc排序,使相对应的参量|Mc|按上升量值顺序排列,|Mc|为Mc的行列式,Mc由下式给定:
M c = 1 N c &Sigma; i&epsiv;S c h i h i ,
式中,Nc为与c有关的预定数值;
b)确定所述传感器状态x0处的参考矢量为首组线性独立的N维主矢量,N为可能传感器状态空间的维数。
20.如权利要求4所述的方法,其特征为x0处的每一所述参考矢量被确定为可能传感器状态空间中的有向线段,所述有向线段将两个或多个传感器状态联系起来,所述两个或多个传感器状态由用户决定的两个或多个激励产生。
21.如权利要求4所述的方法,其特征为对至少一个所述存储的传感器状态x(t),所述参考传感器状态x0,以及所述参考矢量h0a进行处理以在所述预定传感器状态集合上确定每一传感器状态x处的一个或多个优先矢量ha,处理过程具有这样的特性,即通过处理至少一个所述存储的传感器状态x′(t)=x′[x(t)]的变换的时间序列、所述变换的参考传感器状态x0′=x′(x0)、以及所述变换的参考传感器状态处的参考矢量 h 0 a &prime; = &PartialD; x &PartialD; x h 0 a ,可产生所述变换的传感器状态x′=x′(x)处的优先矢量 h a &prime; = &PartialD; x &prime; &PartialD; x h a 的近似值,x′(x)为可能传感器状态空间上的变换。
22.如权利要求21所述的方法,其特征为所述传感器状态x′(x)为可能的传感器状态空间上的可逆变换。
23.如权利要求4所述的方法,其特征为在所述预定传感器状态集合中每一传感器状态x处的优先矢量ha由下式确定:
h a = &Sigma; j = 1 , . . . , N &Delta;T w j h a ( j ) ,
式中,ha(j)为通过对至少一个所述参考传感器状态x0和所述在第j个预定时间间隔存储的传感器状态进行处理而在所述传感器状态x处确定的优先矢量,NΔT为所述预定时间间隔数,wj为与j有关的预定数值。
24.如权利要求4所述的方法,其特征为对至少一个所述存储的传感器状态x(t),所述参考传感器状态x0,以及所述参考矢量h0a进行处理以在可能传感器状态集合上确定路径x(τ),0≤τ≤1,以及连接参考传感器状态x0=x(0)与目标传感器状态x(1)的路径,处理过程具有这样的特性,即通过对至少一个所述存储的传感器状态x′(t)=x′[x(t)]的变换的时间序列、所述经过变换的参考传感器状态x0′=x′(x0)、以及所述经过变换的参考传感器状态处的参考矢量 h 0 a &prime; = &PartialD; x &prime; &PartialD; x h 0 a 进行处理,可大致确定经过变换的路径x′(τ)=x′[x(τ)],x′(x)为可能的传感器状态空间上的变换。
25.如权利要求24所述的方法,其特征为所述传感器状态x′(x)为可能传感器状态空间上的可逆变换。
26.如权利要求4所述的方法,其特征为确定激励性质和特征还包括以下步骤:
a)确定每一所述存储的传感器状态x(t)的激励表示s(t);
b)确定另一个传感器状态时间序列为所述激励表示s(t)的时间序列;
c)对所述另一个传感器状态时间序列进行处理以在所述存储的传感器状态x(t)空间内确定每一预定传感器状态集合的激励表示;
d)处理至少一个存储的检测器输出信号以及所述预定集合的传感器状态及其表示和其表示的表示,以确定在所述预定的集合内产生所述传感器状态的激励性质和特征。
27.如权利要求4所述的方法,其特征为至少使用通用计算机软件程序完成一步步骤,所述软件程序结构可为串行结构、并行结构、或神经网络结构。
28.如权利要求4所述的方法,其特征为至少使用计算机硬件电路完成一步步骤,所述电路结构可为串行结构、并行结构、或神经网络结构。
29.一种检测并处理来自激励源的与时间有关的信号的方法,该方法包括以下步骤:
a)使用检测器在预定时间点上检测自激励源输出的激励信号能量;
b)对检测器输出的信号进行处理,以便在预定时间点集合内的每一时间点t上产生传感器状态x(t),所述传感器状态x(t)包括一个或多个数值;
c)将所述检测器输出信号和所述每一预定时间点上的传感器状态x(t)存储到计算机存储器中;
d)确定在可能的传感器状态空间内的参考传感器状态x0
e)通过对预定的所述传感器状态集合进行处理来确定预定传感器状态集合中每一传感器状态x处的一个或多个优先矢量ha,所述预定集合中的传感器状态位于传感器状态x的微小邻域内,且所述优先矢量为一维或多维矢量;
f)通过处理至少一个所述参考传感器状态x0和所述优先矢量ha来确定可能的传感器状态空间内的路径,每一所述路径为预定的传感器状态集合中连接参考传感器状态x0和传感器状态x的路径;
g)确定预定的传感器状态集合中的每一传感器状态x表示 s = &Integral; x 0 x &delta;s ,所述积分路径为从x0至x,在所述路径上每一传感器状态处的δs满足 &delta;x = &Sigma; a = 1 , . . . , N h a &delta; s a ,δx为所述路径上传感器状态处沿路径的微小位移,ha代表所述路径上传感器状态附近的优先矢量,N为可能传感器状态空间的维数;
h)存储所述预定传感器状态集合中的传感器状态和所述预定传感器状态集合中的传感器状态表示于计算机存储器中;
i)处理至少一个存储的检测器输出信号、所述预定集合中的传感器状态、以及相应的状态表示,以确定产生预定集合中传感器状态的激励性质和特征。
