CN1453390A - Prepn of rich-rhenium high-smelting point alloy layer capable of stopping bidirectional diffusion of elements - Google Patents
Prepn of rich-rhenium high-smelting point alloy layer capable of stopping bidirectional diffusion of elements Download PDFInfo
- Publication number
- CN1453390A CN1453390A CN 02109557 CN02109557A CN1453390A CN 1453390 A CN1453390 A CN 1453390A CN 02109557 CN02109557 CN 02109557 CN 02109557 A CN02109557 A CN 02109557A CN 1453390 A CN1453390 A CN 1453390A
- Authority
- CN
- China
- Prior art keywords
- rhenium
- coating
- diffusion
- substrate
- elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052702 rhenium Inorganic materials 0.000 title claims abstract description 24
- 238000009792 diffusion process Methods 0.000 title claims abstract description 20
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 14
- 239000000956 alloy Substances 0.000 title claims abstract description 14
- 230000002457 bidirectional effect Effects 0.000 title claims 2
- 238000003723 Smelting Methods 0.000 title 1
- 239000011248 coating agent Substances 0.000 claims abstract description 40
- 238000000576 coating method Methods 0.000 claims abstract description 40
- 239000000758 substrate Substances 0.000 claims abstract description 27
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910000601 superalloy Inorganic materials 0.000 claims abstract description 8
- 238000000151 deposition Methods 0.000 claims abstract description 6
- 230000008021 deposition Effects 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims abstract description 5
- 238000002360 preparation method Methods 0.000 claims abstract description 5
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 5
- 229910000691 Re alloy Inorganic materials 0.000 claims description 2
- AYBXKPDAFLWWAQ-UHFFFAOYSA-N alumane;rhenium Chemical compound [AlH3].[Re] AYBXKPDAFLWWAQ-UHFFFAOYSA-N 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 239000012298 atmosphere Substances 0.000 abstract description 7
- 238000002844 melting Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 238000005240 physical vapour deposition Methods 0.000 abstract description 2
- 230000000903 blocking effect Effects 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 238000009826 distribution Methods 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910001011 CMSX-4 Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 229910000753 refractory alloy Inorganic materials 0.000 description 4
- 230000004584 weight gain Effects 0.000 description 4
- 235000019786 weight gain Nutrition 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007733 ion plating Methods 0.000 description 3
- 239000008199 coating composition Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- BAFKVXDNLXTDDD-UHFFFAOYSA-N aluminum rhenium Chemical compound [Al].[Re] BAFKVXDNLXTDDD-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000007734 materials engineering Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910021343 molybdenum disilicide Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
本发明涉及涂层材料的制备,特别是提供了一种能够阻碍基体中合金元素向外扩散以及涂层和环境气氛中元素向内扩散的富铼高熔点合金层的制备方法。操作步骤为:1)沉积处理:利用物理气相沉积法在高温合金基材表面上沉积与基体结合强度高、厚度为5~20微米的含铼铝合金涂层;2)预扩散处理:在大气压-10-3Pa的压力下、以8~20℃/分的速度加温至1473~1573K的高温,经10~100小时预扩散处理。采用本发明能兼顾阻挡效果与附着性。The invention relates to the preparation of coating materials, and in particular provides a preparation method for a rhenium-rich high-melting point alloy layer capable of hindering the outward diffusion of alloy elements in the substrate and the inward diffusion of elements in the coating and ambient atmosphere. The operation steps are: 1) Deposition treatment: use physical vapor deposition method to deposit a rhenium-containing aluminum alloy coating with a high bonding strength with the substrate and a thickness of 5-20 microns on the surface of the superalloy substrate; 2) Pre-diffusion treatment: Under the pressure of -10 -3 Pa, heat up to a high temperature of 1473-1573K at a speed of 8-20°C/min, and perform pre-diffusion treatment for 10-100 hours. Adopting the present invention can balance the blocking effect and adhesion.
Description
技术领域technical field
本发明涉及涂层材料的制备,特别是提供了一种能够阻碍基体中合金元素向外扩散以及涂层和环境气氛中元素向内扩散的富铼高熔点合金层的制备方法。The invention relates to the preparation of coating materials, and in particular provides a preparation method for a rhenium-rich high-melting point alloy layer capable of hindering the outward diffusion of alloy elements in the substrate and the inward diffusion of elements in the coating and ambient atmosphere.
背景技术Background technique
近年来,为了提高燃料的热效率,对材料的使用温度提出更高的要求。美国NASA Lewis研究中心研究出一种二硅化钼复合材料,可望代替航空发动机上的镍基高温合金,在1400℃使用(材料工程,3,P.18,1999)。国内侧重于镍铝、钛铝金属间化合物的研究,在改善室温塑性方面取得了重大发展(Scripta Metall.,35,No.10,P.1243,1996)。但是,这些材料都必须施加防护涂层后才能在高温下使用(Oxidation ofMetals,Vol.56 Nos.5/6,P.453,2001)。然而,目前又尚无合适的涂层体系可供使用。其主要原因是当温度高于1100℃时,涂层与基体间的互扩散变得非常剧烈,涂层表面不能保持生成保护性氧化铝膜所需的铝含量(Oxidation of Metals,Vol.57,Nos.1/2,P.159,2002)。目前有人也曾研究过在涂层与基体间加阻挡层来减缓互扩散,但是,效果都不太理想。这是因为阻挡效果好的涂层往往较脆,虽然一定程度上阻挡了涂层与基体间的互扩散,但使得涂层与基体间失去了冶金结合,涂层容易剥落。反之,照顾了附着性,则阻挡性能变差(Vacuum,Vol.43,Nos.5-7,P.757,1992)。In recent years, in order to improve the thermal efficiency of fuels, higher requirements have been placed on the use temperature of materials. NASA Lewis Research Center in the United States has developed a molybdenum disilicide composite material, which is expected to replace the nickel-based superalloy on aero-engines and be used at 1400 °C (Materials Engineering, 3, P.18, 1999). Domestically, the research on nickel-aluminum and titanium-aluminum intermetallic compounds has made great progress in improving plasticity at room temperature (Scripta Metall., 35, No.10, P.1243, 1996). However, these materials can be used at high temperatures after protective coatings must be applied (Oxidation of Metals, Vol.56 Nos.5/6, P.453, 2001). However, no suitable coating systems are currently available. The main reason is that when the temperature is higher than 1100 °C, the interdiffusion between the coating and the substrate becomes very intense, and the surface of the coating cannot maintain the aluminum content required to form a protective aluminum oxide film (Oxidation of Metals, Vol.57, Nos. 1/2, P. 159, 2002). At present, some people have also studied adding a barrier layer between the coating and the substrate to slow down the interdiffusion, but the effect is not ideal. This is because the coating with a good barrier effect is often brittle. Although the interdiffusion between the coating and the substrate is blocked to a certain extent, the metallurgical bond between the coating and the substrate is lost, and the coating is easy to peel off. Conversely, if the adhesion is taken care of, the barrier performance will be deteriorated (Vacuum, Vol.43, Nos.5-7, P.757, 1992).
发明内容Contents of the invention
本发明的目的在于提供一种与基体结合强度高且能阻碍基体中合金元素向外扩散以及涂层和环境气氛中活性元素向内扩散的富铼高熔点合金层的制备方法。The object of the present invention is to provide a method for preparing a rhenium-rich refractory alloy layer which has high bond strength with the substrate and can hinder the outward diffusion of alloy elements in the substrate and the inward diffusion of active elements in the coating and ambient atmosphere.