30.如权利要求29所述的方法,其特征为在所述传感器状态x处的优先矢量ha通过对所述存储的传感器状态的预定集合进行处理来加以确定,所述预定传感器状态集合x(t)为传感器状态x的微小邻域,所述处理过程具有这样的特性,即通过对所述存储的预定集合中传感器状态x′(t)=x′[x(t)]进行处理,可产生所述经过变换的传感器状态x′=x′(x)处的优先矢量 h a &prime; = &PartialD; x &prime; &PartialD; x h a 的近似值,x′(x)为可能传感器状态空间上的变换。
31.如权利要求30所述的方法,其特征为所述变换x′(x)为可能的传感器状态空间上的可逆变换。
32.如权利要求29所述的方法,其特征为确定所述预定传感器状态集合中每一传感器状x处的优先矢量ha还包括以下步骤:
a)确定在每一时间点ti处的时间导数 h i = dx dt | t i 吉计值,所述时间点取自预定的传感器状态x(t)存储于其中的时间点集合,i为整数标记,在所述时间点上的传感器状态x(ti)位于所述传感器状态x的微小邻域内;
b)将幂值i分划成C个以Sc标识的非空分划集合,这里,c=1,...,C,C为预定整数;
c)针对建立分划集合Sc的所有可能的方法确定召值,E值与参量hi和分划集合Sc有关;
d)确定所述传感器状态x处的主要矢量hc
h c = 1 N c &prime; &Sigma; i &epsiv;S c h i ,
N′c为与c有关的预定数值,而Sc为导致最小E值的分划集合;
e)确定x处的优先矢量ha为x处主要矢量的预定子集。
33.如权利要求32所述的方法,其特征为参量E的表达式为:
E = &Sigma; c = 1 , . . . , C | M c | p ,
|Mc|为Mc的行列式,Mc由下式给定:
M c = 1 N c &Sigma; i&epsiv; S c h i h i ,
Nc为与c有关的预定数值,p为预定正实数值。
34.如权利要求32所述的方法,其特征为确定在所述预定传感器状态集合中每一传感器状态x处的优先矢量ha还包括以下步骤:
a)对所述主要矢量hc排序,使相对应的参量|Mc|按上升量值顺序排列,|Mc|为Mc的行列式,Mc由下式给定:
M c = 1 N c &Sigma; i&epsiv; S c h i h i ,
式中,Nc为与c有关的预定数值;
b)确定x处的优先矢量ha为第一线性独立的N维主矢量,N为可能传感器状态空间的维数。
35.如权利要求29所述的方法,其特征为在预定传感器状态集合中的每一传感器状态x处的优先矢量ha由下式确定:
h a = &Sigma; j = 1 , . . . , N &Delta;T w j h a ( j ) ,
式中,ha(j)为从第j个预定时间间隔内的所述存储的传感器状态中确定的传感器状态x处的优先矢量,NΔT为所述预定时间间隔数,而wj为依j而定的预定数值。
36.如权利要求29所述的方法,其特征为确定所述连接x0与x的路径还包括以下步骤:
a)确定通过x0的类型m轨道,m为预定整数;其中,所述确定的步骤为沿至少一x0点附近的所述优先矢量hm和减一倍数的(one times)所述x0点的优先矢量hm的方向横越可能的传感器状态空间;然后,沿至少一个后续遇到的传感器状态附近的所述优先矢量hm和减一倍数的所述后续遇到的传感器状态附近的所述优先矢量hm的方向横越可能传感器状态空间;然后,重复后一步骤至预定次数;
b)确定通过最后确定的类型d1轨道上每一传感器状态的类型n轨道,n为一整数且不等于任何标记以前确定的轨道的幂值;确定方法为沿至少一个所述传感器状态附近的所述优先矢量hn和减一倍数的所述传感器状态附近的优先矢量hn的方向横越可能传感器状态空间;然后,沿至少一个后续遇到的传感器状态附近的所述优先矢量hn减一倍数的所述后续遇到的传感器状态附近的所述优先矢量hn的方向横越可能传感器状态空间;然后,重复后一步骤至预定次数;
c)重复进行步骤(b)直到最后确定的轨道达到所述传感器状态x为止;
d)确定连接参考传感器状态x0至所述传感器状态x的所述路径为至多包含每一确定的轨道类型的一条线段的路径,所述线段以确定的所述轨道类型决定连接顺序。
37.一种检测并处理来自激励源的与时间有关的信号的方法,该方法包括以下步骤:
a)使用检测器在预定时间点上检测自激励源输出的激励信号能量;
b)对检测器输出信号进行处理,以便在预定的时间点集合内的每一时间点t上产生传感器状态x(t),所述传感器状态x(t)包括一个或多个数值;
c)将所述检测器输出信号和所述集合内每一时间点上的传感器状态x(t)存储到计算机存储器中;
d)确定可能的传感器状态空间中的参考传感器状态x0
e)确定参考传感器状态x0处的一个或多个参考矢量h0a,每一所述参考矢量包括一维或多维矢量;
f)通过对所述预定的存储的传感器状态集合进行处理来确定在预定传感器状态集合中每一传感器状态x处的平移运算,在所述预定集合中存储的传感器状态位于所述传感器状态x的微小邻域,且所述平移运算将矢量横越x附近的可能传感器状态空间;
g)处理至少一个所述存储的传感器状态x(t)、所述参考传感器状态x0、所述参考矢量h0a、以及所述平移运算,以确定预定传感器状态集合中每一传感器状态x处的一个或多个优先矢量ha,每一所述优先矢量为一维或多维矢量;
h)处理至少一个所述存储的传感器状态x(t)、所述参考传感器状态x0、所述参考矢量h0a、以及所述平移运算,以确定横越可能传感器状态空间的路径,每一所述路径为连接参考传感器状态x0和预定传感器状态集合中传感器状态x的路径;
i)确定预定传感器状态集合中每一传感器状态x的表示 s = &Integral; x 0 x &delta;s ,所述积分路径从x0至x,所述路径上每一传感器状态的δs满足 &delta;x = &Sigma; a = 1 , . . . , N h a &delta;s a , δx为路径上所述传感器状态处沿路径方向的小段位移,ha为所述路径上所述传感器状态附近的优先矢量,N为可能传感器状态空间的维数;
j)将所述预定传感器状态集合中的所述传感器状态和传感器状态表示存储到计算机存储器中;
k)处理至少一个所存储的检测器输出信号,以及所述预定集合中的传感器状态和相应的状态表示,以确定产生所述预定集合中传感器状态的激励性质和特征。
38.如权利要求37所述的方法,其特征为在所述传感器状态x的微小邻域内处理所述预定存储传感器状态x(t)集合后确定的平移运算将x处矢量V沿x处线段δx平移成目的地传感器状态x+δx处的平移的矢量V和变换的所述传感器状态x′=x′(x)处的平移运算,所述平移运算通过对变换的所述传感器状态x′的微小邻域内的变换的所述存储的传感器状态x′(t)=x′[x(t)]进行处理来确定,同时,上述平移运算将x′处已变换所述矢量 V &prime; = &PartialD; x &prime; &PartialD; x V 沿x′处已变换所述线段 &delta;x &prime; = &PartialD; x &prime; &PartialD; x &delta;x 大致平移成已变换所述目的地传感器状态x′(x+δx)处的已变换所述已平移矢量 V &prime; = &PartialD; x &prime; &PartialD; x V ,x′(x)为可能传感器状态空间上的变换。
39.如权利要求38所述的方法,其特征为所述变换x′(x)为可能传感器状态空间上的可逆变换。
40.如权利要求37所述的方法,其特征为在所述预定传感器状态x处的平移运算可通过以下步骤加以确定:
a)确定所述预定传感器状态x微小邻域内三个所述存储的传感器状态,所述三个存储的传感器状态在预定时间间隔内被存储;
b)确定一对线段,其中第一条所述线段将三个传感器状态的头两个状态连接起来,该头两个传感器状态的存储时间早于三个传感器状态中的最后一个状态被存储的时间,且该线段由先存储的传感器状态指向后存储的传感器状态,第二条所述线段将三个传感器状态的后两个状态连接起来,该后两个传感器状态的存储时间晚于三组传感器状态中的第一个状态被存储的时间,且该线段由先存储的传感器状态指向后存储的传感器状态;
c)在所述预定传感器状态x邻域内确定零或更多附加线段对;
d)在所述预定传感器状态x处确定平移运算,该平移运算将矢量沿穿越x附近的可能传感器状态空间的路径移动,并将每一线段对中的第一线段沿其自身平移成接近同组线段对中第二条线段的线段。
41.如权利要求37所述的方法,其特征为在所述预定传感器状态x处确定平移运算还包括以下步骤:
a)确定所述预定传感器状态x微小邻域内三个所述存储的传感器状态,所述三个存储的传感器状态在预定时间间隔内被存储;
b)确定一对线段,其中第一条所述线段将三个传感器状态的头两个状态连接起来,该头两个传感器状态的存储时间早于三个传感器状态中的最后一个状态被存储的时间,且该线段由先存储的传感器状态指向后存储的传感器状态,第二条所述线段将三个传感器状态的后两组状态连接起来,该后两个传感器状态的存储时间晚于三个传感器状态中的第一个状态被存储的时间,且该线段由先存储的传感器状态指向后存储的传感器状态;
c)在所述预定传感器状态x邻域内确定零或更多附加线段对集合;
d)确定一个或多个集合,且每一所述集合以整数i标记并含有一个或多个线段对,对每一线段对,存在满足下式的唯一Γlm k(i):
&delta;dx k = - &Sigma; l , m = 1 , . . . , N &Gamma; lm k ( i ) dx l dx m
对所述集合中的每一线段对、dx和dx+δdx,N为可能的传感器状态空间的维数;
e)确定所述预定传感器状态x处的仿射(affine)联络Γlm k
&Gamma; lm k = 1 W &Gamma; &Sigma; i = 1 , . . . , N &Gamma; &Gamma; lm k ( i ) ,
式中,NΓ为具有唯一所述Γlm k(i)的所述线段对集合的维数,WΓ为预定数值;
f)确定所述预定的传感器状态x处的平移运算,以使x处矢量V沿x处线段δx被平移成x+δx处的矢量V+δV,δV为:
&delta;V k = - &Sigma; l , m = 1 , . . . , N &Gamma; lm k V l &delta;x m ,
N为可能的传感器状态空间的维数。
42.如权利要求37所述的方法,其特征为在所述预定传感器状态x处的所述平移运算将x处的矢量V沿x处的线段δx平移成x+δx处的矢量V+δV,δV为
&delta;V k = &Sigma; j = 1 , . . . , N &Delta;T w j &delta;V ( j ) k ,
δV(j)具有这样的特性,即第j个预定时间间隔内所述存储的传感器状态中确定的平移运算将x处的矢量V沿x处的线段δx平移成x+δx处的矢量V+δV(j),NΔT为所述预定的时间间隔数,wj为与j有关的预定的数值。
43.如权利要求37所述的方法,其特征为确定连接参考传感器状态x0与传感器状态x的路径还包括以下步骤:
a)确定通过x0的类型m轨道,m为预定整数,确定方法为沿至少一个矢量本身的参考矢量h0m和减一倍数的自身矢量后得出的方向平移参考矢量;然后,将得出的矢量沿至少一个矢量本身的矢量和减一倍数的自身矢量后得出的方向平移,重复后一步骤至预定次数;
b)将参考矢量h0a沿所述类型m轨道平移以产生所述轨道上每一传感器状态处的优先矢量ha
c)确定通过最后确定的类型轨道上每一传感器状态的类型n轨道,n为一整数且不等于任何标记以前确定的轨道的幂值,确定方法为沿至少一个矢量自身和减一倍数的矢量自身后得出的方向平移所述每一轨道上每一传感器状态处的所述优先矢量hn,并将得出的矢量沿至少一个矢量自身和减一倍数的矢量自身后得出的方向平移,重复后一步骤至预定次数;
d)将位于每一最后确定的类型轨道的前一轨道上每一传感器状态处的所述优先矢量ha沿经过所述每一传感器状态的所述类型n轨道进行平移,以便产生所述类型n轨道上每一传感器状态处的优先矢量ha
e)重复进行步骤(c)和步骤(d)直到所确定的轨道和所述优先矢量ha平移过程达到所述预定传感器状态x为止;
f)确定连接参考传感器状态x0至所述传感器状态x的所述路径为至多包含每一确定的轨道类型的一条线段的路径,所述线段以所述确定的轨道类型决定连接顺序。
44.一种检测并处理来自激励源的与时间有关的信号的方法,该方法包括以下步骤:
a)使用检测器在预定时间点上检测自激励源输出的激励信号能量;
b)对检测器输出信号进行处理,以便在预定时间点集合内的每一时间点t上产生传感器状态x(t),所述传感器状态x(t)包括一个或多个数值;
c)将所述检测器输出信号和所述集合内每一时间点上的传感器状态x(t)存储到计算机存储器中;
d)确定可能传感器状态空间中的参考传感器状态x0
e)确定参考传感器状态x0处的一个或多个参考矢量h0a,每一所述参考矢量为一维或多维矢量;
f)通过对预定所述存储的传感器状态集合进行处理来确定预定传感器状态集合中每一传感器状态x处的度量运算,在所述预定集合存储的传感器状态位于所述传感器状态x的微小邻域,且所述度量运算指定x附近的矢量长度;
g)确定预定传感器状态集合内的每一传感器状态x处的平移运算,所述平移运算将矢量在x附近的可能传感器状态空间上移动;
h)处理至少一个所述存储的传感器状态x(t)、所述参考传感器状态x0、所述参考矢量h0a、所述度量运算、以及所述平移运算,以确定预定传感器状态集合上每一传感器状态x处的一个或多个优先矢量,每一所述优先矢量包括一维或多维矢量;
i)处理至少一个所述存储的传感器状态x(t)、所述参考传感器状态x0、所述参考矢量h0a、所述度量运算、以及所述平移运算,以确定穿越可能传感器状态空间的路径,每一所述路径为预定传感器状态集合中参考传感器状态x0和传感器状态x之间的路径;
j)在预定传感器状态集合内确定每一传感器状态x的状态表示 s = &Integral; x 0 x &delta;s , 式中,所述积分路径从x0至x,所述路径上每一传感器状态的δs满足 &delta;x = &Sigma; a = 1 , . . . , N h a &delta;s a ,δx为路径上所述传感器状态处沿路径方向的小段位移,ha为所述路径上所述传感器状态附近的优先矢量,N为可能传感器状态空间的维数;
k)将所述预定传感器状态集合中的所述传感器状态和传感器状态表示存储到计算机存储器中;
l)处理至少一个所存储的检测器输出信号,以及所述预定集合中的传感器状态和相应的状态表示,以确定产生所述预定集合中传感器状态的激励性质和特征。
45.如权利要求44所述的方法,其特征为在所述预定的传感器状态x处所述度量运算向x处矢量V指定的长度等同于由x′处度量在变换的所述传感器状态x′=x′(x)处向变换的所述矢量 V &prime; = &PartialD; x &prime; &PartialD; x V 指定的长度,所述x′处度量通过对变换的存储的传感器状态x′(t)=x′[x(t)]进行处理来确定,每一x(t)为所述预定的存储的x附近传感器状态集合,而x′(x)为在可能的传感器状态空间上的变换。
46.如权利要求45所述的方法,其特征为所述变换x′(x)为可能传感器状态空间上的可逆变换。
47.如权利要求44所述的方法,其特征为在每一所述预定传感器状态x处的度量运算可通过以下步骤加以确定:
a)确定所述预定传感器状态x微小邻域内两个所述存储的传感器状态,所述两个存储的传感器状态在预定时间间隔内被存储;
b)确定连接所述两个传感器状态的线段,所述线段由先存储的传感器状态指向后存储的传感器状态;
c)在所述预定传感器状态x邻域内确定零或更多附加线段对集合;
d)确定所述预定传感器状态x处的度量运算,该运算指定所述预定传感器状态x处的矢量的度量长度,并对每一所述线段指定大致相同的度量长度。
48.如权利要求44所述的方法,其特征为在每一所述预定传感器状态x处的度量运算可通过以下步骤加以确定:
a)确定所述预定传感器状态x微小邻域内两个所述存储的传感器状态,所述两个存储的传感器状态在预定时间间隔内被存储;
b)确定连接所述两个传感器状态的线段,所述线段由先存储的传感器状态指向后存储的传感器状态;
c)在所述预定传感器状态x邻域内确定零或更多附加线段对集合;
d)确定一个或多个所述线段集合,且每一集合以i标记并含有一个或多个此类线段,对每一线段,存在满足下式的唯一gkl(i):
&Sigma; k , l = 1 , . . . , N g kl ( i ) dx k dx l = | d&lambda; | 2
对所述集合中的每一线段dx,|dλ|2为预定数值,N为可能传感器状态空间的维数;
e)确定所述预定传感器状态x处的度量张量gkl
g kl = 1 W g &Sigma; i = 1 , . . . , N g g kl ( i ) ,
式中,Ng为具有唯一所述gkl(i)的所述预定传感器状态x处的线段集合数,Wg为预定数值;
f)确定所述预定传感器状态x处的度量运算,以使x处矢量V被指定的度量长度为|V|:
| V | 2 = &Sigma; k , l = 1 , . . . , N g kl V k V l .
49.如权利要求44所述的方法,其特征为在所述预定传感器状态x处的所述度量运算指定x处矢量V的度量长度|V|,|V|为:
| V | 2 = &Sigma; J = 1 , . . . , N &Delta;T w j | V ( j ) | 2 ,
|V(j)|具有这样的特性,即第j个预定时间间隔内所述存储的传感器状态中确定的度量运算将度量长度|V(j)|指定给x处的矢量V,NΔT为所述预定时间间隔数,wj为与j有关的预定数值。
50.如权利要求44所述的方法,其特征为在所述预定传感器状态x处的平移运算将x处线段沿自身平移成平移后线段,所述平移后线段与所述x处线段的度量长度大致相同。
51.如权利要求44所述的方法,其特征为确定在所述预定传感器状态x处的所述平移运算还包括以下步骤:
a)确定所述预定传感器状态x处的仿射联络Γlm k
&Gamma; lm k = 1 2 &Sigma; n = 1 , . . . , N g kn ( &PartialD; g mn &PartialD; x l + &PartialD; g ml &PartialD; x m - &PartialD; g lm &PartialD; x n ) ,
gkl为逆变张量,即gkl的逆,gkl满足:
| V | 2 = &Sigma; k , l = 1 , . . . , N g kl V k V l ,
式中,|V|为由x处的度量运算指定给x处矢量的长度,N为可能传感器状态空间的维数;
b)确定在所述预定传感器状态x处的平移运算,以使x处矢量V沿x处线段δx被平移成x+δx矢量V+δV,δV为:
&delta;V k = - &Sigma; l , m = 1 , . . . , N &Gamma; lm k V l &delta;x m ,
式中,N为可能传感器状态空间的维数。
52.如权利要求44所述的方法,其特征为确定连接参考传感器状态x0与传感器状态x的路径还包括以下步骤:
a)确定通过x0的类型m轨道,m为预定整数,确定方法为沿至少一个矢量本身的参考矢量h0m和减一倍数的自身矢量后得出的方向平移参考矢量h0m;然后,将得出的矢量沿至少一个矢量本身的矢量和减一倍数的自身矢量后得出的方向平移,重复后一步骤至预定次数;
b)将参考矢量h0a沿所述类型m轨道平移以产生所述轨道上每一传感器状态处的优先矢量ha
c)确定通过最后确定的类型轨道上每一传感器状态的类型n轨道,n为一整数且不等于任何标记以前确定的轨道的幂值,确定方法为沿至少一个矢量自身和减一倍数的矢量自身后得出的方向平移所述每一轨道上每一传感器状态处的所述优先矢量hn,并将得出的矢量沿至少一个矢量自身和减一倍数的矢量自身后得出的方向平移,重复后一步骤至预定次数;
d)将位于每一最后确定的类型轨道的前一轨道上每一传感器状态处的所述优先矢量ha沿经过所述每一传感器状态的所述类型n轨道进行平移,以便产生所述类型n轨道上每一传感器状态处的优先矢量ha
e)重复进行步骤(c)和步骤(d)直到所确定的轨道和所述优先矢量ha平移过程达到所述预定传感器状态x为止;
f)确定连接参考传感器状态x0至所述传感器状态x的所述路径为至多包含每一确定的轨道类型的一条线段的路径,所述线段以所述确定的轨道类型决定连接顺序。
53.一种通过确定从产生传感器状态的时间序列的激励源S输出的激励时间序列而将发自激励源S的激励转变为发自激励源S的激励的方法,所述传感器状态的确定通过对所述S激励发出的能量检测器输出进行处理,以及通过确定从产生传感器状态时间序列的所述激励源S发出的激励的时间序列来完成,所述传感器状态的确定通过对所述S激励发出的能量检测器输出进行处理来完成,由所述S激励产生的所述传感器状态时间序列与由所述S激励产生的所述传感器状态时间序列通过某一可逆变换相关联,该可逆变换为通过处理所述S能量检测器的可能输出所产生的可能传感器状态与通过处理所述S能量检测器的可能输出所产生的可能传感器状态之间的变换。
54.一种将发自激励源S的激励转变为发自激励源S的激励的方法,该方法包括以下步骤:
a)使用检测器在预定时间点处检测自所述激励源S输出的激励信号能量;
b)对检测器输出的信号进行处理,以便在预定时间点的集合内的每一时间点t上产生传感器状态x(t),所述传感器状态x(t)包括一个或多个数值;
c)将所述集合内每一时间点处的传感器状态x(t)存储到计算机存储器中;
d)处理所述存储的传感器状态x(t),以便在可能传感器状态空间中,产生针对预定的传感器状态集合中每一传感器状态x的状态表示,所述每一状态表示包括一个或多个数值;
e)利用计算机存储在所述预定的传感器状态集合中的所述传感器状态x,并存储在所述预定传感器状态集合中的所述传感器状态的表示;
f)使用检测器检测预定时间点上由所述激励源S输出的信号能量;
g)对所述检测器输出的信号进行处理以产生预定时间点集合内每一时间点t处的传感器状态x(t),所述传感器状态x(t)包括一个或多个数值;
h)将所述集合内每一时间点处的所述传感器状态x(t)存储在计算机存储器中;
i)对所述存储的传感器状态x(t)进行处理以产生由激励源S发出的可能激励所产生的传感器状态空间中预定传感器状态集合内每一传感器状态x的表示,每一所述状态表示包括一个或多个数值;
j)利用计算机存储在所述预定传感器状态集合中的所述传感器状态x,并存储在所述预定传感器状态集合中的所述传感器状态的表示;
k)确定产生传感器状态的时间序列的所述激励源S发出的激励的时间序列,并确定产生传感器状态的时间序列的所述激励源S发出的激励的时间序列,由所述激励源S产生的传感器状态的时间序列中每一时间点的传感器状态与由所述激励源S产生的传感器状态的时间序列中每一时间点的传感器状态具有相同的状态表示。
55.如权利要求54所述的方法,其特征为激励源S至少产生一个电磁信号、听觉信号、以及机械信号;激励源S至少产生一个电磁信号、听觉信号、以及机械信号。
56.如权利要求54所述的方法,其特征为由激励源S发出的激励能量由至少包括真空、地球大气、波导、导线、光纤、气相介质、液相介质、固相介质等介质承载;由激励源S发出的激励能量可由真空、地球大气、波导、导线、光纤、气相介质、液相介质、固相介质之一的介质承载。
57.如权利要求54所述的方法,其特征为由激励源S发出的激励能量可通过至少包括射频天线、微波天线、红外相机、光学相机、紫外线检测器、X-射线检测器、拾音器、水下测声仪、压力传感器、平移位置检测仪、角位置检测仪、平移运动检测仪、角运动检测仪、电压计、电流计之一的检测器检测;由激励源S发出的激励能量可通过包括射频天线、微波天线、红外相机、光学相机、紫外线检测器、X-射线检测器、拾音器、水下测声仪、压力传感器、平移位置检测仪、角位置检测仪、平移运动检测仪、角运动检测仪、电压计、电流计之一的检测器检测。
58.如权利要求54所述的方法,其特征为通过处理传感器状态x(t)时间序列所确定的传感器状态x表示大致等同于通过处理经过变换的传感器状态x′(t)=x′[x(t)]时间序列所确定经过变换的传感器状态x′=x′(x)表示,x′(x)为可能传感器状态空间上的可逆变换。
59.一种从发射机传输信息到接收机的方法,该方法包括以下步骤:
a)确定准备从发射机传输到接收机的信息,所述信息由数值阵列集合组成,每一所述数值阵列包括一个或多个数值;
b)将所述信息存储在计算机存储器中;
c)确定预定的时间点集合内每一时间点t处的发射机状态x(t),每一所述时间点处的x(t)为一个或多个数值,通过对所述发射机状态的时间序列进行处理来确定所述发射机状态预定集合内的每一发射机状态的表示,每一所述表示包括一个或多个数值,且在所述发射机状态另一个预定集合内的发射机状态表示即为所述信息;
d)将所述预定的时间点集合内每一时间点t处的所述发射机状态x(t)存储到计算机存储器中;
e)使用发射机发射能量,所述能量传输由所述发射机状态时间序列控制;
f)使用接收机的检测器检测一组预定的时间点上由发射机发射的能量;
g)处理接收机检测器的输出信号以产生预定的时间点t处的接收机状态x(t)时间序列,每一时间点t处的 x(t)为一个或多个数值;
h)将每一所述预定时间点t处的所述接收机状态 x(t)存储到计算机存储器中;
i)处理所述存储的接收机状态 x(t)以产生所述存储的接收机状态的预定的集合中的每一存储的接收机状态的表示;
j)将所述集合中存储的接收机状态的表示存储到计算机存储器中;
k)对所存储的状态的表示进行处理以确定所述信息;
l)将所述信息存储到计算机存储器中。
60.如权利要求59所述的方法,其特征为发射机发射至少一个电磁信号、听觉信号、以及机械信号。
61.如权利要求59所述的方法,其特征为由发射机发射的能量由至少包括真空、地球大气、波导、导线、光纤、气相介质、液相介质、固相介质之一的介质承载。
62.如权利要求59所述的方法,其特征为接收机检测器至少包括射频天线、微波天线、红外相机、光学相机、紫外线检测器、X-射线检测器、拾音器、水下测声仪、压力传感器、平移位置检测仪、角位置检测仪、平移运动检测仪、角运动检测仪、电压计、电流计之一。
63.如权利要求59所述的方法,其特征为由发射机状态x(t)时间序列所确定的发射机状态x表示大致等同于通过处理经过变换的发射机状态x′(t)=x′[x(t)]的时间序列所确定的变换的发射机状态x′=x′(x)表示,x′(x)为可能的发射机状态空间上的可逆变换。
64.如权利要求59所述的方法,其特征为由接收机状态 x(t)时间序列所确定的接收机状态 x表示大致等同于通过处理变换的接收机状态x′(t)=x′[ x(t)]的时间序列所确定的变换的接收机状态 x′=x′( x)表示,x′(x)为可能接收机状态空间上的可逆变换。
CNB018162738A 2000-09-27 2001-09-25 用于建立不随传感器状态的系统性变换而变化的激励表示的自参照方法和装置 Expired - Fee Related CN100511273C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23569500P 2000-09-27 2000-09-27
US60/235,695 2000-09-27

Publications (2)

Publication Number Publication Date
CN1484814A true CN1484814A (zh) 2004-03-24
CN100511273C CN100511273C (zh) 2009-07-08

Family

ID=22886565

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018162738A Expired - Fee Related CN100511273C (zh) 2000-09-27 2001-09-25 用于建立不随传感器状态的系统性变换而变化的激励表示的自参照方法和装置

Country Status (6)

Country Link
US (1) US6687657B2 (zh)
EP (1) EP1330782A4 (zh)
JP (1) JP2004534287A (zh)
CN (1) CN100511273C (zh)
AU (1) AU2001291229A1 (zh)
WO (1) WO2002027655A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256640B (zh) * 2007-10-16 2010-06-02 北京大学 基于dna计算实现的图顶点着色方法
CN101315680B (zh) * 2007-05-31 2011-03-16 中国科学院自动化研究所 基于自动调查问卷的群体意见定性分析工具及实现方法
CN101176110B (zh) * 2005-04-26 2011-05-04 D-波系统公司 量子位状态复制
CN101203872B (zh) * 2005-04-12 2011-12-21 蒂弗萨公司 搜索对等网络的系统和方法
CN110471064A (zh) * 2018-05-10 2019-11-19 通用汽车环球科技运作有限责任公司 广义三维逆传感器模型
CN110621971A (zh) * 2017-02-22 2019-12-27 Cmte发展有限公司 光学声学感测系统和方法
CN110708112A (zh) * 2019-10-13 2020-01-17 国网山东省电力公司潍坊供电公司 一种应急通信车卫星天线保护方法、系统、终端及存储介质
CN113673071A (zh) * 2020-05-14 2021-11-19 北京机械设备研究所 一种快速计算有限长电性天线辐射电磁场的方法
TWI847421B (zh) * 2022-12-12 2024-07-01 財團法人工業技術研究院 電訊號還原系統及電訊號還原方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100539923B1 (ko) * 2003-02-10 2005-12-28 삼성전자주식회사 화상통화시 화자의 영상을 구분하여 차등적 부호화할 수있는 비디오 엔코더 및 이를 이용한 비디오신호의 압축방법
US7409372B2 (en) * 2003-06-20 2008-08-05 Hewlett-Packard Development Company, L.P. Neural network trained with spatial errors
US7103502B1 (en) * 2004-03-03 2006-09-05 The United States Of America As Represented By The Secretary Of The Navy Enhanced system for detection of randomness in sparse time series distributions
US8279912B2 (en) * 2006-03-13 2012-10-02 Plx Technology, Inc. Tranceiver non-linearity cancellation
US20110319724A1 (en) * 2006-10-30 2011-12-29 Cox Paul G Methods and systems for non-invasive, internal hemorrhage detection
US20080147763A1 (en) * 2006-12-18 2008-06-19 David Levin Method and apparatus for using state space differential geometry to perform nonlinear blind source separation
US7957456B2 (en) * 2007-03-19 2011-06-07 Plx Technology, Inc. Selection of filter coefficients for tranceiver non-linearity signal cancellation
US20090322739A1 (en) * 2008-06-27 2009-12-31 Microsoft Corporation Visual Interactions with Analytics
US8620635B2 (en) * 2008-06-27 2013-12-31 Microsoft Corporation Composition of analytics models
US8411085B2 (en) * 2008-06-27 2013-04-02 Microsoft Corporation Constructing view compositions for domain-specific environments
US8314793B2 (en) * 2008-12-24 2012-11-20 Microsoft Corporation Implied analytical reasoning and computation
US20100325564A1 (en) * 2009-06-19 2010-12-23 Microsoft Corporation Charts in virtual environments
US8788574B2 (en) * 2009-06-19 2014-07-22 Microsoft Corporation Data-driven visualization of pseudo-infinite scenes
US9330503B2 (en) * 2009-06-19 2016-05-03 Microsoft Technology Licensing, Llc Presaging and surfacing interactivity within data visualizations
US8866818B2 (en) 2009-06-19 2014-10-21 Microsoft Corporation Composing shapes and data series in geometries
US8531451B2 (en) * 2009-06-19 2013-09-10 Microsoft Corporation Data-driven visualization transformation
US8493406B2 (en) * 2009-06-19 2013-07-23 Microsoft Corporation Creating new charts and data visualizations
US8692826B2 (en) * 2009-06-19 2014-04-08 Brian C. Beckman Solver-based visualization framework
US8352397B2 (en) * 2009-09-10 2013-01-08 Microsoft Corporation Dependency graph in data-driven model
US9043296B2 (en) 2010-07-30 2015-05-26 Microsoft Technology Licensing, Llc System of providing suggestions based on accessible and contextual information
CN103052962B (zh) 2010-11-24 2016-01-27 印度统计学院 粗糙小波粒化空间和多光谱遥感图像的分类
CN102075295B (zh) * 2011-01-20 2013-02-27 浙江大学 基于通讯功率约束的以状态估计为目标的信号编解码方法
CN102299766B (zh) * 2011-08-18 2013-10-23 浙江大学 目标状态估计的通讯信号降维与量化的联合优化方法
US20140187954A1 (en) * 2013-01-02 2014-07-03 Mayo Foundation For Medical Education And Research Infant bone assessment
US10311865B2 (en) * 2013-10-14 2019-06-04 The Penn State Research Foundation System and method for automated speech recognition
DE102013113368A1 (de) * 2013-12-03 2015-06-03 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Verfahren und Testanordnung zum Testen eines Betriebszustandes einer Prozessanlage
EP3204888A4 (en) * 2014-10-09 2017-10-04 Microsoft Technology Licensing, LLC Spatial pyramid pooling networks for image processing
US9947313B2 (en) * 2015-01-26 2018-04-17 William Drewes Method for substantial ongoing cumulative voice recognition error reduction
US10312600B2 (en) * 2016-05-20 2019-06-04 Kymeta Corporation Free space segment tester (FSST)
EP3258333A1 (en) * 2016-06-17 2017-12-20 Siemens Aktiengesellschaft Method and system for monitoring sensor data of rotating equipment
US20180181543A1 (en) * 2016-12-27 2018-06-28 David Levin Method and apparatus for the sensor-independent representation of time-dependent processes
US10620250B2 (en) 2018-01-17 2020-04-14 Kymeta Corporation Localized free space tester
KR102598426B1 (ko) * 2018-12-13 2023-11-06 현대자동차주식회사 합성곱 신경망법을 이용한 체결력 예측방법
EP3745310A1 (en) * 2019-05-28 2020-12-02 Robert Bosch GmbH Method for calibrating a multi-sensor system using an artificial neural network
US20220027819A1 (en) * 2020-07-22 2022-01-27 Fidelity Information Services, Llc. Systems and methods for orthogonal individual property determination
KR102469374B1 (ko) * 2021-03-30 2022-11-21 서울대학교산학협력단 시간 연속성을 고려한 텐서 분해 방법 및 그 장치
CN114124351B (zh) * 2021-11-15 2023-06-27 中国电子科技集团公司第三十研究所 一种非线性不变子的快速计算方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317304A (en) * 1991-01-17 1994-05-31 Sonicpro International, Inc. Programmable microprocessor based motion-sensitive alarm
US5535135A (en) * 1993-08-24 1996-07-09 Motorola, Inc. State estimator based exhaust gas chemistry measurement system and method
US5493273A (en) 1993-09-28 1996-02-20 The United States Of America As Represented By The Secretary Of The Navy System for detecting perturbations in an environment using temporal sensor data
US5690893A (en) * 1994-06-10 1997-11-25 Hitachi, Ltd. Analyzer having sensor with memory device
US6147674A (en) * 1995-12-01 2000-11-14 Immersion Corporation Method and apparatus for designing force sensations in force feedback computer applications
US5746697A (en) * 1996-02-09 1998-05-05 Nellcor Puritan Bennett Incorporated Medical diagnostic apparatus with sleep mode
US6093153A (en) * 1996-08-02 2000-07-25 Levin; David N. Method and apparatus for measurement, analysis, characterization, emulation, and translation of perception
US5860936A (en) * 1996-08-02 1999-01-19 Levin; David N. Method and apparatus for measurement, analysis, characterization, emulation, and translation of perception
US6199018B1 (en) * 1998-03-04 2001-03-06 Emerson Electric Co. Distributed diagnostic system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203872B (zh) * 2005-04-12 2011-12-21 蒂弗萨公司 搜索对等网络的系统和方法
CN101176110B (zh) * 2005-04-26 2011-05-04 D-波系统公司 量子位状态复制
CN101315680B (zh) * 2007-05-31 2011-03-16 中国科学院自动化研究所 基于自动调查问卷的群体意见定性分析工具及实现方法
CN101256640B (zh) * 2007-10-16 2010-06-02 北京大学 基于dna计算实现的图顶点着色方法
CN110621971A (zh) * 2017-02-22 2019-12-27 Cmte发展有限公司 光学声学感测系统和方法
CN110471064A (zh) * 2018-05-10 2019-11-19 通用汽车环球科技运作有限责任公司 广义三维逆传感器模型
CN110471064B (zh) * 2018-05-10 2023-10-24 通用汽车环球科技运作有限责任公司 广义三维逆传感器模型
CN110708112A (zh) * 2019-10-13 2020-01-17 国网山东省电力公司潍坊供电公司 一种应急通信车卫星天线保护方法、系统、终端及存储介质
CN113673071A (zh) * 2020-05-14 2021-11-19 北京机械设备研究所 一种快速计算有限长电性天线辐射电磁场的方法
CN113673071B (zh) * 2020-05-14 2024-05-10 北京机械设备研究所 一种快速计算有限长电性天线辐射电磁场的方法
TWI847421B (zh) * 2022-12-12 2024-07-01 財團法人工業技術研究院 電訊號還原系統及電訊號還原方法

Also Published As

Publication number Publication date
US6687657B2 (en) 2004-02-03
EP1330782A4 (en) 2005-07-13
EP1330782A1 (en) 2003-07-30
US20020065633A1 (en) 2002-05-30
WO2002027655A1 (en) 2002-04-04
JP2004534287A (ja) 2004-11-11
CN100511273C (zh) 2009-07-08
AU2001291229A1 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
CN1484814A (zh) 用于建立不随传感器状态的系统性变换而变化的激励表示的自参照方法和装置
Zhou et al. Vision-infused deep audio inpainting
CN1286084C (zh) 信号分析方法与装置
Wölfel et al. Distant speech recognition
CN1188828C (zh) 基于本征话音的说话者检验和说话者识别
CN1158642C (zh) 检测和产生听觉信号中的瞬态条件的方法和系统
Yin et al. Digital violin tutor: an integrated system for beginning violin learners
JP6723120B2 (ja) 音響処理装置および音響処理方法
US20080065380A1 (en) On-line speaker recognition method and apparatus thereof
CN1622195A (zh) 语音合成方法和语音合成系统
CN116229932A (zh) 一种基于跨域一致性损失的语音克隆方法及系统
Malvermi et al. A statistical approach to violin evaluation
CN1253851C (zh) 基于事先知识的说话者检验及说话者识别系统和方法
Farrús Automatic Speech Recognition in L2 Learning: A Review Based on PRISMA Methodology
Berger Measurement of vowel nasalization by multi-dimensional acoustic analysis
Al-Radhi et al. Adaptive refinements of pitch tracking and HNR estimation within a vocoder for statistical parametric speech synthesis
Yu et al. Reliability-based large-vocabulary audio-visual speech recognition
Sarkar Tablanet: a real-time online musical collaboration system for indian percussion
Wong et al. ArtiLock: Smartphone User Identification Based on Physiological and Behavioral Features of Monosyllable Articulation
Ravindran et al. An overview of spoof detection in asv systems
Ziemer et al. Microphone and Loudspeaker Array Signal Processing Steps towards a “Radiation Keyboard” for Authentic Samplers
Liu et al. Knowledge-Based Features for Speech Analysis and Classification: Pronunciation Diagnoses
Park et al. Multistream diarization fusion using the minimum variance Bayesian information criterion
Van Soom et al. Detrending the waveforms of steady-state vowels
Piotrowska et al. Machine Learning Applied to Aspirated and Non-Aspirated Allophone Classification–An Approach Based on Audio “Fingerprinting”

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090708

Termination date: 20120925