为了克服上述不足,本发明的技术方案是:In order to overcome above-mentioned deficiency, technical scheme of the present invention is:
1)沉积处理:利用物理气相沉积法在高温合金基材表面上沉积与基体结合强度高(临界载荷大于300克)、厚度为5~20微米的含铼铝合金涂层,所述涂层中铼含量为20-70at%,铝为余量;2)预扩散处理:在大气压—10-3Pa的真空压力下、加至1473~1573K的高温,加温速度为8~20℃/分,经10~100小时预扩散处理,使铝铼合金层与基体间产生互扩散,同时铼元素会在靠基体一侧富集而形成一层连续且均匀的富铼高熔点合金涂层。该富铼高熔点合金涂层一旦形成,则可显著地阻挡基体中合金元素的向外扩散以及涂层中铝元素和环境气氛中活性元素的向内扩散。1) Deposition treatment: Deposit a rhenium-containing aluminum alloy coating with a thickness of 5 to 20 microns on the surface of the superalloy substrate by physical vapor deposition, which has a high bonding strength with the substrate (the critical load is greater than 300 grams), and the coating contains The rhenium content is 20-70 at%, and the aluminum is the balance; 2) pre-diffusion treatment: under the vacuum pressure of atmospheric pressure -10 -3 Pa, heat up to a high temperature of 1473-1573K, and the heating rate is 8-20°C/min. After 10-100 hours of pre-diffusion treatment, mutual diffusion occurs between the aluminum-rhenium alloy layer and the substrate, and rhenium elements will be enriched on the side close to the substrate to form a continuous and uniform layer of rhenium-rich high melting point alloy coating. Once the rhenium-rich refractory alloy coating is formed, it can significantly block the outward diffusion of alloy elements in the matrix and the inward diffusion of aluminum elements in the coating and active elements in the ambient atmosphere.
本发明具有如下特点:The present invention has following characteristics:
采用本发明,其阻挡层是通过预扩散处理在基材一侧形成的,所以涂层与基体间能保持良好的附着强度,因此可以有效地解决阻挡效果与附着性相互兼顾的问题。经涂层处理后,试样的单位面积增重量减少了一个数量级以上,亦即基体中合金元素的扩散速度降低了一个数量级之多。With the present invention, the barrier layer is formed on the substrate side through pre-diffusion treatment, so good adhesion strength can be maintained between the coating and the substrate, thus effectively solving the problem of both barrier effect and adhesion. After coating treatment, the weight gain per unit area of the sample is reduced by more than one order of magnitude, that is to say, the diffusion rate of alloying elements in the matrix is reduced by as much as one order of magnitude.
附图说明Description of drawings
图1为本发明一个实施例中铼元素在试样涂层中的分布情况。Fig. 1 shows the distribution of rhenium element in the sample coating in one embodiment of the present invention.
图2为本发明一个实施例中钴元素在试样涂层中的分布情况。Fig. 2 is the distribution of cobalt element in the sample coating in one embodiment of the present invention.
图3为本发明一个实施例中钽元素在试样涂层中的分布情况。Fig. 3 shows the distribution of tantalum element in the sample coating in one embodiment of the present invention.
图4为本发明一个实施例中钛元素在试样涂层中的分布情况。Fig. 4 is the distribution of titanium element in the sample coating in one embodiment of the present invention.
图5为本发明一个实施例中铝元素在试样涂层中的分布情况。Fig. 5 shows the distribution of aluminum elements in the sample coating in one embodiment of the present invention.
图6为本发明一个实施例中氧元素在试样涂层中的分布情况。Fig. 6 shows the distribution of oxygen element in the sample coating in one embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例详述本发明。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
实施例1Example 1
涂层成分为铼40at%,余量为铝;首先利用射频离子镀膜法于6.5×10-2Pa的氩气气氛中、1500伏偏压及10Kv、50mA的沉积功率下、镀膜25分钟,在CMSX-4镍基单晶高温合金基材表面上沉积与基体结合强度高(临界载荷大于300克)、厚度为5微米含铼铝合金涂层,然后于4×10-3Pa的真空状态下,以8℃/分钟的速度加温至1573K,保温10小时预处理,炉冷后取出试样,可观察到在涂层与基体界面处的基材一侧形成了约5微米厚的富铼高熔点合金层。The composition of the coating is rhenium 40at%, and the balance is aluminum; firstly, the radio frequency ion plating method is used in an argon atmosphere of 6.5×10 -2 Pa, a bias voltage of 1500 volts, a deposition power of 10Kv, and a deposition power of 50mA for 25 minutes. On the surface of CMSX-4 nickel-based single crystal superalloy substrate, deposit a rhenium-containing aluminum alloy coating with high bonding strength (critical load greater than 300 grams) and a thickness of 5 microns, and then put it under a vacuum state of 4×10 -3 Pa , heated to 1573K at a rate of 8°C/min, held for 10 hours for pretreatment, and took out the sample after cooling in the furnace. It can be observed that a rhenium-rich layer with a thickness of about 5 microns is formed on the substrate side at the interface between the coating and the substrate. High melting point alloy layer.
利用预处理后的试样于973K下在H2-H2S气氛中经100小时高温硫化后,涂层试样的单位面积增重量为0.47mg/cm2,且未发现涂层中铝元素的向内扩散。然而,比没有涂层的CMSX-4镍基单晶高温合金基材试样的单位面积增重量高达6.3mg/cm2。因此,经涂层处理后,试样的单位面积增重量减少了一个数量级以上,亦即基体中合金元素的扩散速度降低了一个数量级之多。After the pretreated sample was vulcanized at 973K in an H 2 -H 2 S atmosphere for 100 hours, the weight gain per unit area of the coated sample was 0.47 mg/cm 2 , and no aluminum element was found in the coating. inward diffusion. However, the weight gain per unit area is as high as 6.3 mg/cm 2 compared with the uncoated CMSX-4 nickel-based single crystal superalloy substrate sample. Therefore, after the coating treatment, the weight gain per unit area of the sample is reduced by more than an order of magnitude, that is, the diffusion rate of the alloy elements in the matrix is reduced by as much as an order of magnitude.
实施例2Example 2
与实施例1不同之处在于:涂层成分为铼20at%,余量为铝;首先利用射频离子镀膜法在CMSX-4镍基单晶高温合金基材表面上沉积厚度为5微米含铼铝合金涂层,然后于大气状态下,以20℃/分钟的速度加温至1473K,保温100小时预处理,炉冷后取出试样,可观察到在涂层与基体界面处的基材一侧形成了约5微米厚的富铼高熔点合金层。The difference from Example 1 is that the coating composition is rhenium 20 at%, and the balance is aluminum; firstly, a rhenium-containing aluminum with a thickness of 5 microns is deposited on the surface of the CMSX-4 nickel-based single crystal superalloy substrate by radio frequency ion plating method. The alloy coating is then heated to 1473K at a rate of 20°C/min in the atmosphere, held for 100 hours for pretreatment, and the sample is taken out after furnace cooling, and the substrate side at the interface between the coating and the substrate can be observed A layer of rhenium-rich refractory alloy was formed about 5 microns thick.
图1-6所示为采用电子测试其试样涂层中的分布情况,由图可见:涂层中形成了铼、铝的富积集层。Figure 1-6 shows the distribution in the sample coating by electronic testing. It can be seen from the figure that a rich accumulation layer of rhenium and aluminum is formed in the coating.
实施例3Example 3
与实施例1不同之处在于:涂层成分为铼60at%,余量为铝;首先利用射频离子镀膜法在CMSX-4镍基单晶高温合金基材表面上沉积厚度为15微米含铼铝合金涂层,然后于大气状态下,以15℃/分钟的速度加温至1510K,保温50小时预处理,炉冷后取出试样,可观察到在涂层与基体界面处的基材一侧形成了约15微米厚的富铼高熔点合金层。The difference from Example 1 is that the coating composition is rhenium 60at%, and the balance is aluminum; firstly, the radio frequency ion plating method is used to deposit rhenium-containing aluminum with a thickness of 15 microns on the surface of the CMSX-4 nickel-based single crystal superalloy substrate. The alloy coating is then heated to 1510K at a rate of 15°C/min in the atmosphere, held for 50 hours for pretreatment, and the sample is taken out after furnace cooling, and the substrate side at the interface between the coating and the substrate can be observed A layer of rhenium-rich refractory alloy was formed about 15 microns thick.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 02109557 CN1200132C (en) | 2002-04-27 | 2002-04-27 | Prepn of rich-rhenium high-smelting point alloy layer capable of stopping bidirectional diffusion of elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 02109557 CN1200132C (en) | 2002-04-27 | 2002-04-27 | Prepn of rich-rhenium high-smelting point alloy layer capable of stopping bidirectional diffusion of elements |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1453390A true CN1453390A (en) | 2003-11-05 |
CN1200132C CN1200132C (en) | 2005-05-04 |
Family
ID=29256723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 02109557 Expired - Fee Related CN1200132C (en) | 2002-04-27 | 2002-04-27 | Prepn of rich-rhenium high-smelting point alloy layer capable of stopping bidirectional diffusion of elements |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1200132C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102703863A (en) * | 2012-04-11 | 2012-10-03 | 华北电力大学 | Preparation method of high-temperature oxidation-resistant ReAl coating |
CN109811309A (en) * | 2019-01-25 | 2019-05-28 | 广东工业大学 | A kind of high-purity bulk metal nanomaterial based on PVD technology and its preparation method and application |
-
2002
- 2002-04-27 CN CN 02109557 patent/CN1200132C/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102703863A (en) * | 2012-04-11 | 2012-10-03 | 华北电力大学 | Preparation method of high-temperature oxidation-resistant ReAl coating |
CN102703863B (en) * | 2012-04-11 | 2014-04-02 | 华北电力大学 | Preparation method of high-temperature oxidation-resistant ReAl coating |
CN109811309A (en) * | 2019-01-25 | 2019-05-28 | 广东工业大学 | A kind of high-purity bulk metal nanomaterial based on PVD technology and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN1200132C (en) | 2005-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10507230A (en) | Protective layer for protecting members against corrosion, oxidation and thermal overload, and method of manufacturing the same | |
CA2165641C (en) | A method of applying a thermal barrier coating to a superalloy article and a thermal barrier coating | |
Jung et al. | Effect of Cr addition on the properties of aluminide coating layers formed on TiAl alloys | |
Ebach-Stahl et al. | Cyclic oxidation behaviour of the titanium alloys Ti-6242 and Ti-17 with Ti–Al–Cr–Y coatings at 600 and 700 C in air | |
WO2021143256A1 (en) | Molybdenum disulfide/tungsten disulfide multilayer tantalum-doped thin film, preparation method therefor, and use thereof | |
JP2000511974A (en) | Articles with a protective coating system with an improved anchoring layer and method of making the same | |
CN106757013B (en) | Polynary high-temperature alloy layer of a kind of titanium alloy laser surface silicide enhancing and preparation method thereof | |
CN105839049B (en) | A kind of titanium-aluminium alloy surface resistance to high temperature oxidation, wear-resistant AlCrN coatings and preparation method thereof | |
CN1986889A (en) | Platinum modified nicocraly bondcoat for thermal barrier coating | |
CN104401089B (en) | High-temperature coating comprising nickel-chromium-oxygen active diffusion barrier layer and preparation method | |
CA2211149A1 (en) | Platinum aluminising single crystal superalloys | |
US6495271B1 (en) | Spallation-resistant protective layer on high performance alloys | |
CN105793463B (en) | Magnalium coated steel sheet and its manufacturing method | |
CN103966615B (en) | A kind of PtNiAl tack coat of 1200 DEG C of complete antioxidative binary Active trace elements doping and preparation method thereof | |
CN103804031B (en) | Carbon-based material surface high-temp oxidation resistant multilayer compound coating and preparation method thereof | |
JP2012132099A (en) | Niobium-based alloy heat-resistant material | |
JP2003277858A (en) | Heat-resistant Ti alloy material excellent in high-temperature corrosion resistance and oxidation resistance and method for producing the same | |
CN105401147B (en) | A kind of high temperature anti-corrosion coating of salic diffusion barrier and preparation method thereof | |
CN111485197A (en) | A kind of γ-TiAl-based alloy surface anti-corrosion erosion coating at high temperature and preparation method thereof | |
CN1200132C (en) | Prepn of rich-rhenium high-smelting point alloy layer capable of stopping bidirectional diffusion of elements | |
KR100970346B1 (en) | Coating method of ceramic layer on the surface of metal base material by ion beam mixing | |
CA2785322C (en) | Methods of forming nickel aluminide coatings | |
Zhang et al. | Preparation and oxidation resistance of a crack-free Al diffusion coating on Ti22Al26Nb | |
JP2000511236A (en) | Structural component having superalloy substrate and layer structure provided thereon, and method of manufacturing the same | |
CN207031529U (en) | Titanium-aluminium alloy part with compisite seeping layer, the titanium-aluminium alloy part with diamond coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |