CN1440114A - Power supply device and discharge lamp illuminator - Google Patents

Power supply device and discharge lamp illuminator Download PDF

Info

Publication number
CN1440114A
CN1440114A CN03120091A CN03120091A CN1440114A CN 1440114 A CN1440114 A CN 1440114A CN 03120091 A CN03120091 A CN 03120091A CN 03120091 A CN03120091 A CN 03120091A CN 1440114 A CN1440114 A CN 1440114A
Authority
CN
China
Prior art keywords
voltage
capacitor
value
charging
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03120091A
Other languages
Chinese (zh)
Other versions
CN1298100C (en
Inventor
高橋雄治
清水惠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002024014A external-priority patent/JP3705217B2/en
Priority claimed from JP2002050066A external-priority patent/JP3991150B2/en
Priority claimed from JP2002155475A external-priority patent/JP4039127B2/en
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Publication of CN1440114A publication Critical patent/CN1440114A/en
Application granted granted Critical
Publication of CN1298100C publication Critical patent/CN1298100C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02B20/183

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

将电容器的充电电压总是控制为恒定。一种电源装置,将多个可变电阻器4和电容器6的串联电路并联连接,各电容器通过商用电源电压经对应的可变电阻器充电,从各电容器向负载顺次流过放电电流,具有:阻抗控制单元7-11,控制对应的可变电阻器的阻抗,使得在任意电容器中流过预先设定的目标值的输入电流;和振幅控制单元7-12,在电容器电压低于充电电压目标值时进行增大目标值输入电流振幅的控制,在电容器电压高于充电电压目标值时进行减小目标值输入电流振幅的控制,使得任意电容器的充电电压为恒定。

The charging voltage of the capacitor is always controlled to be constant. A power supply device that connects a series circuit of a plurality of variable resistors 4 and capacitors 6 in parallel, each capacitor is charged through a corresponding variable resistor by a commercial power supply voltage, and a discharge current flows sequentially from each capacitor to a load, having : an impedance control unit 7-11, controlling the impedance of the corresponding variable resistor so that an input current of a preset target value flows in any capacitor; and an amplitude control unit 7-12, when the capacitor voltage is lower than the charging voltage target Control to increase the amplitude of the input current of the target value when the capacitor voltage is higher than the target value of the charging voltage, and control to reduce the amplitude of the input current of the target value when the capacitor voltage is higher than the target value of the charging voltage, so that the charging voltage of any capacitor is constant.

Description

电源装置及放电灯照明装置Power supply unit and discharge lamp lighting unit

发明的详细说明Detailed Description of the Invention

发明所属的技术领域The technical field to which the invention belongs

本发明涉及将多个电容器作为电力供给源的电源装置和放电灯照明装置。The present invention relates to a power supply device and a discharge lamp lighting device using a plurality of capacitors as a power supply source.

现有技术current technology

在特开平7-123733号公报中,记载了使用电容器和开关元件将电源频率变换为高频的电源装置。该电源装置通过用全波整流器对交流电源进行全波整流后的波形对电容器充电,在交流电源的正极也顺次开、关控制多个开关元件,根据电源电压给分别对应的电容器充电,在交流电源的负极顺次开、关控制多个开关元件,根据电源电压给分别对应的电容器充电,使用放电用开关元件,高速地开、关控制各开关元件,放电这些电容器,在负载中流过高频电流。JP-A-7-123733 describes a power supply device that converts a power supply frequency to a high frequency using capacitors and switching elements. The power supply device charges the capacitor with the full-wave rectified waveform of the AC power supply by a full-wave rectifier, and controls multiple switching elements on and off in sequence at the positive pole of the AC power supply, and charges the corresponding capacitors according to the power supply voltage. The negative electrode of the AC power supply turns on and off sequentially to control multiple switching elements, charges the corresponding capacitors according to the power supply voltage, uses the switching elements for discharging, controls each switching element to turn on and off at high speed, discharges these capacitors, and flows through the load. frequency current.

发明要解决的问题The problem to be solved by the invention

在这种电源装置中,由于负载变化,会产生电容器充电电压变化和输入电流波形畸变等问题。因此,第一本发明提供一种可将电容器的充电电压控制为恒定的电源装置。In such a power supply unit, problems such as changes in the charging voltage of the capacitor and distortion of the input current waveform occur due to changes in the load. Therefore, the first present invention provides a power supply device capable of controlling the charging voltage of a capacitor to be constant.

在一般将电源装置作为放电灯等电灯的照明装置的电源时,现有的放电灯照明装置为了限制电灯电流,使用线圈等绕组部件。该线圈等绕组部件的重量和体积大,因此,难以实现装置的小型化、轻量化。因此,第二本发明提供一种不使用线圈等绕组部件而能限流控制电灯电流、可实现装置小型化轻量化的放电灯照明装置。When a power supply device is generally used as a power source of a lamp lighting device such as a discharge lamp, conventional discharge lamp lighting devices use winding members such as coils to limit lamp current. Since the winding components such as the coil are heavy and bulky, it is difficult to reduce the size and weight of the device. Therefore, the second present invention provides a discharge lamp lighting device capable of current limiting control of lamp current without using winding components such as coils, and capable of reducing the size and weight of the device.

作为这种现有技术的放电灯照明装置将来自交流阶梯状电压发生源的交流阶梯状电压波形直接提供给放电灯,通过改变发生各电压的时间来控制交流阶梯状电压的有效值,使电灯电流恒定化。但是,在这种放电灯照明装置中,由于输入电流高频分量的制约,需要规定交流阶梯状电压的有效值控制范围,该有效值的控制范围为额定电压的±20%左右,对于超过该范围的负载电压,动作点不存在,因此,存在不能使该放电灯动作的情况。即,可适用的放电灯的电灯电压范围很窄。因此,第三本发明提供一种能扩大可适用的放电灯的电灯电压范围而且在放电灯短路时能防止流过过量电流的放电灯照明装置。As this prior art discharge lamp lighting device, the AC stepped voltage waveform from the AC stepped voltage generating source is directly provided to the discharge lamp, and the effective value of the AC stepped voltage is controlled by changing the generation time of each voltage, so that the lamp The current is stabilized. However, in this kind of discharge lamp lighting device, due to the restriction of the high-frequency component of the input current, it is necessary to specify the effective value control range of the AC stepped voltage, and the effective value control range is about ±20% of the rated voltage. There is no operating point for a load voltage in the range, and therefore, the discharge lamp may not be operated in some cases. That is, the applicable discharge lamp has a narrow lamp voltage range. Therefore, the third invention provides a discharge lamp lighting device capable of expanding the lamp voltage range of the applicable discharge lamp and preventing excessive current from flowing when the discharge lamp is short-circuited.

用于解决课题的手段means to solve the problem

权利要求1记载的发明是一种电源装置,多个可变电阻器和电容器的串联电路并联连接,通过商用电源电压经对应的可变电阻器对各电容器进行充电,各可变电阻器被控制成仅在充电对应的电容器期间阻抗为有限值,在此之外的期间控制成阻抗无限大,从各电容器向负载顺次流过放电电流,所述电源装置具有:阻抗控制单元,控制对应的可变电阻器的阻抗,使得在任意的可变电阻器中流过预先设定的目标值的输入电流;振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得任意电容器的充电电压为恒定。The invention described in claim 1 is a power supply device in which a series circuit of a plurality of variable resistors and capacitors is connected in parallel, each capacitor is charged by a commercial power supply voltage through a corresponding variable resistor, and each variable resistor is controlled. The impedance is finite only during the charging period of the corresponding capacitor, and the impedance is controlled to be infinite during the other period, and the discharge current flows sequentially from each capacitor to the load. The power supply device has: an impedance control unit that controls the corresponding The impedance of the variable resistor allows an input current of a preset target value to flow through any variable resistor; the amplitude control unit increases the input of the target value when the capacitor voltage is lower than the target value of the charging voltage The control of the amplitude of the current is such that when the capacitor voltage is higher than the target value of the charging voltage, control is performed to reduce the amplitude of the input current to a target value so that the charging voltage of any capacitor is constant.

权利要求2记载的发明具有:多个阻抗控制单元,控制对应的可变电阻器的阻抗,使得在各可变电阻器中分别流过预先设定的目标值的输入电流;和多个振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得对应于各阻抗控制单元控制阻抗的可变电阻器的电容器充电电压变为恒定。The invention described in claim 2 includes: a plurality of impedance control units that control the impedance of the corresponding variable resistors so that an input current of a preset target value flows through each variable resistor; and a plurality of amplitude control units. The unit, when the capacitor voltage is lower than the target value of the charging voltage, performs control of increasing the amplitude of the input current of the target value, and performs control of decreasing the amplitude of the input current of the target value when the capacitor voltage is higher than the target value of the charging voltage Control so that the capacitor charging voltage of the variable resistor corresponding to the controlled impedance of each impedance control unit becomes constant.

权利要求3记载的发明具有:多个阻抗控制单元,控制对应的可变电阻器的阻抗,使得在各可变电阻器中分别流过预先设定的目标值的输入电流;和振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得将各电容器中充电目标值最高的电容器的充电电压变为恒定,各阻抗控制单元控制对应的可变电阻器的阻抗,使得在各可变电阻器中流过跟踪由振幅控制单元进行振幅控制的输入电流目标值的输入电流。The invention described in claim 3 includes: a plurality of impedance control means that control the impedance of the corresponding variable resistors so that an input current of a preset target value flows through each variable resistor; and an amplitude control means that When the capacitor voltage is lower than the target value of the charging voltage, control is performed to increase the amplitude of the input current at the target value, and when the capacitor voltage is higher than the target value of the charging voltage, control is performed to decrease the amplitude of the input current at the target value, The charging voltage of the capacitor with the highest charging target value among the capacitors becomes constant, and each impedance control unit controls the impedance of the corresponding variable resistor so that the voltage flowing through each variable resistor tracks the voltage controlled by the amplitude control unit. Enter the input current for the current target value.

权利要求7记载的发明具有:多个阻抗控制单元,控制对应的可变电阻器的阻抗,使得在各可变电阻器中分别流过预先设定的目标值的输入电流;和振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得将各电容器中某个特定电容器的充电电压变为恒定,各阻抗控制单元控制对应的可变电阻器的阻抗,使得流过跟踪由振幅控制单元进行振幅控制的输入电流目标值的输入电流,并且,将某个特定的电容器切换为其他电容器。The invention described in claim 7 includes: a plurality of impedance control means that control the impedance of the corresponding variable resistors so that an input current of a preset target value flows through each variable resistor; and an amplitude control means that When the capacitor voltage is lower than the target value of the charging voltage, control is performed to increase the amplitude of the input current at the target value, and when the capacitor voltage is higher than the target value of the charging voltage, control is performed to decrease the amplitude of the input current at the target value, so that the charging voltage of a specific capacitor among the capacitors becomes constant, and each impedance control unit controls the impedance of the corresponding variable resistor so that an input current that tracks an input current target value whose amplitude is controlled by the amplitude control unit flows, And, switch a certain capacitor for other capacitors.

权利要求8记载的发明具有:多个直流电压源,产生不同的正电压值;开关电路,从各直流电压源中择一地取出直流电压值,输出包含零电压值的阶梯状电压波形;极性反转电流,输入来自开关电路的阶梯状电压波形,输出交流的阶梯状电压波形;放电灯,提供来自极性反转电路的交流阶梯状电压波形;有效值检测部,检测在该放电灯中流动的电灯电流的有效值;和控制单元,控制开关电路,可变控制包含零电压值的阶梯状电压波形的各电压值的输出时间,使得有效值检测部检测的电灯电流的有效值变为恒定。The invention described in claim 8 has: a plurality of DC voltage sources generating different positive voltage values; a switch circuit selectively extracting a DC voltage value from each DC voltage source, and outputting a stepped voltage waveform including a zero voltage value; Polarity reversal current, input step voltage waveform from switching circuit, output AC step voltage waveform; discharge lamp, provide AC step voltage waveform from polarity inversion circuit; effective value detection part, detect the discharge lamp The effective value of the lamp current flowing in the middle; and the control unit, which controls the switching circuit, variably controls the output time of each voltage value of the stepped voltage waveform including the zero voltage value, so that the effective value of the lamp current detected by the effective value detection part becomes is constant.

权利要求9记载的发明具有:多个第一直流电压源,产生不同的正电压值;多个第二直流电压源,产生绝对值与各第一直流电压源的电压值相等的包含零电压值的负电压值;第一开关电路,从各第一直流电压源中择一地取出直流电压值,输出包含零电压值的阶梯状电压波形;第二开关电路,以和第一开关电路不同的定时从第二直流电压源中择一地取出直流电压值,输出包含零电压值的阶梯状电压波形;放电灯,提供来自各开关电路的阶梯状电压波形;有效值检测部,检测在该放电灯中流动的电灯电流的有效值;和控制单元,控制各开关电路,可变控制包含零电压值的阶梯状电压波形的各电压值的输出时间,使得有效值检测部检测的电灯电流的有效值变为恒定。The invention described in claim 9 has: a plurality of first DC voltage sources generating different positive voltage values; a plurality of second DC voltage sources generating zero voltage values having absolute values equal to the voltage values of the first DC voltage sources Negative voltage value; the first switch circuit, select one of the first DC voltage sources to take out the DC voltage value, and output a ladder-shaped voltage waveform including zero voltage value; the second switch circuit uses a different voltage from the first switch circuit Select one of the DC voltage values from the second DC voltage source at regular intervals to output a stepped voltage waveform including zero voltage value; the discharge lamp provides the stepped voltage waveform from each switching circuit; the effective value detection part detects the discharge voltage in the discharge lamp. an effective value of the lamp current flowing in the lamp; and a control unit that controls each switching circuit to variably control the output time of each voltage value of the step-shaped voltage waveform including the zero voltage value, so that the effective value of the lamp current detected by the effective value detection unit value becomes constant.

权利要求10记载的发明是一种放电灯照明装置,具有:交流阶梯状电压发生源,电压值台阶状变化,正弦波那样增减的阶梯状正电压波形和电压值台阶状变化,交替地输出正弦波那样增减的阶梯状负电压波形;放电灯,提供来自交流阶梯状电压发生源的交流阶梯状电压波形;和串联连接在交流阶梯状电压发生源和放电灯之间的电容器。The invention described in claim 10 is a discharge lamp lighting device comprising: an AC step voltage generating source, the voltage value changes stepwise, and a stepwise positive voltage waveform that increases and decreases like a sine wave and a voltage value stepwise change alternately output a stepped negative voltage waveform that increases and decreases like a sine wave; a discharge lamp that supplies an AC stepped voltage waveform from an AC stepped voltage generating source; and a capacitor connected in series between the AC stepped voltage generating source and the discharge lamp.

附图说明Description of drawings

图1是包含表示本发明第一实施例的部分功能块的电路构成图;Fig. 1 is a circuit configuration diagram including some functional blocks representing the first embodiment of the present invention;

图2是包含表示第一实施例中驱动电路具体构成的部分功能块的电路构成图;Fig. 2 is a circuit configuration diagram including some functional blocks representing the specific configuration of the driving circuit in the first embodiment;

图3是包含表示本发明第二实施例的部分功能块的部分电路构成图;Fig. 3 is a partial circuit configuration diagram including some functional blocks representing the second embodiment of the present invention;

图4是包含表示本发明第三实施例的部分功能块的部分电路构成图;Fig. 4 is a partial circuit configuration diagram including some functional blocks representing the third embodiment of the present invention;

图5是用于说明第三实施例变为检测并控制目标电压值最高的电容器充电电压的构成根据的电源电压和输入电流的波形图;Fig. 5 is a waveform diagram of a power supply voltage and an input current used to illustrate the basis for detecting and controlling the capacitor charging voltage with the highest target voltage value in the third embodiment;

图6是包含表示本发明第4实施例的部分功能块的部分电路构成图;Fig. 6 is a partial circuit configuration diagram including some functional blocks representing the fourth embodiment of the present invention;

图7是包含表示本发明第5实施例的部分功能块的部分电路构成图;Fig. 7 is a partial circuit configuration diagram including some functional blocks representing the fifth embodiment of the present invention;

图8是包含表示本发明第6实施例的部分功能块的部分电路构成图;Fig. 8 is a partial circuit configuration diagram including some functional blocks representing the sixth embodiment of the present invention;

图9是包含表示本发明第7实施例的部分功能块的部分电路构成图;Fig. 9 is a partial circuit configuration diagram including some functional blocks representing the seventh embodiment of the present invention;

图10是包含表示本发明第8实施例的部分功能块的部分电路构成图;Fig. 10 is a partial circuit configuration diagram including some functional blocks representing an eighth embodiment of the present invention;

图11是包含表示本发明第9实施例的部分功能块的部分电路构成图;Fig. 11 is a partial circuit configuration diagram including some functional blocks representing the ninth embodiment of the present invention;

图12是包含表示本发明第10实施例的部分功能块的部分电路构成图;Fig. 12 is a partial circuit configuration diagram including some functional blocks representing a tenth embodiment of the present invention;

图13是包含表示本发明第11实施例的部分功能块的电路构成图;Fig. 13 is a circuit configuration diagram including some functional blocks representing an eleventh embodiment of the present invention;

图14是表示第11实施例中提供给放电灯的阶梯状电压波形的一个例子的图;Fig. 14 is a diagram showing an example of a stepped voltage waveform supplied to a discharge lamp in an eleventh embodiment;

图15是表示第11实施例中提供给放电灯的阶梯状电压波形的另一个例子的图;Fig. 15 is a diagram showing another example of the stepped voltage waveform supplied to the discharge lamp in the eleventh embodiment;

图16是包含表示本发明第12实施例的部分功能块的电路构成图;Fig. 16 is a circuit configuration diagram including some functional blocks representing a twelfth embodiment of the present invention;

图17是包含表示本发明第13实施例的部分功能块的电路构成图;Fig. 17 is a circuit configuration diagram including some functional blocks representing a thirteenth embodiment of the present invention;

图18是表示本发明第14实施例中提供给放电灯的阶梯状电压波形的一个例子的图;Fig. 18 is a diagram showing an example of a stepped voltage waveform supplied to a discharge lamp in a fourteenth embodiment of the present invention;

图19是表示第14实施例中提供给放电灯的阶梯状电压波形的另一个例子的图;Fig. 19 is a diagram showing another example of the stepped voltage waveform supplied to the discharge lamp in the fourteenth embodiment;

图20是表示第14实施例中提供给放电灯的阶梯状电压波形的另一个例子的图;Fig. 20 is a diagram showing another example of the stepped voltage waveform supplied to the discharge lamp in the fourteenth embodiment;

图21是表示第14实施例中提供给放电灯的阶梯状电压波形的另一个例子的图;Fig. 21 is a diagram showing another example of the stepped voltage waveform supplied to the discharge lamp in the fourteenth embodiment;

图22是表示本发明第15实施例中来自全波整流器的输出电压波形和各电容器充电电压的关系图;Fig. 22 is a graph showing the relationship between the output voltage waveform from the full-wave rectifier and the charging voltage of each capacitor in the fifteenth embodiment of the present invention;

图23是表示第15实施例中提供给极性反转电路的高频阶梯状电压波形的图;Fig. 23 is a diagram showing a high-frequency stepped voltage waveform supplied to the polarity inversion circuit in the fifteenth embodiment;

图24是包含表示本发明第16实施例的部分功能块的电路构成图;Fig. 24 is a circuit configuration diagram including some functional blocks representing a sixteenth embodiment of the present invention;

图25是表示用于和本发明第17实施例中电灯电流有效值变化时提供给放电灯的阶梯状电压波形比较的正弦波波形的图;Fig. 25 is a diagram showing a sine wave waveform for comparison with a stepped voltage waveform supplied to the discharge lamp when the effective value of the lamp current varies in the seventeenth embodiment of the present invention;

图26是表示第17实施例中电灯电流有效值变化时的输入电流波形的图;Fig. 26 is a diagram showing the input current waveform when the effective value of the lamp current varies in the seventeenth embodiment;

图27是包含表示本发明第18实施例的部分功能块的电路构成图;Fig. 27 is a circuit configuration diagram including some functional blocks representing an eighteenth embodiment of the present invention;

图28是表示第18实施例中输入电压波形和阶梯状电压波形的有效值为额定值时由输入电流目标波形成形电路成形的输入电流目标波形的图;Fig. 28 is a diagram showing an input current target waveform shaped by an input current target waveform shaping circuit when the effective values of the input voltage waveform and the stepped voltage waveform are rated values in the eighteenth embodiment;

图29是表示第18实施例中,阶梯状电压波形有效值高于额定值时由输入电流目标波形成形电路成形的输入电流目标波形与正弦波的输入电流波形相比较的图;Fig. 29 is a diagram showing a comparison between an input current target waveform shaped by an input current target waveform shaping circuit and a sinusoidal input current waveform when the effective value of the stepped voltage waveform is higher than the rated value in the eighteenth embodiment;

图30是表示第18实施例中,阶梯状电压波形有效值低于额定值时由输入电流目标波形成形电路成形的输入电流目标波形与正弦波的输入电流波形相比较的图;Fig. 30 is a diagram showing a comparison between the input current target waveform shaped by the input current target waveform shaping circuit and the sinusoidal input current waveform when the effective value of the stepped voltage waveform is lower than the rated value in the eighteenth embodiment;

图31是包含表示本发明第19实施例的部分功能块的电路构成图;Fig. 31 is a circuit configuration diagram including some functional blocks representing a nineteenth embodiment of the present invention;

图32是表示第19实施例中,不使用电容器而将交流阶梯状电压波形直接提供给放电灯时的负载特性的图;Fig. 32 is a diagram showing load characteristics when an AC stepped voltage waveform is directly supplied to a discharge lamp without using a capacitor in the nineteenth embodiment;

图33是表示第19实施例中,通过电容器向放电灯提供交流阶梯状电压波形,且交流阶梯状电压波形的有效值为恒定的条件下的负载特性的图;Fig. 33 is a diagram showing load characteristics under the condition that an AC stepped voltage waveform is supplied to the discharge lamp through a capacitor and the effective value of the AC stepped voltage waveform is constant in the nineteenth embodiment;

图34是表示第19实施例中,通过电容器向放电灯提供交流阶梯状电压波形,且可改变交流阶梯状电压波形的各电压的时间宽度来控制有效值时的负载特性的图;Fig. 34 is a diagram showing load characteristics when an AC stepped voltage waveform is provided to the discharge lamp through a capacitor, and the time width of each voltage of the AC stepped voltage waveform can be changed to control the effective value in the nineteenth embodiment;

图35是包含表示本发明第20实施例的部分功能块的电路构成图;35 is a circuit configuration diagram including some functional blocks representing a twentieth embodiment of the present invention;

图36是表示在涉及本发明的第21实施例中,设交流阶梯状电压波形的各电压的时间宽度的平均值为ts、由第一电容器的电容和额定照明时的放电灯的等价电阻决定的时间常数为CR时的CR/ts和波形因数的关系曲线;Fig. 36 shows the equivalent resistance of the discharge lamp when the average value of the time width of each voltage of the alternating-current step-shaped voltage waveform is ts, and the capacitance of the first capacitor and the rated lighting are used in the twenty-first embodiment of the present invention. The relationship curve between CR/ts and form factor when the determined time constant is CR;

图37是表示在第21实施例中,设交流阶梯状电压波形的台阶数为5个台阶时的交流阶梯状电压波形和第一电容器的电容变化时的放电灯两端之间产生的电压波形的波形图;Fig. 37 shows the AC stepped voltage waveform and the voltage waveform generated between both ends of the discharge lamp when the capacitance of the first capacitor changes when the number of steps of the AC stepped voltage waveform is set to 5 in the twenty-first embodiment. Waveform diagram;

图38示出了在第21实施例中,设交流阶梯状电压波形的台阶数为11个台阶时的交流阶梯状电压波形和第一电容器的电容变化时的放电灯两端之间产生的电压波形的波形图;Fig. 38 shows the AC stepped voltage waveform and the voltage generated between both ends of the discharge lamp when the capacitance of the first capacitor changes when the number of steps of the AC stepped voltage waveform is set to 11 in the twenty-first embodiment. Waveform diagram of the waveform;

图39示出了在第21实施例中,设交流阶梯状电压波形的台阶数为21个台阶时的交流阶梯状电压波形和第一电容器的电容变化时的放电灯两端之间产生的电压波形的波形图;Fig. 39 shows the AC stepped voltage waveform and the voltage generated between both ends of the discharge lamp when the capacitance of the first capacitor changes when the number of steps of the AC stepped voltage waveform is set to 21 in the twenty-first embodiment. Waveform diagram of the waveform;

图40是表示根据本发明的第22实施例的电路构成图;Fig. 40 is a circuit configuration diagram showing a 22nd embodiment according to the present invention;

图41是表示第22实施例中交流阶梯状电压波形和流入放电灯的负载电流波形的波形图;Fig. 41 is a waveform diagram showing the waveform of the AC stepped voltage and the waveform of the load current flowing into the discharge lamp in the twenty-second embodiment;

图42是表示在第22实施例中使用的两极性开关的另一个电路构成图;Fig. 42 is another circuit configuration diagram showing a bipolar switch used in the twenty-second embodiment;

图43示出了根据本发明第23实施例的电路构成图;FIG. 43 shows a circuit configuration diagram according to a 23rd embodiment of the present invention;

图44示出了根据本发明第24实施例的电路构成图;FIG. 44 shows a circuit configuration diagram according to a twenty-fourth embodiment of the present invention;

图45示出了在第24实施例中从交流阶梯状电压发生源输出的交流阶梯状电压波形例的图;FIG. 45 is a diagram showing an example of an AC stepped voltage waveform output from an AC stepped voltage generating source in the twenty-fourth embodiment;

图46是根据本发明第25实施例的电路构成图;Fig. 46 is a circuit configuration diagram according to the twenty-fifth embodiment of the present invention;

图47是表示第25实施例中开关元件具体例的部分电路构成图。Fig. 47 is a partial circuit configuration diagram showing a specific example of switching elements in the twenty-fifth embodiment.

发明实施例Embodiment of the invention

以下,参照图1至图12对第一本发明的第一至第十实施例进行说明。第一至第十实施例的说明中及图1至图12中的符号适用于第一至第十实施例。Hereinafter, first to tenth embodiments of the first present invention will be described with reference to FIGS. 1 to 12 . The symbols in the description of the first to tenth embodiments and in FIGS. 1 to 12 are applicable to the first to tenth embodiments.

第一实施例first embodiment

如图1所示,全波整流电路2的输入端子连接到商用交流电源1上,MOS型FET(场效应晶体管)构成的可变电阻器4-1、4-2、……、4-n、由电阻器等阻抗元件构成的输入电流检测电路5-1、5-2、……、5-n和电容器6-1、6-2……6-n的串联电路顺极性地通过各个二极管3-1、3-2、……、3-n分别并联连接到该全波整流电路2的输出端子上。As shown in Figure 1, the input terminal of the full-wave rectification circuit 2 is connected to the commercial AC power supply 1, and the variable resistors 4-1, 4-2, ..., 4-n composed of MOS type FETs (field effect transistors) , the series circuit of the input current detection circuit 5-1, 5-2, ..., 5-n and the capacitor 6-1, 6-2 ... 6-n composed of impedance elements such as resistors pass through each Diodes 3-1, 3-2, .

上述各可变电阻器4-1、4-2…4-n控制MOS型FET的栅极、源极间的偏压,在非饱和区域中驱动它,由此实现将其作为可变电阻器的功能,因此控制成仅在分别通过驱动电路7-1、7-2…7-n充电对应的电容器6-1、6-2…6-n期间,将阻抗控制为有限值,在其以外的期间内,阻抗为无限大。The above-mentioned variable resistors 4-1, 4-2...4-n control the bias voltage between the gate and the source of the MOS FET, and drive it in the non-saturated region, thereby realizing it as a variable resistor Therefore, it is controlled to control the impedance to a finite value only during the charging of the corresponding capacitors 6-1, 6-2... 6-n through the drive circuits 7-1, 7-2... 7-n, and the other During the period, the impedance is infinite.

驱动电源8-1、8-2…8-n分别连接到上述各驱动电路7-1、7-2…7-n上。上述各输入电流检测电流5-1、5-2…5-n的两端电压输入到上述各驱动电路7-1、7-2…7-n中。上述各驱动电路7-1、7-2…7-n及各驱动电源8-1、8-2…8-n的基极电位分别变成各电容器6-1、6-2…6-n的充电电压。The driving power sources 8-1, 8-2...8-n are respectively connected to the above-mentioned driving circuits 7-1, 7-2...7-n. The voltages at both ends of the input current detection currents 5-1, 5-2...5-n are input to the driving circuits 7-1, 7-2...7-n. The base potentials of the above-mentioned driving circuits 7-1, 7-2...7-n and driving power sources 8-1, 8-2...8-n become the respective capacitors 6-1, 6-2...6-n the charging voltage.

上述各驱动电路7-1、7-2…7-n由阻抗控制单元和振幅控制单元构成。具体地说,图2中,驱动电流7-1由阻抗控制单元7-11和振幅控制单元7-12构成,阻抗控制单元7-11由驱动控制可变电阻器4-1的驱动电流11、第一误差放大器12构成。上述振幅控制单元7-12由乘法器13、输入电流目标值设定电路14、对应电容器6-1的电压检测电路15、第二误差放大器16构成。Each of the drive circuits 7-1, 7-2...7-n described above is composed of an impedance control unit and an amplitude control unit. Specifically, in Fig. 2, the driving current 7-1 is composed of an impedance control unit 7-11 and an amplitude control unit 7-12, and the impedance control unit 7-11 is composed of a driving current 11, The first error amplifier 12 constitutes. The amplitude control unit 7 - 12 is composed of a multiplier 13 , an input current target value setting circuit 14 , a voltage detection circuit 15 corresponding to the capacitor 6 - 1 , and a second error amplifier 16 .

在上述输入电流目标值设定电路14中设定用于设定输入电流目标值的正弦波形数据,将其正弦波形数据提供给上述乘法器13。电阻分压电路17并联连接到上述电容器6-1上,通过输出电路18输出电阻分压电路17的分压点电压。这样,输入电路19取得来自上述输出电路18的输出后输入到上述电压检测电路15中。上述输出电路18和输入电路19的关系例如是光电耦合器中发光二极管和光电晶体管的关系,输入电路19绝缘并取得来自输出电路18的输出信号。The sinusoidal waveform data for setting the input current target value setting circuit 14 is set in the input current target value setting circuit 14 , and the sinusoidal waveform data is supplied to the multiplier 13 . The resistance voltage dividing circuit 17 is connected in parallel to the capacitor 6 - 1 , and outputs the voltage at the voltage dividing point of the resistance voltage dividing circuit 17 through the output circuit 18 . In this way, the input circuit 19 acquires the output from the output circuit 18 and inputs it to the voltage detection circuit 15 . The above-mentioned relationship between the output circuit 18 and the input circuit 19 is, for example, the relationship between a light-emitting diode and a phototransistor in a photocoupler, and the input circuit 19 is insulated to obtain an output signal from the output circuit 18 .

上述电压检测电路15通过来自输入电路19的信号检测上述电容器6-1的充电电压,将该检测输出提供给上述第二误差放大器16的反转输入端子(-)。在上述第二误差放大器16的非反转输入端子(+)上施加设定充电电压目标值的基准电压Vref。The voltage detection circuit 15 detects the charging voltage of the capacitor 6 - 1 from the signal from the input circuit 19 , and supplies the detected output to the inverting input terminal (−) of the second error amplifier 16 . A reference voltage Vref for setting a charging voltage target value is applied to a non-inverting input terminal (+) of the second error amplifier 16 .

上述第二误差放大器16将电压检测电路15检测的电容器6-1的充电电压和基准电压Vref相比较,将与其差对应的电压信号提供给上述乘法器13。上述乘法器13根据来自第二误差放大器16的电压信号控制来自上述输入电流目标值设定电路14的正弦波形数据的振幅。The second error amplifier 16 compares the charged voltage of the capacitor 6 - 1 detected by the voltage detection circuit 15 with the reference voltage Vref, and supplies a voltage signal corresponding to the difference to the multiplier 13 . The multiplier 13 controls the amplitude of the sinusoidal waveform data from the input current target value setting circuit 14 based on the voltage signal from the second error amplifier 16 .

即,电容器6-1的充电电压比基准电压Vref低时,乘法器13根据来自第二误差放大器16的电压信号进行增大来自输入电流目标值设定电路14的正弦波形数据的振幅的控制,电容器6-1的充电电压比基准电压Vref高时,乘法器13根据来自第二误差放大器16的电压信号进行减小来自输入电流目标值设定电路14的正弦波形数据的振幅的控制。That is, when the charging voltage of the capacitor 6-1 is lower than the reference voltage Vref, the multiplier 13 performs control to increase the amplitude of the sinusoidal waveform data from the input current target value setting circuit 14 based on the voltage signal from the second error amplifier 16, When the charging voltage of the capacitor 6 - 1 is higher than the reference voltage Vref, the multiplier 13 performs control to reduce the amplitude of the sinusoidal waveform data from the input current target value setting circuit 14 based on the voltage signal from the second error amplifier 16 .

上述乘法器13的输出提供给第一误差放大器12的非反转输入端子(+)。上述输入电流检测电路5-1的输出提供给上述第一误差放大器12的反转输入端子(-)。The output of the above multiplier 13 is supplied to the non-inverting input terminal (+) of the first error amplifier 12 . The output of the input current detection circuit 5 - 1 is supplied to the inverting input terminal (−) of the first error amplifier 12 .

上述第一误差放大器12将乘法器13的输出和输入电流检测电路5-1的输出相比较,根据差驱动上述驱动电路11,驱动电路11根据差可变控制可变电阻器4-1的阻抗。图2虽然对驱动电路7-1的构成作了说明,但在其他的驱动电路7-2~7-n中构成也是一样的。The above-mentioned first error amplifier 12 compares the output of the multiplier 13 with the output of the input current detection circuit 5-1, and drives the above-mentioned driving circuit 11 according to the difference, and the driving circuit 11 variablely controls the impedance of the variable resistor 4-1 according to the difference . Although FIG. 2 has explained the configuration of the driving circuit 7-1, the configurations of the other driving circuits 7-2 to 7-n are the same.

这里虽然未图示,但上述各电容器6-1、6-1…6-n分别通过开关电路和极性反转电路连接到负载上,通过顺次使各开关电路开、关动作,通过极性反转电路将各电容器6-1、6-2…6-n的充电电压顺次提供给负载,可交流驱动负载。Although not shown here, the above-mentioned capacitors 6-1, 6-1...6-n are respectively connected to the load through a switch circuit and a polarity inversion circuit. The sex inversion circuit sequentially provides the charging voltage of each capacitor 6-1, 6-2...6-n to the load, and can drive the load in AC.

在这种构成中,控制成在全波整流电路2的输出电压上升的同时,通过分别对应的驱动电路7-1、7-2…7-n顺次将各可变电阻器4-1、4-2…4-n变为规定的阻抗,通过各可变电阻器4-1、4-2…4-n流过期望的输入电流,分别充电各电容器6-1、6-2…6-n。In this configuration, it is controlled so that while the output voltage of the full-wave rectifier circuit 2 rises, each variable resistor 4-1, 4-2...4-n becomes a prescribed impedance, and a desired input current flows through each variable resistor 4-1, 4-2...4-n, and charges each capacitor 6-1, 6-2...6, respectively -n.

即,首先,将可变电阻器4-1的阻抗从无限大控制为规定阳抗值且流过向电容器6-1的充电电流,控制可变电阻器4-1的阻抗使得充电电流变成作为目标值设定的输入电流。此外,来自全波整流电路2的输入电压等于下级的电容器6-2的充电电压时,将可变电阻器4-1的阻抗控制为无限大且停止对电容器6-1充电,取而代之,将可变电阻器4-2的阻抗从无限大控制为规定的阻抗值,并开始对电容器6-2充电。此外,控制可变电阻器4-2的阻抗,使得充电电流变成作为目标值设定的输入电流。That is, first, the impedance of the variable resistor 4-1 is controlled from infinity to a predetermined reactance value and the charging current to the capacitor 6-1 flows, and the impedance of the variable resistor 4-1 is controlled so that the charging current becomes The input current is set as the target value. In addition, when the input voltage from the full-wave rectification circuit 2 is equal to the charging voltage of the capacitor 6-2 of the lower stage, the impedance of the variable resistor 4-1 is controlled to be infinite and the charging of the capacitor 6-1 is stopped, instead, it will be possible The impedance of variable resistor 4-2 is controlled from infinity to a prescribed impedance value, and capacitor 6-2 is charged. Furthermore, the impedance of the variable resistor 4-2 is controlled so that the charging current becomes the input current set as the target value.

这样,在来自全波整流器2的输入电压波形上升期间,可变电阻器4-1、4-2…4-n的阻抗以规定定时从无限大切换为有限值,而且,可变控制阻抗并顺次进行对各电容6-1、6-2…6-n的充电。In this way, while the input voltage waveform from the full-wave rectifier 2 rises, the impedances of the variable resistors 4-1, 4-2...4-n are switched from infinite to finite at predetermined timing, and the variable control impedance does not change. The charging of the respective capacitors 6-1, 6-2...6-n is performed sequentially.

在来自全波整流器2的输入电压波形下降期间,若电容器6-n的充电电压等于输入电压,则在可变电阻器4-n的阻抗切换为无限大的同时,可变电阻器4-(n-1)的阻抗切换为有限值,代替向电容器6-n而开始向电容器6-(n-1)充电。在对电容器6-(n-1)充电过程中,进行可变电阻器4-(n-1)的阻抗减少的控制,控制输入电流。During the fall of the input voltage waveform from the full-wave rectifier 2, if the charging voltage of the capacitor 6-n is equal to the input voltage, the variable resistor 4-( The impedance of n-1) is switched to a finite value, and the capacitor 6-(n-1) is started to be charged instead of the capacitor 6-n. In the process of charging the capacitor 6-(n-1), the resistance reduction control of the variable resistor 4-(n-1) is performed to control the input current.

通过进行这种控制,来自全波整流器2的输入电流波形变成和输入电压波形几乎相同相位的正弦波。由此,可充分抑制输入电流中的高频分量,改善功率因数。By performing such control, the input current waveform from the full-wave rectifier 2 becomes a sine wave having almost the same phase as the input voltage waveform. Thereby, the high-frequency component in the input current can be sufficiently suppressed, and the power factor can be improved.

在进行这种控制时,由于负载发生变化,存在电容器6-1、6-2…6-n的充电电压比目标值低或高的情况。例如,出现电容器6-1、6-2…6-n的充电电压比目标值低的情况时,驱动电路7-1、7-2…7-n的电压检测电路15分别对其进行检测,第二误差放大器16将作为充电电压目标值的基准电压Vref和检测电压相比较。其误差输出到乘法器13中。乘法器13通过来自第二误差放大器16的误差输出进行增大来自输入电流目标值设定电路14的正弦波形数据的振幅的控制。When such control is performed, the charging voltage of capacitors 6-1, 6-2...6-n may become lower or higher than a target value due to a change in load. For example, when the charging voltage of the capacitors 6-1, 6-2...6-n is lower than the target value, the voltage detection circuits 15 of the drive circuits 7-1, 7-2...7-n detect it respectively, The second error amplifier 16 compares a reference voltage Vref, which is a charging voltage target value, with a detection voltage. Its error is output to the multiplier 13 . The multiplier 13 is controlled to increase the amplitude of the sinusoidal waveform data from the input current target value setting circuit 14 by the error output from the second error amplifier 16 .

第一误差放大器12将振幅大的目标值的输入电流和输入电流检测电路5-1、5-2…5-n检测的实际输入电流相比较,其误差输出提供给驱动电路11。驱动电路11控制可变电阻器4-1、4-2…4-n的阻抗,使得实际的输入电流接近目标值的输入电流。由此,电容器6-1、6-2…6-n的充电电压比目标值低时,控制可变电阻器4-1、4-2…4-n的阻抗,使得在电容器6-1、6-2…6-n中流过比较多的充电电流,将电容器6-1、6-2…6-n的充电电压控制为目标值。The first error amplifier 12 compares the input current with a large amplitude target value and the actual input current detected by the input current detection circuits 5 - 1 , 5 - 2 . The drive circuit 11 controls the impedance of the variable resistors 4-1, 4-2...4-n so that the actual input current is close to the input current of the target value. Thus, when the charging voltage of the capacitors 6-1, 6-2...6-n is lower than the target value, the impedance of the variable resistors 4-1, 4-2...4-n is controlled so that the capacitors 6-1, 6-n A comparatively large charging current flows through 6-2...6-n, and the charging voltage of capacitor 6-1, 6-2...6-n is controlled to a target value.

电容器6-1、6-2…6-n的充电电压比目标值高时,相反,控制可变电阻器4-1、4-2…4-n的阻抗,使得在电容器6-1、6-2…6-n中流过比较少的充电电流,将电容器6-1、6-2…6-n的充电电压控制为目标值。When the charging voltage of the capacitors 6-1, 6-2...6-n is higher than the target value, on the contrary, the impedance of the variable resistors 4-1, 4-2...4-n is controlled so that the capacitors 6-1, 6 -2...6-n flows a relatively small charging current, and the charging voltage of capacitors 6-1, 6-2...6-n is controlled to a target value.

这样,及时负载发生变化,电容器6-1、6-2…6-n的充电电压也总是被控制为目标值而变为恒定。由此,即使负载发生变化,也能使提供给负载的电压稳定化。In this way, even when the load changes, the charging voltage of the capacitors 6-1, 6-2...6-n is always controlled to a target value and becomes constant. Accordingly, even if the load changes, the voltage supplied to the load can be stabilized.

第二实施例second embodiment

和实施例第一实施例相同的部分用相同的符号表示,详细说明从略。The parts that are the same as those in the first embodiment are denoted by the same symbols, and detailed description is omitted.

如图3所示,对整个电路的基准电位设置输入电流目标值设定电路141,来自输入电流目标值设定电路141的作为目标值的输入电流的正弦波形数据分别提供给乘法器13-1、13-2…。此外,来自各乘法器13-1、13-2…的输出分别通过电平移动电路20-1、20-2…提供给第一误差放大器12-1、12-2…的非反转输入端子(+)。As shown in FIG. 3, the input current target value setting circuit 141 is set for the reference potential of the entire circuit, and the sinusoidal waveform data of the input current as a target value from the input current target value setting circuit 141 are supplied to the multipliers 13-1, respectively. , 13-2.... Furthermore, outputs from the respective multipliers 13-1, 13-2... are supplied to non-inverting input terminals of the first error amplifiers 12-1, 12-2... through level shift circuits 20-1, 20-2..., respectively. (+).

即,在该电源装置中,驱动电路11-1、11-2…及第一误差放大器12-1、12-2…的基极电位分别是各电容器6-1、6-2…的充电电压,电压检测电路15-1、15-2…及第二误差放大器16-1、16-2…的基极电位变成作为整个电路基准电位的全波整流电路2的输出端子中负极端子的电位。因此,需要使用电平移动电路20-1、20-2…用每个电容器来移动基极电位的电平。电压检测电路15-1、15-2…构成为从电容器6-1、6-2…检测直接电压。That is, in this power supply device, the base potentials of the drive circuits 11-1, 11-2... and the first error amplifiers 12-1, 12-2... are the charging voltages of the respective capacitors 6-1, 6-2... , the base potentials of the voltage detection circuits 15-1, 15-2... and the second error amplifiers 16-1, 16-2... become the potential of the negative terminal among the output terminals of the full-wave rectification circuit 2 as the reference potential of the entire circuit. . Therefore, it is necessary to use the level shift circuits 20-1, 20-2, . . . to shift the level of the base potential with each capacitor. Voltage detection circuits 15-1, 15-2... are configured to detect direct voltages from capacitors 6-1, 6-2....

这种构成的电源装置中,在出现负载变化且电容器6-1、6-2…的充电电压比目标值低时,电压检测电路15-1、15-2…对其进行检测,第二误差放大器16-1、16-2…比较作为充电电压目标值的基准电压Vref1、Vref2…和检测电压。而且,将其误差输出到乘法器13-1、13-2…中。乘法器13-1、13-2…通过来自第二误差放大器16-1、16-2…的误差输出进行增大来自输入电流目标值设定电路141的正弦波形数据的振幅的控制。来自乘法器13-1、13-2…的输出通过电平移动电路20-1、20-2…进行电平移动后输入到第一误差放大器12-1、12-2…中。In the power supply unit with such a configuration, when a load change occurs and the charging voltage of the capacitors 6-1, 6-2 ... is lower than the target value, the voltage detection circuits 15-1, 15-2 ... detect it, and the second error Amplifiers 16 - 1 , 16 - 2 . . . compare reference voltages Vref1 , Vref2 . And, the errors thereof are output to multipliers 13-1, 13-2, . . . The multipliers 13-1, 13-2... perform control to increase the amplitude of the sinusoidal waveform data from the input current target value setting circuit 141 by the error outputs from the second error amplifiers 16-1, 16-2.... Outputs from the multipliers 13-1, 13-2, ... are level-shifted by level shift circuits 20-1, 20-2, ..., and input to first error amplifiers 12-1, 12-2, ....

第一误差放大器12-1、12-2…比较振幅变大的目标值的输入电流和输入电流输出电路5-1、5-2…检测出的实际输入电流,将其误差输出提供给驱动电路11-1、11-2…。驱动电路11-1、11-2…控制可变电阻器4-1、4-2…的阻抗,使得实际的输入电流接近目标值的输入电流。由此,在电容器6-1、6-2…的充电电压比目标值低时,控制可变电阻器4-1、4-2…的阻抗使得在电容器6-1、6-2…中流过较多的充电电流,将电容器6-1、6-2…的充电电压控制成目标值。The first error amplifiers 12-1, 12-2... compare the input current of the target value whose amplitude has become larger with the actual input current detected by the input current output circuits 5-1, 5-2..., and supply the error output to the drive circuit. 11-1, 11-2…. The drive circuits 11-1, 11-2... control the impedance of the variable resistors 4-1, 4-2... so that the actual input current approaches the input current of the target value. Thus, when the charging voltage of the capacitors 6-1, 6-2... is lower than the target value, the impedance of the variable resistors 4-1, 4-2... is controlled so that the capacitors 6-1, 6-2... A larger charging current controls the charging voltage of the capacitors 6-1, 6-2... to a target value.

若电容器6-1、6-2…的充电电压比目标值高,这时,相反地,控制可变电阻器4-1、4-2…的阻抗使得在电容器6-1、6-2…中流过比较少的充电电流,将电容器6-1、6-2…的充电电压控制成目标值。If the charging voltage of the capacitors 6-1, 6-2... is higher than the target value, at this time, conversely, the impedance of the variable resistors 4-1, 4-2... is controlled so that the capacitors 6-1, 6-2... A relatively small charging current flows in the middle, and the charging voltage of the capacitors 6-1, 6-2... is controlled to a target value.

因此,本实施例和上述实施例一样,即使负载发生变化,电容器6-1、6-2…的充电电压也总是被控为目标值而变成恒定的,使提供给负载的电压稳定化。输入电流目标值设定电路141可通用化。Therefore, in this embodiment, even if the load changes, the charging voltage of the capacitors 6-1, 6-2, ... is always controlled to a target value and becomes constant, so that the voltage supplied to the load is stabilized, as in the above-mentioned embodiment. . The input current target value setting circuit 141 can be generalized.

第三实施例third embodiment

和上述第一及第二实施例相同的部分用相同的符号表示,说明从略。The parts that are the same as those in the above-mentioned first and second embodiments are denoted by the same symbols, and descriptions thereof are omitted.

如图4所示,在n个电容器中,通过电压检测电路151直接检测目标电压值最高的电容器6-n的充电电压,将其检测输出输入到第二误差放大器161的反转输入端子(-)中。将设定电容器6-n的充电电压目标值的基准电压Vrefn输入到上述第二误差放大器161的非反转输入端子(+)中。As shown in FIG. 4, among the n capacitors, the charging voltage of the capacitor 6-n with the highest target voltage value is directly detected by the voltage detection circuit 151, and the detected output is input to the inverting input terminal (- )middle. The reference voltage Vrefn for setting the charging voltage target value of the capacitor 6-n is input to the non-inverting input terminal (+) of the second error amplifier 161 described above.

上述第二误差放大器161将电压检测电路151检测的电容器6-n的充电电压和基准电压Vrefn相比较,将与差对应的电压信号提供给乘法器131。上述乘法器131根据来自第二误差放大器161的电压信号控制来自输入电流目标值设定电路142的正弦波形数据的振幅。The second error amplifier 161 compares the charged voltage of the capacitor 6 - n detected by the voltage detection circuit 151 with the reference voltage Vrefn, and supplies a voltage signal corresponding to the difference to the multiplier 131 . The multiplier 131 controls the amplitude of the sinusoidal waveform data from the input current target value setting circuit 142 based on the voltage signal from the second error amplifier 161 .

即,和基准电压Vrefn相比,电容器6-n的充电电压低时,乘法器131根据来自第二误差放大器161的电压信号进行增大来自输入电流目标值设定电路142的正弦波形数据的振幅的控制,和基准电压Vrefn相比,电容器6-n的充电电压高时,乘法器131根据来自第二误差放大器161的电压信号进行减小来自输入电流目标值设定电路142的正弦波形数据的振幅的控制。而且,来自乘法器131的输出分别通过电平移动电路20-n、20-(n-1)…提供给第一误差放大器12-n、12-(n-1)…的非反转输入端子(+)。That is, when the charging voltage of the capacitor 6-n is lower than the reference voltage Vrefn, the multiplier 131 increases the amplitude of the sinusoidal waveform data from the input current target value setting circuit 142 according to the voltage signal from the second error amplifier 161. Compared with the reference voltage Vrefn, when the charging voltage of the capacitor 6-n is high, the multiplier 131 reduces the sinusoidal waveform data from the input current target value setting circuit 142 according to the voltage signal from the second error amplifier 161 Amplitude control. Also, outputs from the multiplier 131 are supplied to non-inverting input terminals of the first error amplifiers 12-n, 12-(n-1)... through level shift circuits 20-n, 20-(n-1)..., respectively. (+).

即,通过电源装置,驱动电路11-n、11-(n-1)…及第一误差放大器12-n、12-(n-1)…的基极电位分别为各电容器6-n、6-(n-1)…的充电电压,电压检测电路151和第二误差放大器161的基极电位变成作为整个电路的基准电位的全波整流电路2的输入端子中负极端子的电位。而且,需要使用电平移动电路20-n、20-(n-1)…来使每个电容器的基极电位电平移动。That is, through the power supply device, the base potentials of the driving circuits 11-n, 11-(n-1)... and the first error amplifiers 12-n, 12-(n-1)... are respectively the capacitors 6-n, 6 The charging voltage of -(n-1) . Also, it is necessary to level shift the base potential of each capacitor using level shift circuits 20-n, 20-(n-1). . . .

在这种构成的电源装置中,在出现负载变化且电容器6-n的充电电压比目标值低时,电压检测电路151对其进行检测,第二误差放大器161比较作为充电电压目标值的基准电压Vrefn和检测电压。而且,将其误差输出到乘法器131中。乘法器131通过来自第二误差放大器161的误差输出进行增大来自输入电流目标值设定电路142的正弦波形数据的振幅的控制。来自乘法器131的输出分别通过电平移动电路20-n、20-(n-1)…进行电平移动后输入到第一误差放大器12-n、12-(n-1)…中。In the power supply device with such a configuration, when a load change occurs and the charging voltage of the capacitor 6-n is lower than the target value, the voltage detection circuit 151 detects it, and the second error amplifier 161 compares the reference voltage as the charging voltage target value Vrefn and detection voltage. And, the error thereof is output to the multiplier 131 . The multiplier 131 is controlled to increase the amplitude of the sinusoidal waveform data from the input current target value setting circuit 142 by the error output from the second error amplifier 161 . Outputs from the multiplier 131 are level-shifted by level shift circuits 20-n, 20-(n-1)... and then input to first error amplifiers 12-n, 12-(n-1).

第一误差放大器12-n、12-(n-1)…比较振幅变大的目标值的输入电流和输入电流输出电路5-n、5-(n-1)…检测出的实际输入电流,将其误差输出提供给驱动电路11-n、11-(n-1)…。驱动电路11-n、11-(n-1)…控制可变电阻器4-n、4-(n-1)…的阻抗,使得实际的输入电流接近目标值的输入电流。由此,在电容器6-n的充电电压比目标值低时,控制可变电阻器4-n、4-(n-1)…的阻抗使得在电容器6-n、6-(n-1)…中流过较多的充电电流,将电容器6-n的充电电压控制成目标值。The first error amplifier 12-n, 12-(n-1) ... compares the input current of the target value whose amplitude becomes large with the actual input current detected by the input current output circuit 5-n, 5-(n-1) ..., The error outputs thereof are supplied to drive circuits 11-n, 11-(n-1).... The drive circuits 11-n, 11-(n-1)... control the impedance of the variable resistors 4-n, 4-(n-1)... so that the actual input current approaches the input current of the target value. Thus, when the charging voltage of the capacitor 6-n is lower than the target value, the impedances of the variable resistors 4-n, 4-(n-1)... are controlled so that the capacitors 6-n, 6-(n-1) ... to control the charging voltage of the capacitor 6-n to a target value.

若电容器6-n的充电电压比目标值高,这时,相反地,控制可变电阻器4-n、4-(n-1)…的阻抗使得在电容器6-n、6-(n-1)…中流过比较少的充电电流,将电容器6-n的充电电压控制成目标值。If the charging voltage of the capacitor 6-n is higher than the target value, at this time, conversely, the impedances of the variable resistors 4-n, 4-(n-1) are controlled so that in the capacitors 6-n, 6-(n- 1) A relatively small charging current flows through ..., and the charging voltage of the capacitor 6-n is controlled to a target value.

因此,通过本实施例,构成为检测并控制目标电压值最高的电容器6-n的充电电压,对其依据进行描述。例如,考虑检测并控制目标电压值最高的电容器6-n以外的电容器6-(n-1)的充电电压。在电容器的充电电压比目标电压值低时,进行增大来自输入电流目标值设定电路142的正弦波形数据的振幅的控制,由此,进行这样的控制:充电电流增加,电容器电压上升,充电电压接近目标值。Therefore, according to the present embodiment, the basis for detecting and controlling the charging voltage of the capacitor 6-n having the highest target voltage value will be described. For example, it is considered to detect and control the charging voltages of capacitors 6-(n-1) other than the capacitor 6-n having the highest target voltage value. When the charging voltage of the capacitor is lower than the target voltage value, control is performed to increase the amplitude of the sinusoidal waveform data from the input current target value setting circuit 142, thereby performing such control that the charging current increases, the capacitor voltage rises, and the charging voltage increases. The voltage is close to the target value.

对检测充电电压的电容器以外的电容器也同样进行该控制。而且,对目标电压值最高的电容器6-n进行,电容器6-n的充电电压上升。但是,电容器6-n的充电电压不比电源电压即全波整流电路2的输出电压的峰值高。This control is similarly performed for capacitors other than the capacitor for detecting the charging voltage. Then, the charging voltage of the capacitor 6-n is increased by performing the operation on the capacitor 6-n having the highest target voltage value. However, the charging voltage of the capacitor 6-n is not higher than the power supply voltage, that is, the peak value of the output voltage of the full-wave rectification circuit 2.

另一方面,该电路的条件是构成可变电阻器4-n、4-(n-1)…的MOS型FET在能动区域即非饱和区域内动作,给对应于目标电压值最高的电容器6-n的可变电阻器4-n施加电容器6-n的充电电压和电源电压的差电压,该差电压变小时,MOS型FET的动作从非饱和区域向饱和区域靠近。而且,变成开关动作。在MOS型FET进行开关动作时,输入电流变成微分输入电压后的波形,相对图5(a)所示的电源电压波形,输入电流波形变成图5(b)所示峰值部分被切掉的畸变波形。On the other hand, the condition of this circuit is that the MOS type FETs constituting the variable resistors 4-n, 4-(n-1)... operate in the active region, that is, in the non-saturated region, and give the capacitor 6 corresponding to the highest value of the target voltage The -n variable resistor 4-n applies a difference voltage between the charging voltage of the capacitor 6-n and the power supply voltage, and when the difference voltage becomes smaller, the operation of the MOS type FET approaches from a non-saturation region to a saturation region. Furthermore, it becomes switching action. When the MOS type FET performs switching operation, the input current becomes the waveform of the differential input voltage. Compared with the power supply voltage waveform shown in Fig. 5(a), the input current waveform becomes the peak portion shown in Fig. 5(b) and is cut off. distorted waveform.

这样,在检测并控制目标电压值最高的电容器6-n以外的电容器6-(n-1)的充电电压时,就产生输入电流不平滑变化的问题。在这一点上,在检测并控制目标电压值最高的电容器6-n的充电电压时,不用担心构成对应于目标电压值最高的电容器6-n的可变电阻器4-n的MOS型FET进行开关动作,可总是在非饱和区域中动作,而且,可总是平滑地连续流过输入电流。Thus, when detecting and controlling the charging voltages of capacitors 6-(n-1) other than capacitor 6-n having the highest target voltage value, there arises a problem that the input current does not change smoothly. In this regard, when detecting and controlling the charging voltage of the capacitor 6-n having the highest target voltage value, there is no fear of the MOS type FET constituting the variable resistor 4-n corresponding to the capacitor 6-n having the highest target voltage value. The switching operation can always operate in the non-saturation region, and the input current can always flow smoothly and continuously.

在本实施例中,在作为电源电压的来自全波整流电路2的输入电压波形上升期间,若某个电容器的电压不等于输入电压,则将对应的可变电阻器的阻抗从无限大切换成有限值并开始该电容器的充电。在来自全波整流电路2的输入电压波形下降期间,若前1个电容器的充电电压等于输入电压则开始某个电容器的充电,在该电容器的充电电压等于输入电压时停止。通过在各电容器间连续进行这种控制可连续地流过输入电流。输入电流目标值设定电路142、电压检测电路151、第二误差放大器161、乘法器131可通用化,可简化结构。In this embodiment, during the rise of the input voltage waveform from the full-wave rectification circuit 2 as the power supply voltage, if the voltage of a certain capacitor is not equal to the input voltage, the impedance of the corresponding variable resistor is switched from infinite to finite value and starts charging of this capacitor. While the input voltage waveform from the full-wave rectifier circuit 2 is falling, charging of a certain capacitor starts when the charged voltage of the preceding capacitor becomes equal to the input voltage, and stops when the charged voltage of the capacitor becomes equal to the input voltage. The input current can be continuously flowed by continuously performing this control among the respective capacitors. The input current target value setting circuit 142, the voltage detection circuit 151, the second error amplifier 161, and the multiplier 131 can be generalized, and the structure can be simplified.

第四实施例Fourth embodiment

和上述第一至第三实施例相同的部分用相同的符号表示,详细说明从略。The parts that are the same as those in the above-mentioned first to third embodiments are denoted by the same symbols, and detailed description thereof will be omitted.

如图6所示,通过第一选择电路21由电压检测电路151检测n个电容器6-n、6-(n-1)…的充电电压。设置用于设定各电容器6-n、6-(n-1)…的充电电压目标值的基准电压Vrefn、Vref(n-1)…Vref1通过第二选择电路22将各基准电压提供给第二误差放大器161的非反转输入端子(+)。将选择信号S输入到上述各选择电路21、22中,进行检测充电电压的电容器的切换和基准电压的切换。即,根据电容器和基准电压来选择,使得在检测电容器6-n的充电电压时设定基准电压Vrefn,在检测电容器6-(n-1)的充电电压时设定基准电压Vref(n-1)。其他的构成和上述第三实施例基本相同。As shown in FIG. 6 , the charging voltages of the n capacitors 6 - n , 6 - (n−1) . . . are detected by the voltage detection circuit 151 through the first selection circuit 21 . The reference voltages Vrefn, Vref(n-1) ... Vref1 for setting the charging voltage target value of each capacitor 6-n, 6-(n-1) ... are provided through the second selection circuit 22 to supply the respective reference voltages to the second selection circuit 22. The non-inverting input terminal (+) of the second error amplifier 161. The selection signal S is input to each of the above-mentioned selection circuits 21 and 22, and switching of the capacitor for detecting the charging voltage and switching of the reference voltage are performed. That is, it is selected according to the capacitor and the reference voltage so that the reference voltage Vrefn is set when detecting the charging voltage of the capacitor 6-n, and the reference voltage Vref(n-1) is set when detecting the charging voltage of the capacitor 6-(n-1). ). Other constitutions are basically the same as those of the third embodiment described above.

在这种构成的电源装置中,例如,在通过选择信号S选择电容器6-n的充电电压检测和基准电压Vrefn的状态下,在负载发生变化且电容器6-n的充电电压比目标值低时,电压检测电路151对其进行检测,第二误差放大器161将作为充电电压的目标值的基准电压Vrefn和检测电压进行比较。将其误差输出到乘法器131中。乘法器131通过来自第二误差放大器161的误差输出进行增大来自输入电流目标值设定电路142的正弦波形数据的振幅的控制。来自乘法器131的输出分别通过电平移动电路20-n、20-(n-1)…进行电平移动,并输入到第一误差放大器12-n、12-(n-1)…中。In the power supply device having such a configuration, for example, in a state where the charging voltage detection of the capacitor 6-n and the reference voltage Vrefn are selected by the selection signal S, when the load changes and the charging voltage of the capacitor 6-n becomes lower than the target value , the voltage detection circuit 151 detects it, and the second error amplifier 161 compares the reference voltage Vrefn, which is a target value of the charging voltage, with the detected voltage. The error thereof is output to the multiplier 131 . The multiplier 131 is controlled to increase the amplitude of the sinusoidal waveform data from the input current target value setting circuit 142 by the error output from the second error amplifier 161 . Outputs from the multiplier 131 are level-shifted by level shift circuits 20-n, 20-(n-1)..., respectively, and input to first error amplifiers 12-n, 12-(n-1)....

第一误差放大器12-n、12-(n-1)…将振幅变大的目标值的输入电流和输入电流输出电路5-n、5-(n-1)…检测出的实际输入电流相比较,将其误差输出提供给驱动电路11-n、11-(n-1)…。驱动电路11-n、11-(n-1)…控制可变电阻器4-n、4-(n-1)…,使得实际的输入电流接近目标值的输入电流。由此,在电容器6-n的充电电压比目标值低时,控制可变电阻器4-n、4-(n-1)…的阻抗,使得不管在电容器6-n还是在其他的电容器6-(n-1)…中流过较多的充电电流。The first error amplifiers 12-n, 12-(n-1)... The input current of the target value whose amplitude is increased is in phase with the actual input current detected by the input current output circuit 5-n, 5-(n-1)... Compared, the error output thereof is supplied to the drive circuits 11-n, 11-(n-1) . . . The drive circuits 11-n, 11-(n-1), ... control the variable resistors 4-n, 4-(n-1), ... so that the actual input current approaches the input current of the target value. Thus, when the charging voltage of the capacitor 6-n is lower than the target value, the impedances of the variable resistors 4-n, 4-(n-1)... are controlled so that no matter in the capacitor 6-n or in the other capacitors 6 -(n-1)... a large charging current flows.

但是,对于其他的电容器6-(n-1)…而言,由于不直接检测充电电压,所以,仍然会担心充电电压偏离目标值。在这点上,在本实施例中,通过选择信号S,在检测下一个电容器6-(n-1)的充电电压时选择基准电压Vref(n-1),因此,这一次,直接检测电容器6-(n-1)的充电电压。而且将电容器6-(n-1)的充电电压控制为目标值。However, for the other capacitors 6-(n-1)..., since the charging voltage is not directly detected, there is still concern that the charging voltage may deviate from the target value. In this regard, in this embodiment, the reference voltage Vref(n-1) is selected when detecting the charging voltage of the next capacitor 6-(n-1) through the selection signal S, so this time, the capacitor is directly detected 6-(n-1) charging voltage. And the charging voltage of the capacitor 6-(n-1) is controlled to a target value.

因此,在顺序切换检测充电电压的电容器的同时,与其对应地设定基准电压。由此,可使各电容器的充电电压确实接近目标值。即,可将各电容器的充电电压确实控制为目标值而变成恒定。Therefore, the reference voltage is set correspondingly while sequentially switching the capacitors for detecting the charging voltage. Accordingly, the charging voltage of each capacitor can be reliably brought close to the target value. That is, the charging voltage of each capacitor can be reliably controlled to a target value and become constant.

而且,本实施例和上述实施例一样,电容器6-n、6-(n-1)…的充电电压即使发生负载变化等,也能总是控制为目标值而变为恒定,可使向负载提供的电压稳定化,同时,输入电流可成正弦波状。Moreover, the present embodiment is the same as the above-mentioned embodiment, even if the charging voltage of the capacitor 6-n, 6-(n-1)... even if the load changes, etc., it can always be controlled to a target value and become constant, and the charging voltage to the load can be made constant. The supplied voltage is stabilized, and at the same time, the input current can be sinusoidal.

第五实施例fifth embodiment

和上述第一至第四实施例相同的部分用相同的符号表示,详细说明从略。The parts that are the same as those in the above-mentioned first to fourth embodiments are denoted by the same symbols, and detailed description thereof will be omitted.

如图7所示,作为检测电容器的充电电压的电路,通过取得各电容器6-n、6-(n-1)…的充电电压,使用输出其平均值的电压平均值输出电路152,将来自电压平均值输出电路152的输出提供给第二误差放大器161的反转输入端子(-)。作为基准电压,设置设定各电容器6-n、6-(n-1)…的充电电压目标值的平均值的平均值基准电压Vrefav,该平均值基准电压Vrefav提供给上述第二误差放大器161的非反转输入端子(+)。As shown in FIG. 7, as a circuit for detecting the charging voltage of the capacitor, by obtaining the charging voltage of each capacitor 6-n, 6-(n-1)..., using the voltage average value output circuit 152 that outputs the average value, the The output of the voltage average value output circuit 152 is supplied to the inverting input terminal (−) of the second error amplifier 161 . As the reference voltage, an average value reference voltage Vrefav that sets the average value of the charging voltage target values of the respective capacitors 6-n, 6-(n-1) . . . non-inverting input terminal (+).

这样,通过电压平均值输出电路152求出各电容器6-n、6-(n-1)…的充电电压平均值的构成,例如在由于负载变化,充电电压的平均值变得低于平均值基准电压Vrefav时,第二误差放大器161将其差提供给乘法器131。由此,乘法器131增大来自输入电流目标值设定电路142的输入电流的正弦波形数据的振幅,提供各电平移动电路20-n、20-(n-1)…分别提供给各第一误差放大器12-n、12-(n-1)…。In this way, the average value of the charging voltage of each capacitor 6-n, 6-(n-1) ... is obtained by the average voltage output circuit 152, for example, when the average value of the charging voltage becomes lower than the average value due to a load change. When the reference voltage is Vrefav, the second error amplifier 161 provides the difference to the multiplier 131 . Thus, the multiplier 131 increases the amplitude of the sinusoidal waveform data of the input current from the input current target value setting circuit 142, and supplies each level shift circuit 20-n, 20-(n-1)... to each first An error amplifier 12-n, 12-(n-1)....

而且,在本实施例中,在各电容器的充电电压平均值低于目标值时,控制可变电阻器4-n、4-(n-1)…的阻抗使得在各电容器中流过较多充电电流。若各电容器的充电电压平均值高于目标值,相反则控制可变电阻器4-n、4-(n-1)…的阻抗使得在各电容器中流过较少充电电流。Moreover, in this embodiment, when the average value of the charging voltage of each capacitor is lower than the target value, the impedance of the variable resistors 4-n, 4-(n-1)... is controlled so that a large amount of charging voltage flows in each capacitor. current. If the average value of the charging voltage of each capacitor is higher than the target value, on the contrary, the impedances of the variable resistors 4-n, 4-(n-1) . . . are controlled so that less charging current flows in each capacitor.

而且,在本实施例中,和上述实施例相同,即使发生负载变化等,也能将电容器6-n、6-(n-1)…的充电电压总是控制为目标值而变成恒定,可使向负载提供的电压稳定化,同时,输入电流成正弦波状。Furthermore, in this embodiment, as in the above-described embodiment, even if a load change or the like occurs, the charging voltage of the capacitors 6-n, 6-(n-1)... can always be controlled to a target value and become constant, The voltage supplied to the load can be stabilized and the input current becomes sinusoidal.

第六实施例Sixth embodiment

和上述第一至第五实施例相同的部分用相同的符号表示,详细说明从略。The parts that are the same as those in the above-mentioned first to fifth embodiments are denoted by the same symbols, and detailed description is omitted.

本实施例用图8所示的电路来代替第五实施例的电压平均值输出电路152。该电路构成为检测控制和电容器的充电电压目标值之差最大的电容器中使用。其他的结构和第五实施例相同。In this embodiment, the circuit shown in FIG. 8 is used instead of the voltage average value output circuit 152 of the fifth embodiment. This circuit is configured to be used in the capacitor with the largest difference between the detection control and the target value of the charging voltage of the capacitor. Other structures are the same as the fifth embodiment.

即,各电容器6-n、6-(n-1)…、6-1的充电电压分别输入到差检测器23-n、23-(n-1)…、23-1的一方的输入端子上同时输入到被控电压选择器26中。用于设定各电容器目标值的基准电压Vrefn、Vref(n-1)…Vref1提供给上述各差检测器23-n、23-(n-1)…、23-1的另一方输入端子,同时提供给目标电压选择器27。That is, the charging voltages of the respective capacitors 6-n, 6-(n-1)..., 6-1 are input to one input terminal of the difference detectors 23-n, 23-(n-1)..., 23-1, respectively. input to the controlled voltage selector 26 at the same time. The reference voltages Vrefn, Vref(n-1) ... Vref1 for setting the target value of each capacitor are supplied to the other input terminals of the above-mentioned difference detectors 23-n, 23-(n-1) ..., 23-1, At the same time, it is provided to the target voltage selector 27 .

上述各差检测器23-n、23-(n-1)…、23-1检测电容器6-n、6-(n-1)…、6-1的充电电压和基准电压Vrefn、Vref(n-1)…Vref1的差,将其检测输出分别提供给绝对值检测器24-n、24-(n-1)、…24-1。上述各绝对值检测器24-n、24-(n-1)、…24-1检测差的绝对值,将其输出提供给最大值检测器25。上述最大值检测器25检测绝对值的最大值,选择对应于其最大值的电容器的选择信号提供给上述被控电压选择器26,同时,将选择对应于其最大值的基准电压的选择信号提供给上述目标电压选择器27。The above-mentioned respective difference detectors 23-n, 23-(n-1)..., 23-1 detect the charge voltage and the reference voltage Vrefn, Vref(n The difference between -1) ... Vref1 is supplied to the absolute value detectors 24-n, 24-(n-1), ... 24-1, respectively. The absolute value detectors 24-n, 24-(n-1), . The above-mentioned maximum value detector 25 detects the maximum value of the absolute value, and the selection signal for selecting the capacitor corresponding to the maximum value is provided to the above-mentioned controlled voltage selector 26, and at the same time, the selection signal for selecting the reference voltage corresponding to the maximum value is provided to to the above-mentioned target voltage selector 27.

上述被控电压选择器26通过来自上述最大值检测器25的选择信号选择各电容器6-n、6-(n-1)…、6-1的一个充电电压并输入到第二误差放大器161的反转输入端子(-)中。上述目标电压选择器27通过来自上述最大值检测器25的选择信号从基准电压Vrefn、Vref(n-1)…Vref1中选择对应于选择电容器的基准电压并输入到上述第二误差放大器161的非反转输入端子(+)中。The above-mentioned controlled voltage selector 26 selects a charging voltage of each capacitor 6-n, 6-(n-1)..., 6-1 through the selection signal from the above-mentioned maximum value detector 25 and inputs it to the second error amplifier 161. Inversion input terminal (-). The target voltage selector 27 selects a reference voltage corresponding to the selection capacitor from among the reference voltages Vrefn, Vref(n-1) ... Vref1 by the selection signal from the maximum value detector 25, and inputs the reference voltage to the second error amplifier 161. Inversion input terminal (+).

在这种构成中,由于负载变化,各电容器6-n、6-(n-1)…、6-1的充电电压变化。差检测器23-n、23-(n-1)…、23-1分别检测电容器6-n、6-(n-1)…、6-1的充电电压和设定目标值的基准电压Vrefn、Vref(n-1)…Vref1的差,接着,绝对值检测器24-n、24-(n-1)、…24-1检测差的绝对值,而且,最大值检测器25检测绝对值的最大值。即,最大值检测器25检测基准电压和充电电压的差最大的电容器。最大值检测器25将选择差最大的电容器的充电电压的选择信号提供给被控电压选择器26,同时,将选择对应于差最大的电容器的基准电压的选择信号提供给目标电压选择器27。In this configuration, the charging voltage of each capacitor 6-n, 6-(n-1), . . . , 6-1 varies due to load variation. Difference detectors 23-n, 23-(n-1), . . . , 23-1 respectively detect charging voltages of capacitors 6-n, 6-(n-1), . , Vref(n-1) ... Vref1 difference, then, the absolute value detector 24-n, 24-(n-1), ... 24-1 detects the absolute value of the difference, and the maximum value detector 25 detects the absolute value the maximum value. That is, the maximum value detector 25 detects the capacitor having the largest difference between the reference voltage and the charging voltage. The maximum value detector 25 supplies a selection signal for selecting the charging voltage of the capacitor with the largest difference to the controlled voltage selector 26 , and simultaneously supplies a selection signal for selecting a reference voltage corresponding to the capacitor with the largest difference to the target voltage selector 27 .

由此,第二误差放大器161求出差最大的电容器的充电电压和对应的基准电压的差并提供给乘法器131。乘法器131通过来自第二误差放大器161的误差输出控制来自输入电流目标值设定电路142的正弦波形数据的振幅。来自乘法器131的输出分别通过电平移动电路20-n、20-(n-1)…进行电平移动,然后输入到第一误差放大器12-n、12-(n-1)…中。Thus, the second error amplifier 161 obtains the difference between the charging voltage of the capacitor with the largest difference and the corresponding reference voltage, and supplies it to the multiplier 131 . The multiplier 131 controls the amplitude of the sinusoidal waveform data from the input current target value setting circuit 142 through the error output from the second error amplifier 161 . Outputs from the multiplier 131 are level-shifted by level shift circuits 20-n, 20-(n-1)..., respectively, and then input to first error amplifiers 12-n, 12-(n-1)....

第一误差放大器12-n、12-(n-1)…将控制振幅的目标值的输入电流和输入电流输出电路5-n、5-(n-1)检测出的实际输入电流相比较,将其误差输出提供给驱动电路11-n、11-(n-1)…。驱动电路11-n、11-(n-1)…控制可变电阻器4-n、4-(n-1)…的阻抗使得实际输入电流接近目标值的输入电流。由此,将对应的电容器的充电电压控制成接近目标值。The first error amplifier 12-n, 12-(n-1)... compares the input current of the target value of the control amplitude with the actual input current detected by the input current output circuit 5-n, 5-(n-1), The error outputs thereof are supplied to drive circuits 11-n, 11-(n-1).... The drive circuits 11-n, 11-(n-1)... control the impedance of the variable resistors 4-n, 4-(n-1)... so that the actual input current approaches the input current of the target value. Accordingly, the charging voltage of the corresponding capacitor is controlled to be close to the target value.

本实施例和上述实施例相同,即使发生负载变化等,电容器6-n、6-(n-1)…的充电电压也能总是被控制为目标值而变成恒定,可使提供给负载的电压稳定化,同时,输入电流可变为正弦波状。This embodiment is the same as the above-mentioned embodiment, even if the load changes etc., the charging voltage of the capacitor 6-n, 6-(n-1)... can always be controlled to the target value and become constant, and the voltage supplied to the load can be made constant. The voltage is stabilized, and at the same time, the input current can become sinusoidal.

第七实施例Seventh embodiment

和上述第一至第六实施例相同的部分用相同的符号表示,详细说明从略。The parts that are the same as those in the above-mentioned first to sixth embodiments are denoted by the same symbols, and detailed description is omitted.

如图9所示,本实施例用比值检测器28-n、28-(n-1)…28-1来代替第六实施例的差检测器23-n、23-(n-1)…、23-1,用和1的差检测器29-n、29-(n-1)…29-1来代替绝对值检测器24-n、24-(n-1)、…24-1。As shown in Figure 9, the present embodiment replaces the difference detectors 23-n, 23-(n-1)...28-1 of the sixth embodiment with ratio detectors 28-n, 28-(n-1)... , 23-1, the absolute value detectors 24-n, 24-(n-1), .

该电路构成为:通过上述比值检测器28-n、28-(n-1)…28-1检测出电容器的充电电压和目标值之比后,通过和1的差检测器29-n、29-(n-1)…29-1检测检测出的比和1的差的绝对值,通过最大值检测器25检测检测出的和1的差的绝对值最大的,在使充电电压接近目标值的控制中使用该检测出的电容器的充电电压和目标值。例如,检测出的比值为0.5和1.2等时,求出|0.5-1|=0.5、|1.2-1|=0.2等,最大值检测器25判断0.5>0.2。This circuit is constituted as follows: after detecting the ratio between the charging voltage of the capacitor and the target value by the above-mentioned ratio detectors 28-n, 28-(n-1)...28-1, the difference detectors 29-n, 29 -(n-1)...29-1 detects the absolute value of the difference between the detected ratio and 1, and detects the maximum absolute value of the detected difference between the detected ratio and 1 by the maximum value detector 25, and makes the charging voltage close to the target value The detected charging voltage of the capacitor and the target value are used in the control of . For example, when the detected ratios are 0.5, 1.2, etc., |0.5-1|=0.5, |1.2-1|=0.2, etc. are obtained, and the maximum value detector 25 judges that 0.5>0.2.

这样,检测电容器的充电电压和目标值之比和1的差的绝对值最大的,并进行使电容器的充电电压接近目标值的控制,和上述实施例同样,即使发生负载变化等,总是将电容器6-n、6-(n-1)…、6-1的充电电压控制为目标值而变成恒定,可使提供给负载的电压稳定化,同时,输入电流可变为正弦波状。In this way, the absolute value of the difference between the ratio of the charging voltage of the capacitor and the target value and 1 is detected to be the largest, and control is performed to bring the charging voltage of the capacitor close to the target value. Like the above-mentioned embodiment, even if there is a load change, etc., the The charging voltage of the capacitors 6-n, 6-(n-1)..., 6-1 is controlled to be constant at the target value, and the voltage supplied to the load can be stabilized, and the input current can be sinusoidal.

第八实施例Eighth embodiment

和上述第一至第七实施例相同的部分使用相同符号,详细说明从略。The parts that are the same as those in the above-mentioned first to seventh embodiments use the same symbols, and detailed description is omitted.

如图10中所示的驱动电路7-1的结构,本实施例示出了上述第一实施例的变形例。即,在全波整流电路2的输出端子上并联连接电阻分压电路31,该电阻分压电路31的分压点电压由输出电路32输出。With the structure of the driving circuit 7-1 shown in FIG. 10, this embodiment shows a modified example of the first embodiment described above. That is, a resistor divider circuit 31 is connected in parallel to the output terminal of the full-wave rectifier circuit 2 , and the voltage at the divider point of the resistor divider circuit 31 is output from the output circuit 32 .

另一方面,在振幅控制单元7-12中设置电源电压检测电路33,来自上述输出电路32的输出由输入电路34接收并提供给上述电源电压检测电路33。上述输出电路32和输入电路34的关系例如是光电耦合器中发光二极管和光电晶体管的关系,输入电路34绝缘并取得来自输出电路32的输出信号。On the other hand, a power supply voltage detection circuit 33 is provided in the amplitude control unit 7-12, and an output from the above-mentioned output circuit 32 is received by an input circuit 34 and supplied to the above-mentioned power supply voltage detection circuit 33. The above-mentioned relationship between the output circuit 32 and the input circuit 34 is, for example, the relationship between a light emitting diode and a phototransistor in a photocoupler, and the input circuit 34 is insulated and obtains an output signal from the output circuit 32 .

上述电源电压检测电路33通过输出电路32、输入电路34检测电源电压,根据检测出的电源电压,改变设定充电电压的目标值的基准电压Vref。这里,虽然对驱动电路7-1的构成做了说明,但其他的驱动电路7-2~7-n的构成也相同。The power supply voltage detection circuit 33 detects the power supply voltage through the output circuit 32 and the input circuit 34, and changes the reference voltage Vref for setting the target value of the charging voltage according to the detected power supply voltage. Here, although the configuration of the drive circuit 7-1 has been described, the configurations of the other drive circuits 7-2 to 7-n are also the same.

在这种构成中,在来自全波整流器2的输入电压波形上升期间,可变电阻器4-1、4-2…4-n的阻抗以规定的定时从无限大切换成有限值,而且,对阻抗进行可变控制并顺次对各电容器6-1、6-2…、6-n进行充电。In this configuration, during the rise of the input voltage waveform from the full-wave rectifier 2, the impedances of the variable resistors 4-1, 4-2...4-n are switched from infinite to finite at predetermined timing, and, The impedance is variably controlled and the respective capacitors 6-1, 6-2..., 6-n are charged sequentially.

在来自全波整流器2的输入电压波形下降期间,若前级的电容器的充电电压等于输入电压,则将对应的可变电阻器的阻抗切换为无限大,同时,下一级的可变电阻器的阻抗切换为有限值,代替前级的电容器,开始对下一级的电容器充电。而且,控制成与正在对电容器进行充电之中对应的可变电阻器的阻抗减少,控制输入电流。During the fall of the input voltage waveform from the full-wave rectifier 2, if the charging voltage of the capacitor in the previous stage is equal to the input voltage, the impedance of the corresponding variable resistor is switched to infinite, and at the same time, the variable resistor of the next stage The impedance of the switch to a finite value replaces the capacitor of the previous stage and begins to charge the capacitor of the next stage. Then, the input current is controlled so that the impedance of the variable resistor corresponding to the charging of the capacitor decreases.

通过进行这种控制,来自全波整流器2的输入电流波形变成几乎和输入电压波形同相位的正弦波。这样,可改善充分抑制输入电流中高频分量的功率因数。By performing such control, the input current waveform from the full-wave rectifier 2 becomes a sine wave almost in phase with the input voltage waveform. In this way, the power factor for sufficiently suppressing high-frequency components in the input current can be improved.

在进行这种控制时,存在负载发生变化且电容器6-n、6-(n-1)…、6-1的充电电压低于或高于目标值的情况。在这种情况下,将电容器6-n、6-(n-1)…、6-1的充电电压控制为目标值。因此,即使发生负载变化等,电容器6-n、6-(n-1)…、6-1的充电电压也总被控制为目标值而变成恒定,即使发生负载变化等也能使提供给负载的电压稳定化。When performing such control, there are cases where the load changes and the charging voltage of the capacitors 6-n, 6-(n-1), . . . , 6-1 becomes lower or higher than the target value. In this case, the charging voltages of the capacitors 6-n, 6-(n-1), . . . , 6-1 are controlled to target values. Therefore, even if there is a load change, etc., the charging voltage of the capacitors 6-n, 6-(n-1)..., 6-1 is always controlled to a target value and becomes constant, and even if the load changes, etc., the voltage supplied to the The load voltage is stabilized.

在电源电压变化时,电源电压检测电路33通过输出电路32和输入电路34检测其变化。根据其变化可变基准电压Vref。即,电源电压比额定电压高时,电源电压检测电路33提高基准电压Vref,在电源电压比目标值的电压低时,电源电压检测电路33降低基准电压Vref。When the power supply voltage changes, the power supply voltage detection circuit 33 detects the change through the output circuit 32 and the input circuit 34 . The reference voltage Vref is variable according to its variation. That is, when the power supply voltage is higher than the rated voltage, the power supply voltage detection circuit 33 raises the reference voltage Vref, and when the power supply voltage is lower than the target voltage, the power supply voltage detection circuit 33 lowers the reference voltage Vref.

由此,减小构成可变电阻器4-1、4-2…4-n的MOS型FET的负载电压而抑制电路损失。可避免不流过输入电流的情况,可连续地流过输入电流。Accordingly, the load voltage of the MOS type FETs constituting the variable resistors 4-1, 4-2...4-n is reduced to suppress circuit loss. The situation where the input current does not flow can be avoided, and the input current can flow continuously.

第九实施例Ninth embodiment

和上述第一至第八实施例相同的部分用相同符号表示,详细说明从略。The parts that are the same as those in the above-mentioned first to eighth embodiments are denoted by the same symbols, and detailed description is omitted.

如图11所示,本实施例示出了上述第三实施例的变形例。即,由电阻35和36的串联电路组成的电阻分压电路37并联连接到全波整流电路2的输出端子上,将电容器38并联连接到电阻分压电路37的电阻36上,将电阻35和36的连接点连接到到第二误差放大器161的非反转输入端子(+)上。即,通过电阻36和电容器38的并联电路输出平均值电压,用平均值电压来代替用于设定电容器6-n的充电电压的目标值的基准电压Vrefn。As shown in FIG. 11, this embodiment shows a modified example of the third embodiment described above. That is, the resistor divider circuit 37 made up of the series circuit of resistors 35 and 36 is connected in parallel to the output terminal of the full-wave rectifier circuit 2, the capacitor 38 is connected in parallel to the resistor 36 of the resistor divider circuit 37, and the resistors 35 and 36 are connected in parallel. The connection point of 36 is connected to the non-inverting input terminal (+) of the second error amplifier 161 . That is, the average voltage is output from the parallel circuit of the resistor 36 and the capacitor 38, and the average voltage is used instead of the reference voltage Vrefn for setting the target value of the charging voltage of the capacitor 6-n.

在该构成中,电源电压从额定开始变化时,与其成比例地设定充电电压的目标值。由此,电容器的充电电压和电源电压的关系变成总是满足用于提高充电效率的条件,不会损失变化效率。在电源电压上升时,若进行提高电容器电压的控制,则减小构成可变电阻器4-n、4-(n-1)…的MOS型FET的负载电压而抑制电路损失。在电源电压下降时,若进行降低电容器电压的控制,则可避免不流过输入电流的情况,可连续流过输入电流。在本实施例中,和其他的实施例同样,即使发生负载变化等,电容器6-n、6-(n-1)…的充电电压也总是被控制为目标值而变成恒定,可使提供给负载的电压稳定化。In this configuration, when the power supply voltage changes from the rated value, the target value of the charging voltage is set in proportion to the change. As a result, the relationship between the charging voltage of the capacitor and the power supply voltage always satisfies the conditions for improving the charging efficiency, without losing the variation efficiency. When the power supply voltage rises, the load voltage of the MOS type FET constituting the variable resistors 4-n, 4-(n-1) . When the power supply voltage drops, if the control is performed to lower the capacitor voltage, it is possible to avoid the situation where the input current does not flow, and the input current can continue to flow. In this embodiment, as in the other embodiments, even if load changes or the like occur, the charging voltages of the capacitors 6-n, 6-(n-1)... are always controlled to be constant at target values, enabling Stabilizes the voltage supplied to the load.

第十实施例Tenth embodiment

和上述第一至第九实施例相同的部分用相同的符号表示,详细说明从略。The parts that are the same as those in the above-mentioned first to ninth embodiments are denoted by the same symbols, and detailed description is omitted.

如图12所示,本实施例示出了上述第二实施例的变形例。即,由(n+2)个电阻的串联电路组成的电阻分压电路40并联连接到全波整流电路2的输出端子上,该电阻分压电路40的(n+2)个电阻中,在n个电阻的串联电路上并联连接电容器41。而且,(n+1)个电阻的各连接点按电压低的顺序顺次连接到n个第二误差放大器16-1、16-2…的非反转输入端子(+)上。从而,在该电路中,(n+1)个电阻的各连接点电压代替用于设定各电容器6-1、6-2…的充电电压目标值的基准电压Vref1、Vref2…。As shown in FIG. 12, this embodiment shows a modified example of the second embodiment described above. That is, a resistor divider circuit 40 composed of a series circuit of (n+2) resistors is connected in parallel to the output terminal of the full-wave rectifier circuit 2, and among the (n+2) resistors of the resistor divider circuit 40, A capacitor 41 is connected in parallel to a series circuit of n resistors. Furthermore, the connection points of the (n+1) resistors are sequentially connected to the non-inverting input terminals (+) of the n second error amplifiers 16-1, 16-2, . . . in order of lower voltage. Therefore, in this circuit, each connection point voltage of (n+1) resistors is substituted for the reference voltages Vref1, Vref2... for setting the charging voltage target value of each capacitor 6-1, 6-2....

在该构成中,在电源电压从额定开始变化时,与其成比例地设定各电容器6-1、6-2…的充电电压的目标值。由此,各电容器的充电电压和电源电压的关系变成总是满足用于提高充电效率的条件,不会损失变化效率。在电源电压上升时,若进行提高电容器电压的控制,则减小构成可变电阻器4-n、4-(n-1)…的MOS型FET的负载电压而抑制电路损失。在电源电压下降时,若进行降低电容器电压的控制,则可避免不流过输入电流的情况,可连续流过输入电流。在本实施例中,和其他的实施例同样,即使发生负载变化等,电容器6-n、6-(n-1)…的充电电压也总是被控制为目标值而变成恒定,可使提供给负载的电压稳定化。In this configuration, when the power supply voltage changes from the rated value, the target value of the charging voltage of each capacitor 6-1, 6-2... is set in proportion thereto. As a result, the relationship between the charging voltage of each capacitor and the power supply voltage always satisfies the conditions for improving the charging efficiency, without losing the variation efficiency. When the power supply voltage rises, the load voltage of the MOS type FET constituting the variable resistors 4-n, 4-(n-1) . When the power supply voltage drops, if the control is performed to lower the capacitor voltage, it is possible to avoid the situation where the input current does not flow, and the input current can continue to flow. In this embodiment, as in the other embodiments, even if load changes or the like occur, the charging voltages of the capacitors 6-n, 6-(n-1)... are always controlled to be constant at target values, enabling Stabilizes the voltage supplied to the load.

以下,对于第二本发明而言,参考图13至图30说明第11至第18实施例。第11至第18实施例的说明中以及图13至图30的图面中的符号适用于第11至第18实施例。Hereinafter, for the second present invention, the eleventh to eighteenth embodiments will be described with reference to FIGS. 13 to 30 . The symbols in the description of the eleventh to eighteenth embodiments and the drawings in FIGS. 13 to 30 are applicable to the eleventh to eighteenth embodiments.

第11实施例11th embodiment

如图13所示,分别由FET(场效应晶体管)等组成的n个开关12-1、12-2…12-n的一端连接到发生不同的正电压值的n个直流电压源11-1、11-2…11-n的正极端子上。上述各开关12-1~12-n构成开关电路。上述各开关12-1~12-n连接到极性反转电路13的一端上。As shown in FIG. 13, one end of n switches 12-1, 12-2...12-n composed of FETs (field effect transistors) etc. is connected to n DC voltage sources 11-1 generating different positive voltage values. , 11-2...11-n positive terminal. The switches 12-1 to 12-n described above constitute a switch circuit. The switches 12 - 1 to 12 - n are connected to one end of the polarity inversion circuit 13 .

上述极性反转电路13由FET等组成的4个开关14-1、14-2、14-3、14-4构成。即,开关14-1和开关14-2的串联电路与开关14-3和开关14-4的串联电路并联连接,上述各开关12-1~12-n的一端连接到上述开关14-1、14-3的一端上。The polarity inversion circuit 13 is constituted by four switches 14-1, 14-2, 14-3, and 14-4 composed of FETs and the like. That is, the series circuit of the switch 14-1 and the switch 14-2 is connected in parallel to the series circuit of the switch 14-3 and the switch 14-4, and one end of each of the switches 12-1 to 12-n is connected to the switches 14-1, 14-3 on one end.

上述极性反转电路13的另一端即上述开关14-2、144的另一端连接到上述各直流电压源11-1~11-n的负极端子上。通过低电阻等组成的电灯电流检测器16将放电灯15连接在上述极性反转电路13中开关14-1和开关14-2的连接点与开关14-3和开关14-4的连接点之间。The other end of the polarity inverting circuit 13, that is, the other ends of the switches 14-2 and 144 are connected to the negative terminals of the DC voltage sources 11-1 to 11-n. The discharge lamp 15 is connected to the connection point of the switch 14-1 and the switch 14-2 and the connection point of the switch 14-3 and the switch 14-4 in the above-mentioned polarity inversion circuit 13 through a lamp current detector 16 composed of a low resistance or the like. between.

上述各开关12-1~12-n通过驱动电路17顺次择一地反复开关,从上述各电流电压源11-1~11-n中顺次择一地取出直流电压值,将包含零电压值的阶梯状电压波形输出到上述极性反转电路13中。上述极性反转电路13在上述各开关12-1~12-n的反复动作的每个周期中交互反复开关14-1、14-4的开和开关14-2、14-3的开,例如以数十KHz的高频向放电灯15提供阶梯状电压的电压波形。The above-mentioned switches 12-1~12-n are repeatedly switched one by one through the drive circuit 17, and the DC voltage values are sequentially taken out from the above-mentioned current and voltage sources 11-1~11-n, which will include zero voltage The stepped voltage waveform of the value is output to the polarity inversion circuit 13 described above. The polarity inversion circuit 13 alternately repeats the opening of the switches 14-1 and 14-4 and the opening of the switches 14-2 and 14-3 in each cycle of the repeated operation of the above-mentioned switches 12-1 to 12-n, For example, a voltage waveform of a stepped voltage is supplied to the discharge lamp 15 at a high frequency of several tens of KHz.

上述电灯电流检测器16检测出的放电灯电流提供给有效值转换器18。上述有效值转换器18通过获得电灯电流检测器16检测到的放电灯电流,变换成根据放电灯电流的有效值的电压,其有效值电压提供给误差放大器19的反转输入端子(-)。相当于放电灯电流有效值的额定值的电压Vref提供给上述误差放大器19的非反转输入端子(+)。The discharge lamp current detected by the lamp current detector 16 is supplied to an effective value converter 18 . The effective value converter 18 converts the discharge lamp current detected by the lamp current detector 16 into a voltage according to the effective value of the discharge lamp current, and the effective value voltage is supplied to the inverting input terminal (-) of the error amplifier 19 . A voltage Vref corresponding to a rated value of the effective value of the discharge lamp current is supplied to the non-inverting input terminal (+) of the above-mentioned error amplifier 19 .

上述误差放大器19将来自有效值转换器18的有效值电压和相当于额定值的电压Vref相比较,输出用于使有效值电压接近相当于额定值的电压Vref的反馈信号。来自上述误差放大器19的反馈信号提供给控制器20的开/关定时控制部21。The error amplifier 19 compares the effective value voltage from the effective value converter 18 with the voltage Vref equivalent to the rated value, and outputs a feedback signal for bringing the effective value voltage closer to the voltage Vref equivalent to the rated value. A feedback signal from the above-mentioned error amplifier 19 is supplied to the on/off timing control section 21 of the controller 20 .

上述开/关定时控制部21通过来自误差放大器19的反馈信号决定上述驱动电路17开、关各开关12-1~12-n的定时并将定时信号提供给同一控制器20的驱动信号发生部22。The on/off timing control section 21 determines the timing of opening and closing the respective switches 12-1 to 12-n of the above-mentioned drive circuit 17 through the feedback signal from the error amplifier 19, and supplies the timing signal to the drive signal generation section of the same controller 20. twenty two.

上述驱动信号发生部22从时钟发生部23获取时钟信号,使由上述开/关定时控制部21决定的定时的驱动信号和时钟信号同步并提供给上述驱动电路17。由此,上述驱动电路17使各开关12-1~12-n按规定的定时顺次择一地进行开动作,使得有效值电压接近相当于额定值的电压Vref。这样,通过来自时钟发生部23的时钟信号固定包含从极性反转电路13提供给放电灯15的零电压值的阶梯状电压波形的频率。The driving signal generation unit 22 acquires a clock signal from the clock generation unit 23 , and supplies the driving signal to the driving circuit 17 in synchronization with the timing determined by the on/off timing control unit 21 and the clock signal. Accordingly, the drive circuit 17 sequentially turns on each of the switches 12-1 to 12-n at a predetermined timing so that the effective value voltage approaches the voltage Vref corresponding to the rated value. In this way, the frequency of the stepped voltage waveform including the zero voltage value supplied from the polarity inversion circuit 13 to the discharge lamp 15 is fixed by the clock signal from the clock generator 23 .

控制器20将开关控制各开关12-1~12-n的驱动信号输出到驱动电路17中,使得在来自有效值转换器18的有效值电压与相当于额定值的电压Vref大致相等时,将如图14(b)所示包含零电压值的阶梯状电压波形从极性反转电路13提供给放电灯15。The controller 20 outputs to the drive circuit 17 the drive signals for switching the switches 12-1 to 12-n so that when the effective value voltage from the effective value converter 18 is substantially equal to the voltage Vref corresponding to the rated value, the A stepped voltage waveform including zero voltage value is supplied from the polarity inversion circuit 13 to the discharge lamp 15 as shown in FIG. 14( b ).

控制器20将开关控制各开关12-1~12-n的驱动信号输出到驱动电路17中,使得在来自有效值转换器18的有效值电压比相当于额定值的电压Vref低时,将如图14(a)所示包含零电压值的阶梯状电压波形从极性反转电路13提供给放电灯15。即,控制器20进行这样的控制:越是阶梯状电压波形中的高电压值,输出时间越长,越是包含零电压值的低电压值,输出时间越短。The controller 20 outputs, to the drive circuit 17, driving signals for switching the switches 12-1 to 12-n so that when the effective value voltage from the effective value converter 18 is lower than the voltage Vref corresponding to the rated value, it will be as follows: A step-shaped voltage waveform including zero voltage value shown in FIG. 14( a ) is supplied from the polarity inversion circuit 13 to the discharge lamp 15 . That is, the controller 20 performs control such that the higher the voltage value in the stepped voltage waveform is, the longer the output time is, and the lower the voltage value including the zero voltage value, the shorter the output time is.

控制器20将开关控制各开关12-1~12-n的驱动信号输出到驱动电路17中,使得在来自有效值转换器18的有效值电压比相当于额定值的电压Vref高时,将如图14(c)所示包含零电压值的阶梯状电压波形从极性反转电路13提供给放电灯15。即,控制器20进行这样的控制:阶梯状电压波形中,电压值越高,输出时间越短,包含零电压值的电压值越低,输出时间越长。The controller 20 outputs, to the drive circuit 17, driving signals for switching and controlling the respective switches 12-1 to 12-n so that when the effective value voltage from the effective value converter 18 is higher than the voltage Vref corresponding to the rated value, it will be as follows: A step-shaped voltage waveform including zero voltage value shown in FIG. 14( c ) is supplied from the polarity inversion circuit 13 to the discharge lamp 15 . That is, the controller 20 performs control such that, in the stepped voltage waveform, the higher the voltage value, the shorter the output time, and the lower the voltage value including the zero voltage value, the longer the output time.

通过进行这样的控制,放电灯15中流动的放电灯电流被控制为其有效值变为恒定,因此,在放电灯15中流动的放电灯电流被限流而稳定。即,不使用线圈等绕组部件,可稳定放电灯15而使其照明,可实现装置的小型、轻量化。By performing such control, the effective value of the discharge lamp current flowing through the discharge lamp 15 is controlled to be constant, and therefore, the discharge lamp current flowing through the discharge lamp 15 is limited and stabilized. That is, without using winding components such as coils, the discharge lamp 15 can be stably illuminated, and the size and weight of the device can be reduced.

通过该控制,控制向放电灯15提供零电压值的时间,因此,可扩大所取的供给电压的有效值的控制范围。By this control, the time for supplying the zero voltage value to the discharge lamp 15 is controlled, and therefore, the control range of the effective value of the supply voltage to be taken can be expanded.

作为另外的控制,控制器20输出开关控制各开关12-1~12-n的驱动信号,使得在来自有效值转换器18的有效值电压和相当于额定值的电压Vref大致相等时,通过各开关12-1~12-n向极性反转电路13提供图15(b)所示的阶梯状电压波形。As another control, the controller 20 outputs switching control driving signals for the respective switches 12-1 to 12-n so that when the effective value voltage from the effective value converter 18 is approximately equal to the voltage Vref equivalent to the rated value, each The switches 12 - 1 to 12 - n supply the polarity inversion circuit 13 with a stepped voltage waveform shown in FIG. 15( b ).

控制器20进行这样的控制:在来自有效值转换器18的有效值电压比相当于额定值的电压Vref低时,通过各开关12-1~12-n向极性反转电路13施加图15(a)所示的零电压值的时间为恒定的阶梯状电压波形中,越是高电压值,输出时间越长,越是低电压值,输出时间越短。The controller 20 performs such a control that when the effective value voltage from the effective value converter 18 is lower than the voltage Vref corresponding to the rated value, the polarity reversal circuit 13 is supplied with the voltage shown in FIG. 15 through the switches 12-1 to 12-n. In the stepped voltage waveform in which the time of the zero voltage value shown in (a) is constant, the higher the voltage value is, the longer the output time is, and the lower the voltage value is, the shorter the output time is.

控制器20进行这样的控制:在来自有效值转换器18的有效值电压比相当于额定值的电压Vref高时,通过各开关12-1~12-n向极性反转电路13施加图15(a)所示的零电压值的时间为恒定的阶梯状电压波形中,越是高电压值,输出时间越长,越是低电压值,输出时间越短。The controller 20 performs such control that when the effective value voltage from the effective value converter 18 is higher than the voltage Vref corresponding to the rated value, the polarity inversion circuit 13 is supplied with the voltage shown in FIG. 15 through the switches 12-1 to 12-n. In the stepped voltage waveform in which the time of the zero voltage value shown in (a) is constant, the higher the voltage value is, the longer the output time is, and the lower the voltage value is, the shorter the output time is.

进行这种控制,在放电灯15中流过的放电灯电流被限流而稳定。通过该控制,给放电灯15供电的期间总是变成恒定的,因此,放电灯的发光效率提高,可抑制从放电灯放射的放射杂音。By performing such control, the discharge lamp current flowing through the discharge lamp 15 is limited and stabilized. By this control, the period during which power is supplied to the discharge lamp 15 is always constant, so that the luminous efficiency of the discharge lamp is improved, and emission noise emitted from the discharge lamp can be suppressed.

第12实施例12th embodiment

和上述第11实施例相同的部分用相同的符号表示,这些部分的详细说明从略。The parts that are the same as those in the above-mentioned eleventh embodiment are denoted by the same symbols, and the detailed description of these parts will be omitted.

如图16所示,使用新发生的不同负电压值的n个直流电压源31-1、31-2…31-n,在该直流电压源31-1~31-n的负极端子上连接分别由FET(场效应晶体管)等组成的n个开关32-1、32-2……32-n的一端。各开关12-1~12-n构成第一开关电路,上述各开关32-1~32n构成第二开关电路。As shown in FIG. 16, using n DC voltage sources 31-1, 31-2...31-n with newly generated different negative voltage values, connect the negative terminals of the DC voltage sources 31-1 to 31-n respectively One end of n switches 32 - 1 , 32 - 2 . . . 32 - n composed of FET (Field Effect Transistor) or the like. The switches 12-1 to 12-n constitute a first switch circuit, and the switches 32-1 to 32n constitute a second switch circuit.

在不使用极性反转电路13的情况下,上述各开关12-1~12-n的另一端及上述各32-1~32-n的另一端连接到放电灯15的一端上。上述放电灯15的另一端通过电灯电流检测器16连接到直流电压源11-1~11-n的负极端子及上述各直流电压源31-1~31-n的正极端子上。此外,其他的构成和上述实施例相同。When the polarity inversion circuit 13 is not used, the other ends of the switches 12 - 1 to 12 - n and the other ends of the switches 32 - 1 to 32 - n are connected to one end of the discharge lamp 15 . The other end of the discharge lamp 15 is connected to the negative terminals of the DC voltage sources 11-1 to 11-n and the positive terminals of the respective DC voltage sources 31-1 to 31-n through the lamp current detector 16. In addition, other configurations are the same as the above-mentioned embodiment.

在这种构成中,控制器20将开关控制各开关12-1~12-n、32-1~32-n的驱动信号输出到驱动电路17中,使得在来自有效值转换器18的有效值电压和相当于额定值的电压Vref大致相等时,通过各开关开关12-1~12-n、32-1~32-n向放电灯15提供包含图14(b)或图15(b)所示的包含零电压值的阶梯状电压波形。In this configuration, the controller 20 outputs the drive signals for switching the switches 12-1 to 12-n and 32-1 to 32-n to the drive circuit 17 so that the effective value from the effective value converter 18 When the voltage is substantially equal to the voltage Vref equivalent to the rated value, the discharge lamp 15 is supplied with the power supply including the voltage shown in FIG. 14(b) or FIG. The shown step-like voltage waveform contains zero voltage value.

控制器20将开关控制各开关12-1~12-n、32-1~32-n的驱动信号输出到驱动电路17中,使得在来自有效值转换器18的有效值电压比相当于额定值的电压Vref低时,通过各开关开关12-1~12-n、32-1~32-n向放电灯15提供图14(a)或图15(a)所示的包含零电压值的阶梯状电压波形。即,进行这样的控制:在越是阶梯状电压波形中的高电压值,输出时间越长,越是包含零电压值的低电压值,输出时间越短,或者零电压值的输出时间固定,电压值越低,输出时间越短。The controller 20 outputs the drive signals for switching the switches 12-1 to 12-n and 32-1 to 32-n to the drive circuit 17 so that the effective value voltage ratio from the effective value converter 18 is equivalent to the rated value When the voltage Vref of Vref is low, the discharge lamp 15 is provided with a step including zero voltage value as shown in FIG. 14(a) or FIG. shaped voltage waveform. That is, control is performed such that the higher the voltage value in the stepped voltage waveform, the longer the output time, the lower the voltage value including the zero voltage value, the shorter the output time, or the output time of the zero voltage value is fixed, The lower the voltage value, the shorter the output time.

控制器20将开关控制各开关12-1~12-n、32-1~32-n的驱动信号输出到驱动电路17中,使得在来自有效值转换器18的有效值电压比相当于额定值的电压Vref高时,通过各开关开关12-1~12-n、32-1~32-n向放电灯15提供图14(c)或图15(c)所示的包含零电压值的阶梯状电压波形。即,进行这样的控制:在阶梯状电压波形中,电压值越高,输出时间越短,包含零电压值的电压值越低,输出时间越长,或者零电压值的输出时间固定,电压值越低,输出时间越长。The controller 20 outputs the drive signals for switching the switches 12-1 to 12-n and 32-1 to 32-n to the drive circuit 17 so that the effective value voltage ratio from the effective value converter 18 is equivalent to the rated value When the voltage Vref of Vref is high, the discharge lamp 15 is provided with a step including zero voltage value as shown in FIG. 14(c) or FIG. shaped voltage waveform. That is, such control is performed that, in the stepped voltage waveform, the higher the voltage value, the shorter the output time, the lower the voltage value including the zero voltage value, the longer the output time, or the fixed output time of the zero voltage value, the voltage value The lower the value, the longer the output time.

因此,在本实施例中,控制在放电灯15中流过的放电灯电流使得其有效值变为恒定,在放电灯15中流过的放电灯电流被限流而稳定。因此,和上述实施例一样,可实现装置的小型、轻量化。Therefore, in this embodiment, the discharge lamp current flowing through the discharge lamp 15 is controlled so that its effective value becomes constant, and the discharge lamp current flowing through the discharge lamp 15 is limited and stabilized. Therefore, similarly to the above-described embodiments, the device can be reduced in size and weight.

在本实施例中,若如图14所示那样进行阶梯状电压波形的控制,则可扩大所取的供给电压有效值的控制范围。若进行如图15所示那样的阶梯状电压波形的控制,则可提高发光效率,可抑制放射杂音。In this embodiment, if the control of the stepped voltage waveform is performed as shown in FIG. 14, the control range of the effective value of the supplied voltage can be expanded. By controlling the stepped voltage waveform as shown in FIG. 15, the luminous efficiency can be improved and emission noise can be suppressed.

第13实施例Thirteenth embodiment

和上述第11至第12实施例相同的部分用相同的符号表示,这些部分的详细说明从略。如图17所示,用电容器来代替上述第11实施例中的直流电压源11-1~11-n。The parts that are the same as those in the eleventh to twelfth embodiments described above are denoted by the same symbols, and detailed descriptions of these parts are omitted. As shown in FIG. 17, capacitors are used instead of the DC voltage sources 11-1 to 11-n in the eleventh embodiment described above.

即,全波整流器42的输入端子连接到商用交流电源41上,电容器44-1、44-2…44-n分别通过由FET(场效应晶体管)组成的可变电阻器43-1、43-2…43-n分别连接到全波整流器42的输出端子上。分别通过开关12-1、12-2…12-n将极性反转电路13连接到上述各电容器44-1~44-n上。That is, the input terminal of the full-wave rectifier 42 is connected to the commercial AC power supply 41, and the capacitors 44-1, 44-2...44-n pass through the variable resistors 43-1, 43-n composed of FETs (field effect transistors), respectively. 2 . . . 43-n are connected to output terminals of the full-wave rectifier 42, respectively. The polarity inversion circuit 13 is connected to the respective capacitors 44-1 to 44-n through switches 12-1, 12-2...12-n, respectively.

上述各可变电阻器43-1~43-n在非饱和区域驱动FET而实现作为可变电阻器的功能,因此,控制成仅在分别充电对应的电容器44-1~44-n期间,阻抗变为有限值,在此之外的期间,阻抗变为无限大。上述各可变电阻器43-1~43-n变成控制充电各电容器44-1~44-n时的阻抗,使得大致和商用交流输入电压成比例的波形的输入电流从上述全波整流器42流入。The variable resistors 43-1 to 43-n mentioned above drive FETs in the non-saturated region to realize the function as variable resistors. Therefore, they are controlled so that the impedance of becomes a finite value, and other than this period, the impedance becomes infinite. The above-mentioned variable resistors 43-1 to 43-n become impedances when controlling the charging of the respective capacitors 44-1 to 44-n, so that the input current of a waveform approximately proportional to the commercial AC input voltage flows from the above-mentioned full-wave rectifier 42 inflow.

在商用交流电源41的电源电压的绝对值上升期间,在某个电容器的电压等于商用交流电源电压的绝对值时开始该电容器的充电,在下级电容器的电压等于商用交流电源电压的绝对值时停止,在商用交流电源41的电源电压的绝对值下降期间,在前1个电容器的电压等于商用交流电源电压的绝对值时开始某个电容器的充电,在充电电压等于商用交流电源电压的绝对值时停止。其他的构成和上述第12实施例相同。During the rise of the absolute value of the power supply voltage of the commercial AC power supply 41, the charging of a certain capacitor is started when the voltage of the capacitor is equal to the absolute value of the commercial AC power supply voltage, and is stopped when the voltage of the lower stage capacitor is equal to the absolute value of the commercial AC power supply voltage. , during the period when the absolute value of the power supply voltage of the commercial AC power supply 41 drops, the charging of a certain capacitor starts when the voltage of the previous capacitor is equal to the absolute value of the commercial AC power supply voltage, and when the charging voltage is equal to the absolute value of the commercial AC power supply voltage stop. Other configurations are the same as those of the above-mentioned twelfth embodiment.

在该构成中,根据全波整流器42的输出电压的变化控制各可变电阻器43-1~43-n变成顺次规定的阻抗,通过各可变电阻器43-1~43-n在各电容器44-1~44-n中流过期望的充电电流。In this configuration, the variable resistors 43-1 to 43-n are controlled to have sequentially prescribed impedances according to changes in the output voltage of the full-wave rectifier 42. A desired charging current flows through each of the capacitors 44-1 to 44-n.

即,在全波整流器42的输出电压上升时,通过可变电阻器43-1对电容器44-1进行充电时,若全波整流器42的输出电压等于下一级的电容器44-2的充电电压,则可变电阻器43-1的阻抗从有限值切换到无限大,并停止对电容器44-1充电,取而代之,可变电阻器43-2的阻抗从无限大切换为有限值,通过可变电阻器43-2对电容器44-2进行充电。That is, when the output voltage of the full-wave rectifier 42 rises, when the capacitor 44-1 is charged by the variable resistor 43-1, if the output voltage of the full-wave rectifier 42 is equal to the charging voltage of the next-stage capacitor 44-2 , then the impedance of the variable resistor 43-1 switches from a finite value to an infinite value, and stops charging the capacitor 44-1, instead, the impedance of the variable resistor 43-2 switches from an infinite value to a finite value, through the variable The resistor 43-2 charges the capacitor 44-2.

这样,在全波整流器42的输出电压上升期间,各可变电阻器43-1~43-n的阻抗以规定的定时从无限大切换为有限值,在各电容器44-1~44-n中流过预先设定的目标值的充电电流。In this way, while the output voltage of the full-wave rectifier 42 is rising, the impedances of the variable resistors 43-1 to 43-n are switched from infinite to finite at predetermined timing, and current flows in the capacitors 44-1 to 44-n. The charging current exceeds the preset target value.

在全波整流器42的输出电压下降时,若电容器44-n的充电电压等于全波整流器42的输出电压,则可变电阻器43-n的阻抗从有限值切换为无限大,同时,可变电阻器43-(n-1)的阻抗从无限大切换为有限值,取代电容器44-n,开始向电容器44-(n-1)充电。When the output voltage of the full-wave rectifier 42 drops, if the charging voltage of the capacitor 44-n is equal to the output voltage of the full-wave rectifier 42, the impedance of the variable resistor 43-n is switched from a finite value to an infinite value, and at the same time, the variable The resistance of the resistor 43-(n-1) is switched from infinite to finite, and instead of the capacitor 44-n, the capacitor 44-(n-1) starts to be charged.

这样,在全波整流器42的输出电压下降期间,各可变电阻器43-1~43-n的阻抗以规定的定时从无限大切换为有限值,在各电容器44-1~44-n中流过预先设定的目标值的充电电流。设定目标值的充电电流波形作为和输入电压波形同相位的正弦波,通过进行这种控制,来自全波整流器42的输入电流波形可变成几乎和电压波形同相位的正弦波,可提高输入功率因数。In this way, while the output voltage of the full-wave rectifier 42 is falling, the impedances of the variable resistors 43-1 to 43-n are switched from infinite to finite at predetermined timing, and current flows in the capacitors 44-1 to 44-n. The charging current exceeds the preset target value. The charging current waveform of the target value is set as a sine wave having the same phase as the input voltage waveform. By performing this control, the input current waveform from the full-wave rectifier 42 can be changed into a sine wave having almost the same phase as the voltage waveform, and the input voltage can be improved. power factor.

另一方面,各开关12-1~12-n以比各可变电阻器43-1~43-n切换阻抗的周期早的周期顺次进行开关动作,顺次向极性反转电路13提供各电容器44-1~44-n的充电电压。而且,从极性反转电路13向放电灯15提供阶梯状电压波形。这样,放电灯15被高频照明。On the other hand, the switches 12-1 to 12-n sequentially perform switching operations at a cycle earlier than the cycle of switching impedances of the variable resistors 43-1 to 43-n, and sequentially supply polarity inverting circuit 13 with The charging voltage of each capacitor 44-1 to 44-n. Furthermore, a stepped voltage waveform is supplied from the polarity inversion circuit 13 to the discharge lamp 15 . In this way, the discharge lamp 15 is illuminated with high frequency.

在本实施例中,从极性反转电路13向放电灯15提供的阶梯状电压波形被控制成在放电灯15中流过的放电灯电流的有效值变为恒定,因此,在放电灯15中流过的放电灯电流被限流而稳定。因此,和上述实施例一样,可实现装置的小型、轻量化。In this embodiment, the stepped voltage waveform supplied from the polarity inversion circuit 13 to the discharge lamp 15 is controlled so that the effective value of the discharge lamp current flowing in the discharge lamp 15 becomes constant, and therefore, the current flowing in the discharge lamp 15 becomes constant. The excess discharge lamp current is limited and stabilized. Therefore, similarly to the above-described embodiments, the device can be reduced in size and weight.

在本实施例中,若如图14所示进行阶梯状电压波形的控制,则可扩大所取的供给电压有效值的控制范围。若如图15所示进行阶梯状电压波形的控制,则可提高放电灯的发光效率,可抑制从放电灯放射的放射杂音。In this embodiment, if the control of the stepped voltage waveform is performed as shown in FIG. 14, the control range of the effective value of the supply voltage can be expanded. By controlling the stepwise voltage waveform as shown in FIG. 15, the luminous efficiency of the discharge lamp can be improved, and radiation noise emitted from the discharge lamp can be suppressed.

第14实施例14th embodiment

本实施例的构成如图16所示。在本实施例中,例如,作为一个例子,在放电灯电流的有效值处于额定状态时,如图18(b)所示,各开关12-1~12-n、32-1~32-n的接通时间不可变而为恒定,且将包含零电压值的阶梯状电压波形提供给放电灯15。The structure of this embodiment is shown in FIG. 16 . In this embodiment, for example, as an example, when the effective value of the discharge lamp current is in the rated state, as shown in FIG. The on-time of the lamp is not variable but constant, and a stepped voltage waveform including zero voltage value is supplied to the discharge lamp 15 .

在放电灯电流的有效值增加得比额定还大时,如图18(a)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,对应开关的接通时间不可变而为恒定,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,对应开关的接通时间可变长,并向放电灯15提供阶梯状电压波形。When the effective value of the discharge lamp current increases more than the rated value, as shown in FIG. 18(a), when the voltage from the DC voltage source whose voltage is higher than the rated effective value is supplied to the discharge lamp 15, the connection of the corresponding switch The on-time is not variable but constant. When the voltage from the DC voltage source whose voltage is lower than the rated effective value is supplied to the discharge lamp 15, the on-time of the corresponding switch can be extended, and a stepped voltage waveform is provided to the discharge lamp 15. .

在放电灯电流的有效值减少得比额定还小时,如图18(c)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,对应开关的接通时间不可变而为恒定,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,对应开关的接通时间可变短,并向放电灯15提供阶梯状电压波形。When the effective value of the discharge lamp current decreases smaller than the rated value, as shown in FIG. 18(c), when the voltage from the DC voltage source whose voltage is higher than the rated effective value is supplied to the discharge lamp 15, the corresponding switch is turned on. The time is not variable but constant. When the voltage from the DC voltage source whose voltage is lower than the rated effective value is supplied to the discharge lamp 15, the on-time of the corresponding switch can be shortened, and a stepped voltage waveform is provided to the discharge lamp 15.

通过进行这种控制,可将电流的有效值控制为恒定,由此,可不使用绕组部件而使放电灯15稳定地照明,可使装置的小型、轻量化。By performing such control, the effective value of the electric current can be controlled to be constant, thereby enabling the discharge lamp 15 to be illuminated stably without using a winding member, and the size and weight of the device can be reduced.

作为另一个例子,在放电灯电流的有效值处于额定状态时,如图19(b)所示,各开关12-1~12-n、32-1~32-n的接通时间不可变而为恒定,将包含零电压值的阶梯状电压波形提供给放电灯15。As another example, when the effective value of the discharge lamp current is in the rated state, as shown in FIG. To be constant, a stepped voltage waveform including a zero voltage value is supplied to the discharge lamp 15 .

在放电灯电流的有效值增加得比额定还大时,如图19(a)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为变短,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间不可变而为恒定,向放电灯15提供阶梯状电压波形。When the effective value of the discharge lamp current increases more than the rated value, as shown in FIG. The time is controlled to be shortened. When the voltage from the DC voltage source whose voltage is lower than the rated effective value is supplied to the discharge lamp 15, the ON time of the switch is not variable but constant, and the discharge lamp 15 is supplied with a stepped voltage waveform.

在放电灯电流的有效值减少得比额定还小时,如图19(c)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为变长,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间不可变而为恒定,向放电灯15提供阶梯状电压波形。When the effective value of the discharge lamp current decreases smaller than the rated value, as shown in Fig. 19(c), when the voltage from a DC voltage source having a voltage higher than the rated effective value is supplied to the discharge lamp 15, the ON time of the switch Controlled to be longer, when the voltage from the DC voltage source whose voltage is lower than the rated effective value is supplied to the discharge lamp 15, the ON time of the switch is not variable but constant, and a stepped voltage waveform is supplied to the discharge lamp 15.

通过进行这种控制,可将放电灯电流的有效值控制为恒定,由此,可不使用绕组部件而使放电灯15稳定地照明,可使装置的小型、轻量化。By performing such control, the effective value of the current of the discharge lamp can be controlled to be constant, whereby the discharge lamp 15 can be stably illuminated without using a winding member, and the size and weight of the device can be reduced.

作为另一个例子,在放电灯电流的有效值处于额定状态时,如图20(b)所示,各开关12-1~12-n、32-1~32-n的接通时间不可变而为恒定,将包含零电压值的阶梯状电压波形提供给放电灯15。As another example, when the effective value of the discharge lamp current is in the rated state, as shown in FIG. To be constant, a stepped voltage waveform including a zero voltage value is supplied to the discharge lamp 15 .

在放电灯电流的有效值增加得比额定还大时,如图20(a)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为变短,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为变长,向放电灯15提供阶梯状电压波形。When the effective value of the discharge lamp current is increased more than the rated value, as shown in FIG. The time is controlled to be shortened, and when the voltage from the DC voltage source whose voltage is lower than the rated effective value is supplied to the discharge lamp 15, the on-time of the switch is controlled to be long, and the discharge lamp 15 is provided with a stepped voltage waveform.

在放电灯电流的有效值减少得比额定还小时,如图20(c)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为变长,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为变短,向放电灯15提供阶梯状电压波形。When the effective value of the discharge lamp current decreases smaller than the rated value, as shown in FIG. 20(c), when the voltage from a DC voltage source having a voltage higher than the rated effective value is supplied to the discharge lamp 15, the ON time of the switch Controlled to be longer, when the voltage from the DC voltage source whose voltage is lower than the rated effective value is supplied to the discharge lamp 15, the ON time of the switch is controlled to be shortened, and the discharge lamp 15 is supplied with a stepped voltage waveform.

通过进行这种控制,可将放电灯电流的有效值控制为恒定,由此,可不使用绕组部件而使放电灯15稳定地照明,可使装置的小型、轻量化。By performing such control, the effective value of the current of the discharge lamp can be controlled to be constant, whereby the discharge lamp 15 can be stably illuminated without using a winding member, and the size and weight of the device can be reduced.

作为另一个例子,如图21所示,在提供给放电灯15的阶梯状电压波形频率几乎固定的状态下,进行这样的控制:和额定有效值的差越大的直流电压源,对应的开关接通时间越长,或者增大缩短接通时间的程度。即,在放电灯电流的有效值处于额定状态时,如图21(b)所示,各开关12-1~12-n、32-1~32-n的接通时间不可变而为恒定,将包含零电压值的阶梯状电压波形提供给放电灯15。As another example, as shown in FIG. 21, in a state where the frequency of the stepped voltage waveform supplied to the discharge lamp 15 is almost constant, control is performed such that the DC voltage source whose difference from the rated effective value is larger, the corresponding switch The longer the on-time, or increase the degree to shorten the on-time. That is, when the effective value of the discharge lamp current is in the rated state, as shown in FIG. 21(b), the on-times of the switches 12-1 to 12-n and 32-1 to 32-n are not variable but constant. A stepped voltage waveform including a zero voltage value is supplied to the discharge lamp 15 .

在放电灯电流的有效值增加得比额定还大时,如图21(a)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为尽可能变短,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为尽可能变长,向放电灯15提供阶梯状电压波形。When the effective value of the discharge lamp current increases more than the rated value, as shown in Fig. 21(a), when the voltage from the DC voltage source whose voltage is higher than the rated effective value is supplied to the discharge lamp 15, the switch-on The time is controlled to be as short as possible, and when the voltage from a DC voltage source whose voltage is lower than the rated effective value is supplied to the discharge lamp 15, the on-time of the switch is controlled to be as long as possible, and a stepped voltage is provided to the discharge lamp 15 waveform.

在放电灯电流的有效值减少得比额定还小时,如图21(c)所示,在将来自电压高于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为尽可能变长,在将来自电压低于额定有效值的直流电压源的电压提供给放电灯15时,开关的接通时间控制为尽可能变短,向放电灯15提供阶梯状电压波形。When the effective value of the discharge lamp current decreases smaller than the rated value, as shown in FIG. 21(c), when a voltage from a DC voltage source having a voltage higher than the rated effective value is supplied to the discharge lamp 15, the on-time of the switch Control to be as long as possible, when the voltage from the DC voltage source whose voltage is lower than the rated effective value is supplied to the discharge lamp 15, the on-time of the switch is controlled to be as short as possible to provide the discharge lamp 15 with a stepped voltage waveform .

通过进行这种控制,可将放电灯电流的有效值控制为恒定,由此,可不使用绕组部件而使放电灯15稳定地照明,可使装置的小型、轻量化。By performing such control, the effective value of the current of the discharge lamp can be controlled to be constant, whereby the discharge lamp 15 can be stably illuminated without using a winding member, and the size and weight of the device can be reduced.

第15实施例15th embodiment

本实施例的构成如图17所示。在本实施例中,如图22所示,各电容器44-1~44-n的充电电压由各可变电阻器43-1~43-n的阻抗控制,作为沿全波整流器42的输出电压波形Vin的阶梯状电压VA。The structure of this embodiment is shown in FIG. 17 . In this embodiment, as shown in FIG. 22 , the charging voltages of the respective capacitors 44-1 to 44-n are controlled by the impedances of the respective variable resistors 43-1 to 43-n as output voltages along the full-wave rectifier 42. The stepped voltage VA of the waveform Vin.

这样,通过各开关12-1~12-n的开关动作将各电容器44-1~44-n的充电电压作为高频的阶梯状电压波形提供给极性反转电路13,从极性反转电路13向放电灯14提供高频阶梯状电压波形。In this way, the charging voltages of the capacitors 44-1 to 44-n are supplied to the polarity inversion circuit 13 as high-frequency stepped voltage waveforms through the switching operations of the switches 12-1 to 12-n, and the polarity inversion The circuit 13 supplies the discharge lamp 14 with a high-frequency stepped voltage waveform.

此时的开关12-1~12-n开动作的开关动作时间设定为:根据各可变电阻器43-1~43-n的阻抗切换定时,在可变电阻器43-1~43-n阻抗切换为有限值的时间上一律乘以同一常数的时间。At this time, the switch operation time of the switches 12-1~12-n is set to be: according to the impedance switching timing of each variable resistor 43-1~43-n, the variable resistors 43-1~43-n The time when the n impedance switches to a finite value is multiplied by the same constant time.

因此,如图23所示,提供给极性反转电路13的高频阶梯状电压波形为沿正弦波状的包络线VX的波形。如果这样,则从极性反转电路13提供给放电灯15的阶梯状电压波形的包络线可为正弦波状,因此,可提高放电灯的发光效率,抑制来自放电灯等的放射杂音等。此外,在本实施例中,可不使用绕组部件而将放电灯电流的有效值控制为恒定,因此,可实现装置的小型、轻量化。Therefore, as shown in FIG. 23 , the high-frequency stepped voltage waveform supplied to the polarity inversion circuit 13 is a waveform along the sinusoidal envelope VX. In this way, the envelope of the stepped voltage waveform supplied from the polarity inversion circuit 13 to the discharge lamp 15 can be sinusoidal, thereby improving the luminous efficiency of the discharge lamp and suppressing emission noise from the discharge lamp and the like. In addition, in this embodiment, the effective value of the discharge lamp current can be controlled to be constant without using a winding member, so that the size and weight of the device can be realized.

第16实施例Sixteenth embodiment

和上述第11至第15实施例相同的部分用相同的符号表示,这些部分的详细说明从略。The parts that are the same as those in the eleventh to fifteenth embodiments described above are denoted by the same symbols, and detailed descriptions of these parts are omitted.

如图24所示,分别通过串联的二极管5-1…45-n、可变电阻器43-1…43-n、电阻器等的阻抗元件组成的输入电流检测电路46-1…46-n将电容器44-1…44-n连接到全波整流器42的输出端子上。As shown in Figure 24, the input current detection circuit 46-1...46-n composed of impedance elements such as series connected diodes 5-1...45-n, variable resistors 43-1...43-n, resistors, etc. The capacitors 44 - 1 . . . 44 - n are connected to the output terminals of the full wave rectifier 42 .

通过驱动电路47-1…47-n驱动上述各可变电阻器43-1~43-n,将来自误差放大器48-1…48-n的输出提供给各驱动电路47-1~47-n。The variable resistors 43-1 to 43-n are driven by the drive circuits 47-1 to 47-n, and outputs from the error amplifiers 48-1 to 48-n are supplied to the drive circuits 47-1 to 47-n. .

通过电容器电压检测电路49-1…49-n分别检测上述各电容器44-1~44-n的充电电压,将其检测输出提供给误差放大器50-1…50-n的反转输入端子(-)上。在上述各误差放大器50-1…50-n的非反转输入端子(+)上提供设定充电电压目标值的基准电压Vref1~Vrefn。将上述各误差放大器50-1…50-n的输出分别提供给乘法器51-1~51-n。The charging voltages of the respective capacitors 44-1 to 44-n are detected by the capacitor voltage detecting circuits 49-1...49-n, and the detected outputs are supplied to the inverting input terminals of the error amplifiers 50-1...50-n (- )superior. Reference voltages Vref1 to Vrefn for setting the charging voltage target value are supplied to the non-inverting input terminals (+) of the above-mentioned error amplifiers 50-1...50-n. The outputs of the above-mentioned error amplifiers 50-1...50-n are supplied to multipliers 51-1 to 51-n, respectively.

设置输入电流目标值设定电路52,将作为目标值的输入电流的正弦波数据从设定电路52提供给上述各乘法器51-1~51-n。上述各乘法器51-1~51-n通过来自上述各误差放大器50-1…50-n的输出可变控制来自上述输入电流目标值设定电路52的输入电流正弦波数据的振幅。An input current target value setting circuit 52 is provided, and the sine wave data of the input current as a target value is supplied from the setting circuit 52 to the above-mentioned respective multipliers 51-1 to 51-n. The multipliers 51-1 to 51-n variably control the amplitude of the input current sine wave data from the input current target value setting circuit 52 by the outputs from the error amplifiers 50-1...50-n.

来自上述各乘法器51-1~51-n的输出分别通过电平移动电路53-1~53-n进行电平移动并输入到上述第一误差放大器48-1~48-n的非反转输入端子(+)上。上述误差放大器48-1~48-n将目标值的输入电流和输入电流检测电路46-1~46-n检测出的实际输入电流相比较,求出其误差,提供给上述驱动电路47-1~47-n。上述驱动电路47-1~47-n可变控制可变电阻器43-1~43-n,使得实际的输入电流接近目标值的输入电流。Outputs from the respective multipliers 51-1 to 51-n are level-shifted by level shift circuits 53-1 to 53-n, respectively, and input to the non-inverting circuits of the first error amplifiers 48-1 to 48-n. on the input terminal (+). The error amplifiers 48-1 to 48-n compare the input current of the target value with the actual input current detected by the input current detection circuits 46-1 to 46-n, obtain the error, and supply it to the drive circuit 47-1. ~47-n. The drive circuits 47-1 to 47-n variably control the variable resistors 43-1 to 43-n so that the actual input current approaches the input current of the target value.

此外,在该装置中,上述驱动电路47-1~47-n和误差放大器48-1~48-n的基准电位是各电容器44-1~44-n的充电电压,上述电容器电压检测电路49-1~49-n及误差放大器50-1~50-n的基准电位变成作为整个电路的基准电位的全波整流器42的输出端子中的负极端子的电位。从而,为了使用电平移动电路53-1~53-n而使基准电位一致,需要使每个电容器移动。In addition, in this device, the reference potentials of the drive circuits 47-1 to 47-n and the error amplifiers 48-1 to 48-n are the charging voltages of the respective capacitors 44-1 to 44-n, and the capacitor voltage detection circuit 49 -1 to 49-n and the reference potentials of the error amplifiers 50-1 to 50-n are the potentials of the negative terminals of the output terminals of the full-wave rectifier 42 which are the reference potentials of the entire circuit. Therefore, in order to match the reference potentials using the level shift circuits 53-1 to 53-n, it is necessary to shift each capacitor.

上述各电容器44-1~44-n的充电电压分别通过二极管54-1~54-n及开关12-1~12-n提供给极性反转电路13。The charging voltages of the respective capacitors 44-1 to 44-n are supplied to the polarity inversion circuit 13 through diodes 54-1 to 54-n and switches 12-1 to 12-n, respectively.

上述各电容器电压检测电路49-1~49-n检测的电容器电压提供给电容器电压比较电路55。来自时钟发生部23的时钟信号输入到上述电容器电压比较电路55中。上述电容器电压比较电路55与时钟信号同步地求出各电容器电压检测电路49-1~49-n检测的电容器电压平均值,将算出的平均值和预先设定的各电容器的充电电压目标值的平均值相比较。在误差放大器19的非反转输入端子(+)上提供相当于电灯电流有效值的额定值的可变电压VRref。The capacitor voltages detected by the respective capacitor voltage detection circuits 49 - 1 to 49 - n are supplied to the capacitor voltage comparison circuit 55 . The clock signal from the clock generator 23 is input to the capacitor voltage comparison circuit 55 described above. The capacitor voltage comparison circuit 55 calculates the average value of the capacitor voltages detected by the capacitor voltage detection circuits 49-1 to 49-n synchronously with the clock signal, and compares the calculated average value with the preset charging voltage target value of each capacitor. compared to the mean. At the non-inverting input terminal (+) of the error amplifier 19, a variable voltage VRref having a rated value corresponding to the effective value of the lamp current is supplied.

上述电容器电压比较电路55根据比较结果可变控制上述电压VRref。即,检测出的电容器电压的平均值大于充电电压目标值的平均值时,使电灯电流有效值的目标值即电压VRref低。检测出的电容器电压的平均值小于充电电压目标值的平均值时,使电灯电流有效值的目标值即电压VRref上升。The capacitor voltage comparison circuit 55 variably controls the voltage VRref according to the comparison result. That is, when the average value of the detected capacitor voltage is larger than the average value of the charging voltage target value, the voltage VRref which is the target value of the effective value of the lamp current is lowered. When the average value of the detected capacitor voltage is smaller than the average value of the charging voltage target value, the voltage VRref which is the target value of the effective value of the lamp current is increased.

在这种构成中,各电容器44-1~44-n的充电电压整体变高时,进行减小电灯电流有效值的控制,相反,各电容器44-1~44-n的充电电压整体变低时,进行增大电灯电流有效值的控制。In this configuration, when the charging voltage of each capacitor 44-1 to 44-n becomes higher as a whole, control is performed to reduce the effective value of the lamp current, and conversely, the charging voltage of each capacitor 44-1 to 44-n becomes lower as a whole. , the control of increasing the effective value of the lamp current is carried out.

同时,通过输入电流检测电路46-1~46-n、驱动电路47-1~47-n、电容器电压检测电路49-1~49-n、误差放大器48-1~48-n、50-1~50-n、输入电流目标值设定电路52、乘法器51-1~51-n等的作用控制电容器电压使得充电电压接近目标值,电灯电流的目标值收敛为作为当初目标值的额定值。由此,对电容器电压的变化,可防止电灯电流过度增加或过度减少。实现功率因数的改善。在本实施例中,不使用绕组部件,控制放电灯15使得电灯电流变为恒定,因此,和上述实施例一样,可实现装置的小型、轻量化。At the same time, through input current detection circuits 46-1~46-n, drive circuits 47-1~47-n, capacitor voltage detection circuits 49-1~49-n, error amplifiers 48-1~48-n, 50-1 ~50-n, input current target value setting circuit 52, multipliers 51-1~51-n, etc. control the capacitor voltage so that the charging voltage is close to the target value, and the target value of the lamp current converges to the rated value as the original target value . Thereby, the lamp current is prevented from excessively increasing or excessively decreasing in response to changes in the capacitor voltage. Realize the improvement of power factor. In the present embodiment, the discharge lamp 15 is controlled so that the lamp current becomes constant without using a winding member, so that the size and weight of the device can be realized as in the above-mentioned embodiments.

第17实施例17th embodiment

本实施例的构成如图24所示。在本实施例中,输出电压有效值的可变范围处于额定时的有效值的±20%的范围内。The structure of this embodiment is shown in FIG. 24 . In this embodiment, the variable range of the effective value of the output voltage is within the range of ±20% of the effective value at the rated time.

即,通过开关12-1~12-n的择一的开关动作向极性反转电路13提供阶梯状电压波形,交流的阶梯状电压波形从极性反转电路13提供给放电灯15而使放电灯15照明。That is, the stepwise voltage waveform is supplied to the polarity reversing circuit 13 by the switching operation of one of the switches 12-1 to 12-n, and the AC stepwise voltage waveform is supplied from the polarity reversing circuit 13 to the discharge lamp 15 so that Discharge lamp 15 illuminates.

作为来自输入电流目标值设定电路52的目标值的输入电流的正弦波数据对各乘法器51-1~51-n通过来自误差放大器50-1~50-n的输出可变控制其振幅。由此,基于实际电容器电压和目标值之差的大小控制可变电阻器43-1~43-n的阻抗,控制电容器46-1~46-n的输入电流量,同时控制成充电电压接近目标值。The amplitude of the sine wave data of the input current as the target value from the input current target value setting circuit 52 is variably controlled by the output from the error amplifiers 50-1 to 50-n for each of the multipliers 51-1 to 51-n. In this way, the impedances of the variable resistors 43-1 to 43-n are controlled based on the difference between the actual capacitor voltage and the target value, and the amount of input current to the capacitors 46-1 to 46-n is controlled to control the charging voltage close to the target. value.

在输出部中,控制开关12-1~12-n的开动作时间,使得在放电灯15中流过的电灯电流的有效值变成由电压VRref设定的额定值。In the output section, the ON operation time of the switches 12-1 to 12-n is controlled so that the effective value of the lamp current flowing through the discharge lamp 15 becomes a rated value set by the voltage VRref.

因此,控制开关12-1~12-n中对应的开关使得以短于额定时间的时间进行开动作的电容器对放电灯15的电荷放电量减少,因此,电容器的充电电压上升。这时,控制为:通过电容器恒压控制,作为来自乘法器的输入电流目标值的正弦波数据的振幅变小,使电容器电压下降,电容器的充电电压接近目标值。Accordingly, corresponding switches among the switches 12-1 to 12-n are controlled such that the amount of charge discharged to the discharge lamp 15 by the capacitor that is turned on for a time shorter than the rated time is reduced, thereby increasing the charging voltage of the capacitor. At this time, the control is such that the amplitude of the sine wave data which is the target value of the input current from the multiplier is reduced by the capacitor constant voltage control, and the capacitor voltage is lowered so that the charging voltage of the capacitor approaches the target value.

控制开关12-1~12-n中对应的开关使得以长于额定时间的时间进行开动作的电容器对放电灯15的电荷放电量增大,因此,电容器的充电电压下降。这时,控制为:通过电容器恒压控制,作为来自乘法器的输入电流目标值的正弦波数据的振幅变大,使电容器电压上升,电容器的充电电压接近目标值。Corresponding ones of the switches 12-1 to 12-n are controlled such that the amount of charge discharged to the discharge lamp 15 from the capacitor that is turned on longer than the rated time increases, and thus the charging voltage of the capacitor decreases. At this time, the control is such that the amplitude of the sine wave data which is the target value of the input current from the multiplier is increased by the capacitor constant voltage control, and the capacitor voltage is increased so that the charging voltage of the capacitor approaches the target value.

结果,即使将各电容器46-1~46-n的输入电流目标值的波形设定为正弦波,振幅的设定对每个电容器也是不同的,在输入电流中出现等级,高频分量变大。因此,为了不增加输入电流的高频分量而变差,需要规定提供给放电灯15的阶梯状电压波形的有效值范围。As a result, even if the waveform of the input current target value of each capacitor 46-1 to 46-n is set as a sine wave, the setting of the amplitude is different for each capacitor, and a level appears in the input current, and high-frequency components become large. . Therefore, in order not to increase and degrade the high-frequency component of the input current, it is necessary to define the effective value range of the stepped voltage waveform supplied to the discharge lamp 15 .

图25示出了用于和提供给放电灯15的阶梯状电压波形比较的正弦波波形,(a)表示电灯电流的有效值为额定时的有效值的-24%时的阶梯状电压波形和正弦波波形,(b)表示电灯电流的有效值为额定时的有效值的-11%时的阶梯状电压波形和正弦波波形,(c)表示电灯电流的有效值与额定时的有效值一致时的阶梯状电压波形和正弦波波形,(d)表示电灯电流的有效值为额定时的有效值的+10%时的阶梯状电压波形和正弦波波形,(e)表示电灯电流的有效值为额定时的有效值的+19%时的阶梯状电压波形和正弦波波形。25 shows sine wave waveforms for comparison with the stepped voltage waveforms supplied to the discharge lamp 15, (a) showing the stepped voltage waveforms when the effective value of the lamp current is -24% of the rated effective value and Sine wave waveform, (b) indicates the stepped voltage waveform and sine wave waveform when the RMS value of the lamp current is -11% of the rated RMS value, (c) indicates that the RMS value of the lamp current is consistent with the rated RMS value When the ladder-like voltage waveform and sine wave waveform, (d) indicates the ladder-like voltage waveform and sine wave waveform when the effective value of the lamp current is +10% of the rated effective value, (e) indicates the effective value of the lamp current Step voltage waveform and sine wave waveform at +19% of rated effective value.

电灯电流有效值为额定时的有效值的-24%时的输入电流波形如图26(a)所示,电灯电流有效值为额定时的有效值的-11%时的输入电流波形如图26(b)所示,电灯电流有效值与额定时的有效值一致时的输入电流波形如图26(c)所示,电灯电流有效值为额定时的有效值的+10%时的输入电流波形如图26(d)所示,电灯电流有效值为额定时的有效值的-19%时的输入电流波形如图26(e)所示。The input current waveform when the effective value of the lamp current is -24% of the rated effective value is shown in Figure 26(a), and the input current waveform when the effective value of the lamp current is -11% of the rated effective value is shown in Figure 26 As shown in (b), the input current waveform when the effective value of the lamp current is consistent with the rated value is shown in Figure 26(c), and the input current waveform when the effective value of the lamp current is +10% of the rated value As shown in Fig. 26(d), the input current waveform when the lamp current effective value is -19% of the rated effective value is shown in Fig. 26(e).

表1表示阶梯状电压有效值的变化和输入电流的关系。阶梯状电压的有效值在额定以外时,显然,输入电流的尤其是3次高频分量变大。从结果可见,通过将阶梯状电压波形有效值的变化范围设定为额定动作时的阶梯状电压波形有效值的约20%的绝对值以下,则不会增大输入电流的高频分量而变差。Table 1 shows the relationship between the change of the effective value of the stepped voltage and the input current. When the effective value of the step-shaped voltage is outside the rating, it is obvious that the third-order high-frequency component of the input current becomes large. It can be seen from the results that by setting the variation range of the effective value of the step-shaped voltage waveform below the absolute value of about 20% of the effective value of the step-shaped voltage waveform during rated operation, the high-frequency component of the input current will not be increased to change Difference.

表1   出力电压变化分     -22.0%     -10.9%     0.0%     9.8%     18.5%   人力电流     0.219A     0.232A     0.278A     0.333A     0.407A    人力力率     0.919     0.954     1.000     0.987     0.969     THD     40.6%     33.0%     0.0%     20.5%     33.1%     3次     30.5%     22.4%     0.0%     12.5%     22.6%     5次     1.1%     3.1%     0.0%     4.9%     3.3%     7次     2.0%     1.0%     0.0%     4.0%     2.5%     9次     3.6%     2.3%     0.0%     1.1%     2.0%     11次     1.2%     0.4%     0.0%     1.3%     0.7%     13次     3.3%     2.5%     0.0%     0.5%     0.7%     15次     2.8%     2.4%     0.0%     0.5%     0.6%     17次     1.0%     1.2%     0.0%     1.3%     0.7%     19次     0.5%     0.3%     0.0%     0.4%     0.4%     21次     2.0%     1.0%     0.0%     1.7%     2.0%     23次     0.9%     1.2%     0.0%     1.5%     1.3%     25次     3.9%     3.1%     0.0%     1.0%     2.1%     27次     0.8%     0.6%     0.0%     1.3%     1.9%     29次     2.0%     1.3%     0.0%     0.8%     1.2% Table 1 Output voltage change points -22.0% -10.9% 0.0% 9.8% 18.5% human current 0.219A 0.232A 0.278A 0.333A 0.407A Manpower rate 0.919 0.954 1.000 0.987 0.969 THD 40.6% 33.0% 0.0% 20.5% 33.1% 3 times 30.5% 22.4% 0.0% 12.5% 22.6% 5 times 1.1% 3.1% 0.0% 4.9% 3.3% 7 times 2.0% 1.0% 0.0% 4.0% 2.5% 9 times 3.6% 2.3% 0.0% 1.1% 2.0% 11 times 1.2% 0.4% 0.0% 1.3% 0.7% 13 times 3.3% 2.5% 0.0% 0.5% 0.7% 15 times 2.8% 2.4% 0.0% 0.5% 0.6% 17 times 1.0% 1.2% 0.0% 1.3% 0.7% 19 times 0.5% 0.3% 0.0% 0.4% 0.4% 21 times 2.0% 1.0% 0.0% 1.7% 2.0% 23 times 0.9% 1.2% 0.0% 1.5% 1.3% 25 times 3.9% 3.1% 0.0% 1.0% 2.1% 27 times 0.8% 0.6% 0.0% 1.3% 1.9% 29 times 2.0% 1.3% 0.0% 0.8% 1.2%

输出电压变化量Output voltage variation

输入电流Input Current

输入功率因数input power factor

(其他部分表内容同原表1)(Other parts of the table are the same as the original table 1)

本实施例的构成如图24所示,因此,不用说在本实施例中,不使用绕组部件的情况下控制放电灯15而使放电灯电流变为恒定,因此,可得到和上述实施例相同的作用效果。The structure of this embodiment is shown in FIG. 24. Therefore, it goes without saying that in this embodiment, the discharge lamp 15 is controlled so that the current of the discharge lamp becomes constant without using a winding member. Therefore, the same effect.

第18实施例Eighteenth embodiment

和上述第11至第17实施例相同的部分用相同的符号表示,详细说明从略。The parts that are the same as those in the eleventh to seventeenth embodiments described above are denoted by the same symbols, and detailed description thereof will be omitted.

如图27所示,通过电容器电压平均值检测电路56检测各电容器44-1~44-n的电压,求出其平均值作为代表值。不限于平均值作为代表值,可检测各电容器44-1~44-n中其中一个电压作为代表值。这种情况下,若根据充电目标值检测高的电容器电压,则能可靠地进行各可变电阻器43-1~43-n的阻抗控制,可总是平滑连续地流过输入电流。As shown in FIG. 27 , the voltages of the respective capacitors 44 - 1 to 44 - n are detected by a capacitor voltage average value detection circuit 56 , and the average value thereof is obtained as a representative value. Not limited to the average value as the representative value, one of the voltages among the capacitors 44 - 1 to 44 - n may be detected as the representative value. In this case, if a high capacitor voltage is detected based on the charging target value, the impedance control of each of the variable resistors 43-1 to 43-n can be reliably performed, and the input current can always flow smoothly and continuously.

通过上述电容器电压平均值检测电路56求出的电容器电压的平均值提供给误差放大器57的反转输入端子(-),同时,提供给电容器电压比较电路58。The average value of the capacitor voltage obtained by the capacitor voltage average detection circuit 56 is supplied to the inverting input terminal (−) of the error amplifier 57 and simultaneously supplied to the capacitor voltage comparison circuit 58 .

设定充电电压目标值的平均值的基准电压Vref提供给上述误差放大器57的非反转输入端子(+)。上述误差放大器57将通过电容器电压平均值检测电路56求出的电容器电压的平均值和设定充电电压目标值的基准电压Vref相比较,将其误差输出提供给输入电流目标波形成形电路59。The reference voltage Vref for setting the average value of the charging voltage target value is supplied to the non-inverting input terminal (+) of the above-mentioned error amplifier 57 . The error amplifier 57 compares the average value of the capacitor voltage obtained by the capacitor voltage average detection circuit 56 with the reference voltage Vref for setting the charging voltage target value, and supplies the error output to the input current target waveform shaping circuit 59 .

上述输入电流目标波形成形电路59在提供给放电灯15的阶梯状电压波形的有效值为额定值时,成形与图28(a)所示正弦波输入电压波形相似形状的图28(b)所示正弦波输入电流波形作为输入电流目标波形并输出。The above input current target waveform shaping circuit 59 forms a sine wave input voltage waveform similar to that shown in FIG. Display the sine wave input current waveform as the input current target waveform and output it.

上述输入电流目标波形成形电路59作成:在阶梯状电压波形的有效值高于额定值时,如图29所示,在商用交流的1个周期中,在相位为90°和270°前后额定动作时,振幅比作为目标值的输入电流波形I0大,而且,向着90°和270°,振幅比较大,在其以外的部位,成形振幅比输入电流波形I0小的电流波形作为输入电流目标波形I1输出。The above-mentioned input current target waveform shaping circuit 59 is made: when the effective value of the stepped voltage waveform is higher than the rated value, as shown in FIG. , the amplitude is larger than the input current waveform I0 as the target value, and the amplitude is relatively large toward 90° and 270°, and in other parts, a current waveform with an amplitude smaller than the input current waveform I0 is formed as the input current target waveform I1 output.

上述输入电流目标波形成形电路59作成:阶梯状电压波形的有效值比额定值低时,如图30所示,在商用交流的1个周期中,在相位为90°和270°前后额定动作时,振幅比作为目标值的输入电流波形I0小,而且,向着90°和270°,振幅比较小,在其以外的部位,成形振幅比输入电流波形I0大的电流波形作为输入电流目标波形I2输出。The above-mentioned input current target waveform shaping circuit 59 is made: when the effective value of the stepped voltage waveform is lower than the rated value, as shown in FIG. , the amplitude is smaller than the input current waveform I0 as the target value, and the amplitude is relatively small toward 90° and 270°, and in other parts, a current waveform with a larger amplitude than the input current waveform I0 is output as the input current target waveform I2 .

在上述电容器电压比较电路58中输入来自时钟发生部23的时钟信号。上述电容器电压比较电路58和时钟信号同步,将由上述电容器电压平均值检测电路56求出的电容器电压的平均值和预先设定的各电容器的充电电压目标值的平均值相比较。上述电容器电压比较电路58基于比较结果可变控制上述电压Vrref。The clock signal from the clock generator 23 is input to the capacitor voltage comparison circuit 58 . The capacitor voltage comparison circuit 58 compares the average value of the capacitor voltage obtained by the capacitor voltage average detection circuit 56 with the average value of the charging voltage target value of each capacitor set in advance in synchronization with a clock signal. The capacitor voltage comparison circuit 58 variably controls the voltage Vrref based on the comparison result.

在这种构成中,提供给放电灯15的阶梯状电压波形的有效值从额定值开始上升时,控制用于向放电灯15提供充电电压低的电容器的开关使得以短于额定时的时间进行开动作,从电容器向放电灯15的放电电荷量减少,因此,其电容器电压上升。In this configuration, when the effective value of the stepped voltage waveform supplied to the discharge lamp 15 rises from the rated value, the switching of the capacitor for supplying the low charging voltage to the discharge lamp 15 is controlled so as to be performed in a time shorter than the rated time. In the ON operation, the amount of electric charge discharged from the capacitor to the discharge lamp 15 decreases, so the capacitor voltage increases.

控制用于向放电灯15提供充电电压高的电容器的开关,使得以长于额定时的时间进行开动作,从电容器向放电灯15的放电电荷量增加,因此,其电容器电压下降。The switch for supplying the capacitor with a high charging voltage to the discharge lamp 15 is controlled so that it is turned on for a longer time than the rated time, and the discharge charge amount from the capacitor to the discharge lamp 15 increases, so that the capacitor voltage drops.

因此,作为来自全波整流器42的输入电流的目标波形,在商用交流的1个周期中,通过输入电流目标波形成形电路59实现波形成形,使得在相位为90°和270°前后,振幅比正弦波的输入电流波形I0大,在其以外的部位,振幅小,从而,依据电容器电压的代表值的控制可使各电容器的充电电压接近对应的目标值电压,同时,可平滑输入电流波形。Therefore, as the target waveform of the input current from the full-wave rectifier 42, in one cycle of commercial AC, the waveform is shaped by the input current target waveform shaping circuit 59 so that the amplitude ratio is sinusoidal before and after the phase is 90° and 270°. The input current waveform I0 of the wave is large, and the amplitude is small in other parts. Therefore, the control according to the representative value of the capacitor voltage can make the charging voltage of each capacitor close to the corresponding target value voltage, and at the same time, the input current waveform can be smoothed.

提供给放电灯15的阶梯状电压波形的有效值从额定值开始减少时,控制用于向放电灯15提供充电电压低的电容器的开关,使得以长于额定时的时间进行开动作,从电容器向放电灯15的放电电荷量增加,因此,其电容器电压下降。When the effective value of the stepped voltage waveform supplied to the discharge lamp 15 decreases from the rated value, the switch for supplying the capacitor with a low charging voltage to the discharge lamp 15 is controlled so that it is turned on for a time longer than the rated value, and the capacitor is turned on. The discharge charge amount of the discharge lamp 15 increases, and therefore, the capacitor voltage thereof decreases.

控制用于向放电灯15提供充电电压高的电容器的开关,使得以短于额定时的时间进行开动作,从电容器向放电灯15的放电电荷量减少,因此,其电容器电压上升。The switch for supplying the capacitor with a high charging voltage to the discharge lamp 15 is controlled so that it is turned on for a shorter time than the rated time, and the amount of discharged charge from the capacitor to the discharge lamp 15 decreases, so that the capacitor voltage increases.

因此,作为来自全波整流器42的输入电流的目标波形,在商用交流的1个周期中,通过输入电流目标波形成形电路59实现波形成形,使得在相位为90°和270°前后,振幅比正弦波的输入电流波形I0小,在其以外的部位,振幅大,从而,通过依据电容器电压的代表值的控制,可使各电容器的充电电压接近对应的目标值电压,同时,可平滑输入电流波形。Therefore, as the target waveform of the input current from the full-wave rectifier 42, in one cycle of commercial AC, the waveform is shaped by the input current target waveform shaping circuit 59 so that the amplitude ratio is sinusoidal before and after the phase is 90° and 270°. The input current waveform I0 of the wave is small, and the amplitude is large in other parts. Therefore, by controlling according to the representative value of the capacitor voltage, the charging voltage of each capacitor can be made close to the corresponding target value voltage, and at the same time, the input current waveform can be smoothed. .

这样,根据提供给放电灯15的阶梯状电压波形有效值的变化,使从输入电流目标波形成形电路59提供给各误差放大器48-1~48-n的输入电流目标波形变化,从而,依据电容器电压的代表值的控制可使各电容器的充电电压接近对应的目标值电压,同时,在来自全波整流器42的输入电流波形在不急剧变化的情况下总是平滑变化。因此,可抑制输入电流波形尤其高次高频分量的发生。在本实施例中,不用说,不使用绕组部件的情况下控制放电灯15而使放电灯电流变为恒定,因此,可得到和上述实施例相同的作用效果。In this way, the target input current waveforms supplied from the input current target waveform shaping circuit 59 to the error amplifiers 48-1 to 48-n are changed according to the change in the effective value of the stepped voltage waveform supplied to the discharge lamp 15. The control of the representative value of the voltage can make the charging voltage of each capacitor close to the corresponding target value voltage, and at the same time, the input current waveform from the full-wave rectifier 42 always changes smoothly without changing sharply. Therefore, it is possible to suppress the occurrence of the input current waveform, especially the high-order high-frequency component. In the present embodiment, it goes without saying that the discharge lamp 15 is controlled so that the discharge lamp current becomes constant without using a winding member, and therefore the same effects as those of the above-described embodiment can be obtained.

以下,对于第三本发明,参照图31-图47说明第19至第25实施例。第19至第25实施例的说明中以及图31至图47中的符号适用于第19至第25实施例。Next, for the third present invention, the nineteenth to twenty-fifth embodiments will be described with reference to FIGS. 31 to 47. FIG. The symbols in the description of the nineteenth to twenty-fifth embodiments and in FIGS. 31 to 47 are applicable to the nineteenth to twenty-fifth embodiments.

第19实施例Nineteenth embodiment

如图31所示,设置交流阶梯状电压发生源1,电压值变化为阶梯状,象正弦波这样增减的阶梯状正电压波形及电压值变化为台阶状,交互输出象正弦波这样增减的阶梯状负电压波形。As shown in Figure 31, set the AC ladder-shaped voltage generator 1, the voltage value changes in a ladder shape, and the stepped positive voltage waveform and voltage value change like a sine wave increase and decrease in a step shape, and the alternating output increases and decreases like a sine wave The stepped negative voltage waveform.

通过由第一电容器3及低电阻等组成的电灯电流检测器4将放电灯2的各灯丝电极2a、2b的一端连接到上述电压发生源1的输出端子上。即,通过串联上述第一电容器3将上述放电灯2中一方灯丝电极2a的一端连接到上述电压发生源1的输出端子的一端上,通过串联上述电灯电流检测器4将上述放电灯2中另一方的灯丝电极2b的一端连接到上述电压发生源1的输出端子的另一端上。One end of each filament electrode 2a, 2b of the discharge lamp 2 is connected to the output terminal of the above-mentioned voltage generating source 1 through a lamp current detector 4 composed of a first capacitor 3 and a low resistance. That is, one end of one filament electrode 2a of the discharge lamp 2 is connected to one end of the output terminal of the voltage generating source 1 by connecting the first capacitor 3 in series, and the other end of the discharge lamp 2 is connected by connecting the lamp current detector 4 in series. One end of one filament electrode 2b is connected to the other end of the output terminal of the voltage generating source 1 described above.

在上述放电灯2的各灯丝电极2a、2b的另一端间,连接第二电容器5和由MOSFET(MOS型场效应晶体管)组成的两极性开关元件6的串联电路。该串联电路构成预热电路,在放电灯2开始照明前的预热时,上述开关元件6变导通。Between the other ends of the respective filament electrodes 2a, 2b of the discharge lamp 2, a series circuit of a second capacitor 5 and a bipolar switching element 6 composed of a MOSFET (MOS Field Effect Transistor) is connected. This series circuit constitutes a preheating circuit, and when the discharge lamp 2 starts preheating before lighting, the switching element 6 is turned on.

上述交流阶梯状电压发生源1将全波整流器12的输入端子连接到商用交流电源11上,将由MOSFET组成的用作可变电阻器的n个开关13-1、13-2…13-3和构成直流电压源的n个电容器14-1、14-2…14-n的串联电路分别作为分支电路并联连接到全波整流器12的输出端子上。这样,分别通过开关元件15-1、15-2…15-n将电灯电流检测器16连接到上述各电容器14-1~14-n上。The above-mentioned AC ladder-shaped voltage generating source 1 connects the input terminal of the full-wave rectifier 12 to the commercial AC power supply 11, and uses n switches 13-1, 13-2 ... 13-3 and A series circuit of n capacitors 14 - 1 , 14 - 2 . Thus, the lamp current detector 16 is connected to the respective capacitors 14-1 to 14-n through the switching elements 15-1, 15-2...15-n, respectively.

上述电灯电流检测器16由FET构成的2个开关元件16-1、16-2的串联电路和MOSFET构成的2个开关元件16-3、16-4的串联电路的并联电路形成,上述各开关元件16-1、16-2的连接点和上述各开关元件16-3、16-4的连接点作为上述交流阶梯状电压发生源1的输出端子。The above-mentioned lamp current detector 16 is formed by a series circuit of two switching elements 16-1, 16-2 composed of FETs and a parallel circuit of a series circuit of two switching elements 16-3, 16-4 composed of MOSFETs. The connection points of the elements 16-1, 16-2 and the connection points of the switching elements 16-3, 16-4 serve as output terminals of the AC step voltage generator 1 described above.

用作上述可变电阻器的开关元件13-1~13-n在非饱和区域中驱动,以实现作为可变电阻器的功能,因此,被控制为仅充电各自对应的电容器14-1~14-n期间,阻抗变成有限值,在此以外的期间中,阻抗无限大。这样,控制上述各开关元件13-1~13-n在充电各电容器14-1~14-n时的阻抗,使得与商用交流输入电压大致成比例的波形的输入电流从上述全波整流器流入。由此,可抑制输入电流的高频分量。The switching elements 13-1 to 13-n used as the above-mentioned variable resistors are driven in a non-saturated region to function as variable resistors, and therefore, are controlled to charge only the respective corresponding capacitors 14-1 to 14 In the -n period, the impedance becomes a finite value, and in other periods, the impedance becomes infinite. In this way, the impedances of the switching elements 13-1 to 13-n when charging the capacitors 14-1 to 14-n are controlled so that an input current having a waveform substantially proportional to the commercial AC input voltage flows from the full-wave rectifier. Thus, high-frequency components of the input current can be suppressed.

在商用交流电源11的电源电压的绝对值上升期间,在某个电容器电压和商用交流电源电压的绝对值相等时开始该电容器的充电,在下一级电容器的电压和商用交流电源电压的绝对值相等时停止,在商用交流电源11的电源电压的绝对值下降期间,在前1个电容器的电压等于商用交流电源电压的绝对值相等时开始某个电容器的充电,在充电电压和商用交流电源电压的绝对值相等时停止。从而,上述各电容器14-1~14-n充电彼此不同的电压值。例如,电容器14-1充电成最小的电压值,电容器14-n充电成最大的电压值。During the rise of the absolute value of the power supply voltage of the commercial AC power supply 11, the charging of a certain capacitor starts when the absolute value of the commercial AC power supply voltage is equal to the voltage of the capacitor, and the voltage of the next stage capacitor is equal to the absolute value of the commercial AC power supply voltage. When the absolute value of the power supply voltage of the commercial AC power supply 11 drops, the charging of a certain capacitor starts when the voltage of the previous capacitor is equal to the absolute value of the commercial AC power supply voltage. Stop when the absolute values are equal. Accordingly, the respective capacitors 14-1 to 14-n are charged with voltage values different from each other. For example, capacitor 14-1 is charged to a minimum voltage value, and capacitor 14-n is charged to a maximum voltage value.

通过驱动电路17以高频顺次择一地反复开关上述各开关元件15-1~15-n,从上述各电容器14-1~14-n中顺次择一地取出充电电压,将该取出的阶梯状电压波形提供给上述电灯电流检测器16。The above-mentioned switching elements 15-1~15-n are repeatedly switched one by one at high frequency by the drive circuit 17, and the charging voltage is sequentially taken out from the above-mentioned capacitors 14-1~14-n, and the taken-out step The shape voltage waveform is supplied to the above-mentioned lamp current detector 16.

上述电灯电流检测器16实现:在每一个上述各开关元件15-1~15-n的反复开关动作周期中,交互地反复开关元件16-1、16-4的接通和开关16-2、16-3的接通,通过第一电容器3以例如数十KHz这样的高频将包含零电压值的交流阶梯状电压波形提供给放电灯2。The above-mentioned lamp current detector 16 realizes: in each repeated switching cycle of each of the above-mentioned switching elements 15-1 to 15-n, alternately repeat the turning on of the switching elements 16-1, 16-4 and the switching of the switches 16-2, 16-2, When 16-3 is turned on, the first capacitor 3 supplies the discharge lamp 2 with an AC stepped voltage waveform including zero voltage value at a high frequency such as tens of KHz.

上述电灯电流检测器4检测电灯电流,将该检测信号提供给有效值转换器18。上述有效值转换器18通过来自电灯电流检测器4的检测信号变换为根据电灯电流的有效值的电压,该有效值电压提供给误差放大器19的反转输入端子(-)。相当于电灯电流有效值的额定值的电压Vref提供给上述误差放大器19的非反转输入端子(+)。The above-mentioned lamp current detector 4 detects the lamp current, and supplies the detected signal to the effective value converter 18 . The effective value converter 18 converts the detection signal from the lamp current detector 4 into a voltage according to the effective value of the lamp current, and the effective value voltage is supplied to an inverting input terminal (−) of the error amplifier 19 . A voltage Vref corresponding to a rated value of the effective value of the lamp current is supplied to the non-inverting input terminal (+) of the above-mentioned error amplifier 19 .

上述误差放大器19将来自有效值转换器18的有效值电压和相当于额定值的电压Vref相比较,输出用于使有效值电压接近相当于额定值的电压Vref的反馈信号。来自上述误差放大器19的反馈信号提供给控制器20的开/关定时控制部21。The error amplifier 19 compares the effective value voltage from the effective value converter 18 with the voltage Vref equivalent to the rated value, and outputs a feedback signal for bringing the effective value voltage closer to the voltage Vref equivalent to the rated value. A feedback signal from the above-mentioned error amplifier 19 is supplied to the on/off timing control section 21 of the controller 20 .

通过来自误差放大器19的反馈信号,上述开/关控制部21决定上述驱动电路17开、关各开关元件15-1~15-n的定时并将定时信号提供给相同控制器20的驱动信号发生部22。With the feedback signal from the error amplifier 19, the ON/OFF control unit 21 determines the timing when the driving circuit 17 turns on and off the respective switching elements 15-1 to 15-n and supplies the timing signal to the same controller 20 to generate the driving signal. Section 22.

上述驱动信号发生部22从时钟发生部23中取出时钟信号,与时钟信号同步地将由上述开/关定时控制部21决定的定时的驱动信号提供给上述驱动电路17。由此,上述驱动电路17以规定的定时顺次择一地开/关控制各开关元件15-1~15-n,使得电灯电流有效值接近相当于额定值的电压Vref。这样,根据来自时钟发生部23的时钟信号,从电灯电流检测器16经第一电容器3提供给放电灯2的包含零电压值的阶梯状电压波形频率固定。The drive signal generation unit 22 takes out a clock signal from the clock generation unit 23 and supplies a drive signal at a timing determined by the on/off timing control unit 21 to the drive circuit 17 in synchronization with the clock signal. As a result, the drive circuit 17 selectively turns on/off each of the switching elements 15-1 to 15-n at a predetermined timing so that the effective value of the lamp current approaches the voltage Vref corresponding to the rated value. Thus, the frequency of the stepped voltage waveform including zero voltage value supplied from the lamp current detector 16 to the discharge lamp 2 via the first capacitor 3 is fixed by the clock signal from the clock generator 23 .

在这种构成中,各开关元件13-1~13-n对应于来自全波整流器12的输出电压波形而电源电压的绝对值上升期间,按13-1—>13-2—>…13-n的顺序,阻抗仅在一定期间变为有限值,顺次充电对应的电容器14-1~14-n,在电源电压的绝对值下降期间,按13-n…—>13-2—>13-1的顺序,阻抗仅在一定期间变为有限值,顺次充电对应的电容器14-1~14-n。这样,各电容器14-1~14-n充电为彼此不同的电压值。In this configuration, each switching element 13-1 to 13-n corresponds to the output voltage waveform from the full-wave rectifier 12 and the absolute value of the power supply voltage rises according to 13-1—>13-2—>…13- In the order of n, the impedance becomes a limited value only in a certain period of time, and the corresponding capacitors 14-1 to 14-n are charged in sequence, and during the period when the absolute value of the power supply voltage drops, according to 13-n...—>13-2—>13 In the order of -1, the impedance becomes a finite value only for a certain period of time, and the corresponding capacitors 14-1 to 14-n are sequentially charged. In this way, the respective capacitors 14-1 to 14-n are charged to different voltage values.

另一方面,通过驱动电路17顺次开关各开关元件15-1~15-n,通过第一电容器3将来自电灯电流检测器16包含零电压值的交流阶梯状电压波形提供给放电灯2。放电灯2在预热时开关元件6导通并通过第二电容器5在各灯丝电极2a、2b中流过预热电流。On the other hand, the switching elements 15-1 to 15-n are sequentially switched by the driving circuit 17, and the AC stepped voltage waveform including zero voltage value from the lamp current detector 16 is supplied to the discharge lamp 2 through the first capacitor 3. During preheating of the discharge lamp 2 , the switching element 6 conducts and a preheating current flows through the respective filament electrodes 2 a , 2 b via the second capacitor 5 .

因此,变成来自电灯电流检测器16的交流阶梯状电压波形通过第一电容器3提供给放电灯2的构成。另一方面,在可变阶梯状电压波形的各电压的时间宽度来控制交流阶梯状电压波形有效值时,需要根据输入电流高频分量的制约来规定有效值的控制范围。Therefore, the AC stepped voltage waveform from the lamp current detector 16 is supplied to the discharge lamp 2 through the first capacitor 3 . On the other hand, when controlling the effective value of the AC stepped voltage waveform by changing the time width of each voltage of the stepped voltage waveform, it is necessary to specify the control range of the effective value according to the constraints of the high-frequency component of the input current.

在不使用第一电容器3而将来自电灯电流检测器16的交流阶梯状电压波形直接提供给放电灯2时,有效值的控制范围为±20%,此时的负载特性如图32所示。从负载特性可见,对于超过额定电压的±20%范围的负载电压,不存在动作点,因此,不能动作。When the AC stepped voltage waveform from the lamp current detector 16 is directly supplied to the discharge lamp 2 without using the first capacitor 3, the control range of the effective value is ±20%, and the load characteristics at this time are shown in FIG. 32 . It can be seen from the load characteristics that for the load voltage exceeding ±20% of the rated voltage, there is no operating point, so it cannot operate.

与其相对,在使用第一电容器3时,交流阶梯状电压波形的有效值恒定条件下的负载特性如图33所示。因而,可变阶梯状电压波形的各电压的时间宽度来控制交流阶梯状电压波形有效值时,负载特性如图34所示。即,放电灯2从断路(负载电流为零)到短路(负载电压为零)的宽范围中存在动作点,可扩大可适用的电灯电压的范围。而且,可抑制在放电灯2短路时流过的负载电流,可防止流过过量电流。On the other hand, when the first capacitor 3 is used, the load characteristics under the condition that the effective value of the AC stepped voltage waveform is constant are shown in FIG. 33 . Therefore, when the time width of each voltage of the stepped voltage waveform is changed to control the effective value of the AC stepped voltage waveform, the load characteristic is as shown in FIG. 34 . That is, the discharge lamp 2 has operating points in a wide range from disconnection (load current is zero) to short circuit (load voltage is zero), and the range of applicable lamp voltage can be expanded. Furthermore, the load current flowing when the discharge lamp 2 is short-circuited can be suppressed, and an excessive current can be prevented from flowing.

第20实施例20th embodiment

和上述第19实施例相同的部分用相同的符号表示,这些部分的详细说明从略。The parts that are the same as those in the nineteenth embodiment described above are denoted by the same symbols, and detailed descriptions of these parts are omitted.

如图35所示,使用不用全波整流器及极性反转电路的交流阶梯状电压发生源31。即,上述交流阶梯状电压发生源31将由MOSFET构成的用作可变电阻器的n个开关元件32-1、32-2…32-n和构成第一直流电压源的n个电容器34-1、34-2…34-n的串联电路分别作为支路并联连接到商用交流电源11上。将由MOSFET构成的用作可变电阻器的n个开关元件33-1、33-2…33-n和构成第二直流电压源的n个电容器35-1、35-2…35-n的串联电路分别作为支路并联连接到商用交流电源11上。As shown in FIG. 35, an AC stepped voltage generator 31 that does not use a full-wave rectifier or a polarity inversion circuit is used. That is, the above-mentioned AC stepped voltage generating source 31 is composed of n switching elements 32-1, 32-2 ... 32-n serving as variable resistors constituted by MOSFETs and n capacitors 34-1 constituting the first DC voltage source. , 34-2 ... 34-n series circuits are respectively connected to the commercial AC power supply 11 in parallel as branches. A series connection of n switching elements 33-1, 33-2...33-n made of MOSFETs serving as variable resistors and n capacitors 35-1, 35-2...35-n making up the second DC voltage source The circuits are respectively connected in parallel to the commercial AC power supply 11 as branches.

在非饱和区域中驱动用作上述可变电阻器的开关元件32-1~32-n,实现作为可变电阻器的功能,因此,控制为仅在充电分别对应的电容器34-1~34-n期间,阻抗变为有限值,在此之外的期间,将阻抗无限大。这样,上述各开关元件32-1~32-n将充电各电容器34-1~34-n时的阻抗控制为流过大致与商用交流输入电压正半周期成比例的波形的输入电流。The switching elements 32-1 to 32-n used as the above-mentioned variable resistors are driven in the non-saturation region to realize the function as the variable resistors, so it is controlled to charge only the respective corresponding capacitors 34-1 to 34-n. During the n period, the impedance becomes a finite value, and in other periods, the impedance becomes infinite. In this manner, the switching elements 32-1 to 32-n control the impedance when charging the capacitors 34-1 to 34-n so that an input current having a waveform approximately proportional to the positive half cycle of the commercial AC input voltage flows.

在非饱和区域中驱动用作上述可变电阻器的开关元件33-1~33-n,实现作为可变电阻器的功能,因此,控制为仅在充电分别对应的电容器35-1~35-n期间,阻抗变为有限值,在此之外的期间,将阻抗无限大。这样,上述各开关元件33-1~33-n将充电各电容器35-1~35-n时的阻抗控制为流过大致与商用交流输入电压负半周期成比例的波形的输入电流。The switching elements 33-1 to 33-n used as the above-mentioned variable resistors are driven in the non-saturation region to realize the function as the variable resistors, so it is controlled to charge only the respective corresponding capacitors 35-1 to 35-n. During the n period, the impedance becomes a finite value, and in other periods, the impedance becomes infinite. In this manner, the switching elements 33-1 to 33-n control the impedance when charging the capacitors 35-1 to 35-n so that an input current having a waveform approximately proportional to the negative half cycle of the commercial AC input voltage flows.

在商用交流电源11的电源电压绝对值上升期间,在某个电容器的电压和商用交流电源电压的绝对值相等时开始该电容器的充电,在下一级电容器的电压等于商用交流电源电压的绝对值相等时停止,在商用交流电源11的电源电压绝对值下降期间,在前一个电容器的电压等于商用交流电源电压的绝对值相等时开始某个电容器的充电,在充电电压等于商用交流电源电压的绝对值相等时停止。During the rise of the absolute value of the power supply voltage of the commercial AC power supply 11, the charging of the capacitor is started when the voltage of a certain capacitor is equal to the absolute value of the commercial AC power supply voltage, and the voltage of the next stage capacitor is equal to the absolute value of the commercial AC power supply voltage. When the absolute value of the power supply voltage of the commercial AC power supply 11 drops, the charging of a certain capacitor starts when the voltage of the previous capacitor is equal to the absolute value of the commercial AC power supply voltage. When the charging voltage is equal to the absolute value of the commercial AC power supply voltage Stop when equal.

由此,上述各电容器34-1~34-n充电彼此不同的正电压值,上述各电容器35-1~35-n充电彼此不同的负电压值。例如,在正半周期中,在正方向上将电容器34-1充电到最小电压值,在正方向上将电容器34-n充电到最大电压值,在负半周期中,在负方向上将电容器35-1充电到最小电压值,在负方向上将电容器35-n充电到最大电压值。Accordingly, the respective capacitors 34-1 to 34-n are charged with different positive voltage values, and the respective capacitors 35-1 to 35-n are charged with different negative voltage values. For example, during a positive half cycle, capacitor 34-1 is charged to a minimum voltage value in the positive direction, capacitor 34-n is charged to a maximum voltage value in the positive direction, and capacitor 35-n is charged to a maximum voltage value in the negative direction during a negative half cycle. 1 is charged to a minimum voltage value, and the capacitor 35-n is charged to a maximum voltage value in the negative direction.

由FET构成的开关元件36-1、36-2…36-n的一端分别连接到上述电容器34-1~34-n的正极侧,由MOSFET构成的开关元件37-1、37-2…37-n的一端分别连接到上述电容器35-1~35-n的负极侧。上述各开关元件36-1~36-n、37-1~37-n的另一端通过串联第一电容器3连接到放电灯2中另一方灯丝电极2a的一端上。上述放电灯2中另一方灯丝电极2b的一端通过串联电灯电流检测器4而分别连接到作为上述电压发生源31的输出端子的另一端的上述各电容器34-1~34-n的负极侧及上述电容器35-1~35-n的正极侧。One end of the switching elements 36-1, 36-2...36-n made of FETs is respectively connected to the positive side of the capacitors 34-1 to 34-n, and the switching elements 37-1, 37-2...37 made of MOSFETs One end of -n is connected to the negative side of the above-mentioned capacitors 35-1 to 35-n, respectively. The other ends of the switching elements 36 - 1 to 36 - n and 37 - 1 to 37 - n are connected to one end of the other filament electrode 2 a of the discharge lamp 2 through the first capacitor 3 connected in series. One end of the other filament electrode 2b in the discharge lamp 2 is connected to the negative side and the negative electrode side of each of the capacitors 34-1 to 34-n, which are the other ends of the output terminals of the voltage generating source 31, respectively, through the series-connected lamp current detector 4. The positive side of the above-mentioned capacitors 35-1 to 35-n.

驱动信号发生部22从时钟发生部23中取得时钟信号,与时钟信号同步地将由开/关定时控制部21决定的定时的驱动信号提供给驱动电路171,驱动电路171以规定的定时顺次择一地接通各开关元件36-1~36-n、37-1~37-n,使得电灯电路有效值接近相当于额定值的电压Vref。这样,根据来自时钟发生部23的时钟信号,通过第一电容器3将从交流阶梯状电压发生源31提供给放电灯2的包含零电压值的阶梯状电压波形的频率固定。此外,其他的构成和上述实施例相同。The drive signal generation unit 22 obtains a clock signal from the clock generation unit 23, and supplies the drive signal at the timing determined by the on/off timing control unit 21 to the drive circuit 171 in synchronization with the clock signal, and the drive circuit 171 sequentially selects the clock signal at a predetermined timing. Switching elements 36-1 to 36-n and 37-1 to 37-n are turned on at one time so that the effective value of the lamp circuit approaches the voltage Vref corresponding to the rated value. In this way, the frequency of the stepped voltage waveform including zero voltage value supplied from the AC stepped voltage generator 31 to the discharge lamp 2 is fixed by the first capacitor 3 based on the clock signal from the clock generator 23 . In addition, other configurations are the same as the above-mentioned embodiment.

在这种构成中,交流电源11的正半周期中,各开关元件32-1~32-n的阻抗顺次择一地变成有限值,向各电容器34-1~34-n充电彼此不同值的正电压。交流电源11的负半周期中,各开关元件33-1~33-n的阻抗顺次择一地变成有限值,向各电容器35-1~35-n充电彼此不同值的正电压。In this configuration, in the positive half cycle of the AC power supply 11, the impedances of the switching elements 32-1 to 32-n sequentially become finite values, and the capacitors 34-1 to 34-n are charged differently from each other. value of positive voltage. In the negative half cycle of the AC power supply 11, the impedances of the switching elements 33-1 to 33-n sequentially become finite, and positive voltages of different values are charged to the capacitors 35-1 to 35-n.

另一方面,在输出侧,各开关元件36-1~36-n、37-1~37-n以比输入侧短的周期顺次择一地进行开关动作,反复进行。由此,从各开关元件36-1~36-n、37-1~37-n通过第一电容器3向放电灯2提供电压值以阶梯状变化的交流阶梯状电压。这样,在预热时导通开关元件6,通过第二电容器5在各灯丝电极2a、2b中流过预热电流。On the other hand, on the output side, each of the switching elements 36-1 to 36-n, 37-1 to 37-n sequentially performs switching operations one at a time shorter than that on the input side, and repeats this operation. As a result, an AC stepped voltage whose voltage value changes stepwise is supplied to the discharge lamp 2 from each of the switching elements 36-1 to 36-n and 37-1 to 37-n via the first capacitor 3 . In this way, during preheating, the switching element 6 is turned on, and a preheating current flows through the second capacitor 5 to each of the filament electrodes 2 a and 2 b.

因而,在本实施例中,在可变阶梯状电压波形的各电压的时间宽度来控制交流阶梯状电压波形有效值时,负载特性是在放电灯2从断路(负载电流为零)到短路(负载电压为零)的宽范围中存在动作点,可扩大可适用的电灯电压的范围。而且,可抑制在放电灯2短路时流过的负载电流,可防止流过过量电流。Therefore, in this embodiment, when the time width of each voltage of the variable stepped voltage waveform is controlled to control the effective value of the AC stepped voltage waveform, the load characteristic is when the discharge lamp 2 is from open circuit (load current is zero) to short circuit ( There are operating points in a wide range where the load voltage is zero), and the range of applicable lamp voltages can be expanded. Furthermore, the load current flowing when the discharge lamp 2 is short-circuited can be suppressed, and an excessive current can be prevented from flowing.

第21实施例21st embodiment

在本实施例中使用的放电灯照明装置的电路构成和上述第19实施例相同。即,构成如图31所示。The circuit configuration of the discharge lamp lighting device used in this embodiment is the same as that of the nineteenth embodiment described above. That is, the configuration is as shown in FIG. 31 .

在本实施例中,构成直流电压源的各电容器14-1~14-n的电容相等。另外,设通过第一电容器3从交流阶梯状电压发生源1提供给放电灯2的交流阶梯状电压波形的各电压的时间宽度的平均值为ts、由第一电容器3的电容和额定照明时的放电灯2的等价电阻决定的时间常数为CR时,设定第一电容器3的电容及交流阶梯状电压波形的各电压的时间宽度,使得满足CR/ts>1。In this embodiment, the capacitances of the capacitors 14-1 to 14-n constituting the DC voltage source are equal. In addition, assuming that the average value of the time width of each voltage of the AC stepped voltage waveform supplied from the AC stepped voltage generator 1 to the discharge lamp 2 through the first capacitor 3 is ts, the capacitance of the first capacitor 3 and the rated lighting time When the time constant determined by the equivalent resistance of the discharge lamp 2 is CR, the capacitance of the first capacitor 3 and the time width of each voltage of the AC stepped voltage waveform are set so that CR/ts>1 is satisfied.

然而,在通过第一电容器3将交流阶梯状电压波形提供给放电灯2的构成中,会产生额定动作时的电灯电流的波形因数(峰值因数)变差的问题。波形因数由(最大值/有效值)求出。电灯电流的波形因数变差时,电灯的发光效率下降,灯丝的损坏变大,灯寿命变短。However, in the configuration in which the AC stepped voltage waveform is supplied to the discharge lamp 2 through the first capacitor 3, there is a problem that the waveform factor (crest factor) of the lamp current during rated operation deteriorates. The form factor is obtained from (maximum value/rms value). When the form factor of the lamp current deteriorates, the luminous efficiency of the lamp decreases, the damage of the filament increases, and the life of the lamp becomes shorter.

例如,作为放电灯2,使用额定电压125V、额定电流0.255A的放电灯,提供给放电灯2的交流阶梯状电压波形的频率为20KHz,调整交流阶梯状电压的有效值使得得到额定输出。使第一电容器3的电容变化为0.02μF、0.015μF、0.01μF、0.005μF,研究CR/ts和波形因数的关系的结果,得到的关系如图36所示。For example, as the discharge lamp 2, a discharge lamp with a rated voltage of 125V and a rated current of 0.255A is used, and the frequency of the AC stepped voltage waveform supplied to the discharge lamp 2 is 20KHz, and the effective value of the AC stepped voltage is adjusted so as to obtain a rated output. The capacitance of the first capacitor 3 was changed to 0.02 μF, 0.015 μF, 0.01 μF, and 0.005 μF, and the relationship between CR/ts and the crest factor was studied. The obtained relationship is shown in FIG. 36 .

图中,用□画出的曲线是第一电容器3的电容为0.02μF时,△画出的曲线是第一电容器3的电容为0.015μF时,用×画出的曲线是第一电容器3的电容为0.01μF时,用○画出的曲线是第一电容器3的电容为0.005μF时。In the figure, the curve drawn by □ is when the capacitance of the first capacitor 3 is 0.02 μF, the curve drawn by △ is when the capacitance of the first capacitor 3 is 0.015 μF, and the curve drawn by × is the capacitance of the first capacitor 3 When the capacitance is 0.01 μF, the curve drawn with ○ is when the capacitance of the first capacitor 3 is 0.005 μF.

从曲线可见,设定为CR/ts>1时,波形因数可小于2.1,设定为CR/ts>2.5时,波形因数可小于1.7。即,通过设定为CR/ts>1,电灯电流的波形因数可比较良好,若设定为CR/ts>2.5,可进一步改善电灯电流的波形因数。由此,可防止电灯的发光效率下降,可防止电灯寿命变短。It can be seen from the curve that when CR/ts>1 is set, the form factor can be less than 2.1, and when CR/ts>2.5 is set, the form factor can be less than 1.7. That is, by setting CR/ts>1, the form factor of the lamp current can be relatively good, and by setting CR/ts>2.5, the form factor of the lamp current can be further improved. Thereby, the luminous efficiency of a lamp can be prevented from being reduced, and the lifetime of a lamp can be prevented from being shortened.

图37示出了在上述条件下提供给放电灯2的交流阶梯状电压波形的半周期中台阶数(阶梯数)是5个台阶时在交流阶梯状电压波形和放电灯2的两端间发生的电压波形。照明频率为20kHz,因此,电灯电压波形和电灯电流波形大致相似。因此,电灯电压的波形因数和电灯电流的波形因数一致。因此,这里考虑电灯电压的波形因数。Fig. 37 shows that the step number (step number) in the half cycle of the AC step-like voltage waveform supplied to the discharge lamp 2 under the above conditions is 5 steps, which occurs between the AC step-like voltage waveform and the both ends of the discharge lamp 2. voltage waveform. The lighting frequency is 20kHz, so the lamp voltage waveform and the lamp current waveform are roughly similar. Therefore, the form factor of the lamp voltage is identical to the form factor of the lamp current. Therefore, the form factor of the lamp voltage is considered here.

即,(a)是交流阶梯状电压波形,(b)是第一电容器3的电容为0.1μF时的放电灯2两端间发生的电压波形,(c)是第一电容器3的电容为0.02μF时的放电灯2两端间发生的电压波形,(d)是第一电容器3的电容为0.015μF时的放电灯2两端间发生的电压波形,(e)是第一电容器3的电容为0.01μF时的放电灯2两端间发生的电压波形,(f)是第一电容器3的电容为0.005μF时的放电灯2两端间发生的电压波形。这时,(e)和(f)时电灯电流的波形因数差。That is, (a) is an AC stepped voltage waveform, (b) is a voltage waveform generated between both ends of the discharge lamp 2 when the capacitance of the first capacitor 3 is 0.1 μF, and (c) is that the capacitance of the first capacitor 3 is 0.02 μF. The voltage waveform generated between the two ends of the discharge lamp 2 at the time of μF, (d) is the voltage waveform generated between the two ends of the discharge lamp 2 when the capacitance of the first capacitor 3 is 0.015 μF, and (e) is the capacitance of the first capacitor 3 (f) is a voltage waveform generated across the discharge lamp 2 when the capacitance of the first capacitor 3 is 0.005 μF. At this time, there is a difference in the form factor of the lamp current between (e) and (f).

图38示出了在上述条件下提供给放电灯2的交流阶梯状电压波形的半周期中台阶数(阶梯数)是11个台阶时在交流阶梯状电压波形和放电灯2的两端间发生的电压波形。即,(a)是交流阶梯状电压波形,(b)是第一电容器3的电容为0.1μF时的放电灯2两端间发生的电压波形,(c)是第一电容器3的电容为0.02μF时的放电灯2两端间发生的电压波形,(d)是第一电容器3的电容为0.015μF时的放电灯2两端间发生的电压波形,(e)是第一电容器3的电容为0.01μF时的放电灯2两端间发生的电压波形,(f)是第一电容器3的电容为0.005μF时的放电灯2两端间发生的电压波形。Fig. 38 shows that the step number (step number) in the half cycle of the AC step-like voltage waveform supplied to the discharge lamp 2 under the above conditions is 11 steps, which occurs between the AC step-like voltage waveform and both ends of the discharge lamp 2. voltage waveform. That is, (a) is an AC stepped voltage waveform, (b) is a voltage waveform generated between both ends of the discharge lamp 2 when the capacitance of the first capacitor 3 is 0.1 μF, and (c) is that the capacitance of the first capacitor 3 is 0.02 μF. The voltage waveform generated between the two ends of the discharge lamp 2 at the time of μF, (d) is the voltage waveform generated between the two ends of the discharge lamp 2 when the capacitance of the first capacitor 3 is 0.015 μF, and (e) is the capacitance of the first capacitor 3 (f) is a voltage waveform generated across the discharge lamp 2 when the capacitance of the first capacitor 3 is 0.005 μF.

图39示出了在上述条件下提供给放电灯2的交流阶梯状电压波形的半周期中台阶数(阶梯数)是21个台阶时在交流阶梯状电压波形和放电灯2的两端间发生的电压波形。即,(a)是交流阶梯状电压波形,(b)是第一电容器3的电容为0.1μF时的放电灯2两端间发生的电压波形,(c)是第一电容器3的电容为0.02μF时的放电灯2两端间发生的电压波形,(d)是第一电容器3的电容为0.015μF时的放电灯2两端间发生的电压波形,(e)是第一电容器3的电容为0.01μF时的放电灯2两端间发生的电压波形,(f)是第一电容器3的电容为0.005μF时的放电灯2两端间发生的电压波形。Fig. 39 shows the occurrence between the AC stepped voltage waveform and both ends of the discharge lamp 2 when the number of steps (the number of steps) in the half cycle of the AC stepped voltage waveform supplied to the discharge lamp 2 is 21 steps under the above conditions. voltage waveform. That is, (a) is an AC stepped voltage waveform, (b) is a voltage waveform generated between both ends of the discharge lamp 2 when the capacitance of the first capacitor 3 is 0.1 μF, and (c) is that the capacitance of the first capacitor 3 is 0.02 μF. The voltage waveform generated between the two ends of the discharge lamp 2 at the time of μF, (d) is the voltage waveform generated between the two ends of the discharge lamp 2 when the capacitance of the first capacitor 3 is 0.015 μF, and (e) is the capacitance of the first capacitor 3 (f) is a voltage waveform generated across the discharge lamp 2 when the capacitance of the first capacitor 3 is 0.005 μF.

从以上结果可见,通过增加交流阶梯状电压波形的半周期中的台阶数可减小交流阶梯状电压波形各电压的时间宽度的平均值ts,因此,即使时间常数CR变小,也能满足CR/ts>1。换言之,为了在电灯电流的波形因数对第一电容器3的各种电容值均保持良好,只要增加交流阶梯状电压波形的半周期中的台阶数即可。通过根据交流阶梯状电压波形的半周期中的台阶数适当设定电容器3的电容,可使电灯电流的波形因数保持良好。From the above results, it can be seen that the average value ts of the time width of each voltage of the AC stepped voltage waveform can be reduced by increasing the number of steps in the half cycle of the AC stepped voltage waveform. Therefore, even if the time constant CR becomes smaller, the CR can be satisfied. /ts > 1. In other words, in order to keep the form factor of the lamp current good for various capacitance values of the first capacitor 3, it is only necessary to increase the number of steps in the half cycle of the AC stepped voltage waveform. By appropriately setting the capacitance of the capacitor 3 according to the number of steps in the half cycle of the AC stepped voltage waveform, the form factor of the lamp current can be kept good.

在本实施例中使用的放电灯照明装置的电路构成和图31的构成相同,因此,本实施例当然能得到和上述第19至第20实施例相同的作用效果。The circuit configuration of the discharge lamp illuminating device used in this embodiment is the same as that shown in FIG. 31. Therefore, this embodiment can naturally obtain the same effects as those of the nineteenth to twentieth embodiments described above.

第22实施例22nd embodiment

和上述第19至第22实施例相同的部分用相同的符号表示,这些部分的详细说明从略。如图40所示,放电灯2的各灯丝电极2a、2b的一端经第一电容器3连接到交流阶梯状电压发生源41的输出端子上。The parts that are the same as those in the nineteenth to twenty-second embodiments described above are denoted by the same symbols, and detailed descriptions of these parts are omitted. As shown in FIG. 40, one end of each filament electrode 2a, 2b of the discharge lamp 2 is connected to an output terminal of an AC stepped voltage generator 41 via a first capacitor 3. As shown in FIG.

上述交流阶梯状电压发生源41设置发生不同正电压值的多个直流电压源42-1、42-2…42-n,极性反转电路16的输入端子经作为开关元件的分别可控制两极性电流的断开、导通的两极性开关43-1、43-2…43-n连接到各直流电压源42-1~42-n上。上述各两极性开关43-1~43-n公共连接2个MOSFET的源极端子和栅极端子。在本实施例中,省略了将交流阶梯状电压波形的有效值电压控制为额定值的电路和各两极性开关43-1、43-2…43-n的驱动电路。The above-mentioned AC stepped voltage generating source 41 is provided with a plurality of DC voltage sources 42-1, 42-2...42-n that generate different positive voltage values, and the input terminals of the polarity inversion circuit 16 can respectively control the two poles as switching elements. The bipolar switches 43-1, 43-2...43-n for disconnecting and conducting the polar current are connected to the DC voltage sources 42-1~42-n. The above-mentioned bipolar switches 43-1 to 43-n are commonly connected to source terminals and gate terminals of two MOSFETs. In this embodiment, the circuit for controlling the effective value voltage of the AC stepped voltage waveform to a rated value and the drive circuits for the bipolar switches 43-1, 43-2...43-n are omitted.

在该构成中,交流阶梯状电压发生源4 1通过第一电容器3将来自极性反转电路16的交流阶梯状电压波形提供给放电灯2。图41示出了此时交流阶梯状电压波形和在放电灯2中流过的负载电流波形的一个例子。即,在该例子中,交流阶梯状电压波形Vo和负载电流波形Io由于第一电容器3而相位相差接近90°。In this configuration, the AC stepped voltage generator 41 supplies the discharge lamp 2 with the AC stepped voltage waveform from the polarity inverting circuit 16 through the first capacitor 3. FIG. 41 shows an example of an AC step-like voltage waveform and a load current waveform flowing through the discharge lamp 2 at this time. That is, in this example, the AC stepped voltage waveform Vo and the load current waveform Io are out of phase by approximately 90° due to the first capacitor 3 .

因此,例如,极性反转电路16的开关元件16-1和16-4导通且在放电灯2的灯丝电极2a侧施加正极电压时,电灯电流最初以开关元件16-1->第一电容器3->放电灯2->开关元件16-4的路径流动,但在途中反转,以开关元件16-4->放电灯2->第一电容器3->开关元件16-1的路径流动。此时,因为使用两极性开关43-1~43-n,所以电流经该两极性开关43-1~43-n流入直流电压源42-1~42-n侧。Therefore, for example, when the switching elements 16-1 and 16-4 of the polarity reversing circuit 16 are turned on and a positive voltage is applied to the filament electrode 2a side of the discharge lamp 2, the lamp current initially takes the form of switching element 16-1->first The path of capacitor 3->discharge lamp 2->switching element 16-4 flows, but reverses on the way, taking the path of switching element 16-4->discharge lamp 2->first capacitor 3->switching element 16-1 flow. At this time, since the bipolar switches 43-1 to 43-n are used, current flows into the DC voltage sources 42-1 to 42-n side through the bipolar switches 43-1 to 43-n.

由此,可在放电灯2中无浪费地有效地流过电灯电流,可提高电灯的发光效率。Accordingly, the lamp current can be efficiently passed through the discharge lamp 2 without waste, and the luminous efficiency of the lamp can be improved.

相反,在两极性开关43-1~43-n为单极性的开关时,出现不流过反方向的电流、电灯电流切断期间,因此,在得到恒定光输出的情况下,电灯的发光效率下降。On the contrary, when the bipolar switches 43-1 to 43-n are unipolar switches, the current in the opposite direction does not flow and the electric lamp current is cut off. Therefore, in the case of obtaining a constant light output, the luminous efficiency of the electric lamp decline.

在本实施例中,因为从交流阶梯状电压发生源41经第一电容器3向放电灯2提供交流阶梯状电压,所以和上述实施例一样,放电灯2在从断路(负载电流为零)到短路(负载电压为零)的宽范围中存在动作点,可扩大可适用的电灯电压的范围。而且,可抑制在放电灯2短路时流过的负载电流,可防止流过过量电流。In this embodiment, since the AC stepped voltage is supplied from the AC stepped voltage generating source 41 to the discharge lamp 2 through the first capacitor 3, as in the above-mentioned embodiment, the discharge lamp 2 is turned off (the load current is zero) to There are operating points in a wide range of short circuit (load voltage is zero), and the range of applicable lamp voltage can be expanded. Furthermore, the load current flowing when the discharge lamp 2 is short-circuited can be suppressed, and an excessive current can be prevented from flowing.

在本实施例中,使用2个MOSFET的源极端子和栅极端子公共连接的结构作为两极性开关,但该构成不限于此。例如,可使用如图42所示MOSFET44和二极管45的串联电路和与上述二极管45反极性的二极管46和MOSFET47的串联电路并联连接的结构。In this embodiment, a structure in which source terminals and gate terminals of two MOSFETs are commonly connected is used as a bipolar switch, but this configuration is not limited to this. For example, a series circuit of a MOSFET 44 and a diode 45 as shown in FIG. 42 and a series circuit of a diode 46 and a MOSFET 47 whose polarity is opposite to that of the diode 45 are connected in parallel in parallel.

第23实施例23rd embodiment

和上述第19至第22实施例相同的部分用相同的符号表示,这些部分的详细说明从略。如图43所示,放电灯2的各灯丝电极2a、2b的一端经第一电容器3连接到交流阶梯状电压发生源51的输出端子上。The parts that are the same as those in the nineteenth to twenty-second embodiments described above are denoted by the same symbols, and detailed descriptions of these parts are omitted. As shown in FIG. 43, one end of each filament electrode 2a, 2b of the discharge lamp 2 is connected to an output terminal of an AC stepped voltage generator 51 via a first capacitor 3. As shown in FIG.

上述交流阶梯状电压发生源51设置发生不同正电压值的多个第一直流电压源52-1、52-2…52-n及发生绝对值与各第一直流电压源52-1~52-n的各电压值相等的不同负电压值的多个第二直流电压源53-1、53-2…53-n。The above-mentioned AC stepped voltage generating source 51 is provided with a plurality of first DC voltage sources 52-1, 52-2...52-n that generate different positive voltage values, and the absolute value of the generation and each first DC voltage source 52-1~52-n A plurality of second DC voltage sources 53-1, 53-2...53-n of different negative voltage values with equal voltage values of n.

作为开关元件的可分别控制两极性的电流断开、导通的两极性开关54-1、54-2…54-n的一端连接到上述各第一直流电压源52-1~52-n上。作为开关元件的可分别控制两极性的电流断开、导通的两极性开关55-1、55-2…55-n的一端连接到上述各第二直流电压源53-1~53-n上。As switching elements, one end of bipolar switches 54-1, 54-2...54-n that can separately control the bipolar currents to be turned off and on is connected to the above-mentioned first DC voltage sources 52-1~52-n. . One end of the bipolar switches 55-1, 55-2 ... 55-n, which can respectively control the disconnection and conduction of bipolar currents as switching elements, is connected to the above-mentioned second DC voltage sources 53-1~53-n. .

上述各两极性开关54-1、54-2…54-n的另一端及上述各两极性开关55-1~55-n的另一端公共连接,作为上述交流阶梯状电压发生源51的输出端子的一端。上述各第一直流电压源52-1~52-n的负极端子及上述各第二直流电压源53-1~53-n的正极端子公共连接,作为上述交流阶梯状电压发生源51的输出端子的另一端。The other ends of the above-mentioned bipolar switches 54-1, 54-2 ... 54-n and the other ends of the above-mentioned bipolar switches 55-1 to 55-n are commonly connected as the output terminals of the above-mentioned AC stepped voltage generating source 51 one end. The negative terminals of the above-mentioned first DC voltage sources 52-1 to 52-n and the positive terminals of the above-mentioned second DC voltage sources 53-1 to 53-n are commonly connected as output terminals of the above-mentioned AC stepped voltage generating source 51. the other end of the

在上述交流阶梯状电压发生源51的输出端子之间还连接两极性开关56。该两极性开关56使交流阶梯状电压发生源51的输出端子之间短路,得到施加在放电灯2上的零电压值。A polarity switch 56 is also connected between the output terminals of the above-mentioned AC stepped voltage generator 51 . The bipolar switch 56 short-circuits the output terminals of the AC step voltage generator 51 to obtain a zero voltage value applied to the discharge lamp 2 .

上述各两极性开关54-1~54-n、55-1~55-n、56是2个MOSFET的源极端子及栅极端子公共连接的结构。The aforementioned bipolar switches 54-1 to 54-n, 55-1 to 55-n, and 56 have a structure in which source terminals and gate terminals of two MOSFETs are commonly connected.

在本实施例中,省略了将交流阶梯状电压波形的有效值电压控制为额定值的电路及各两极性开关54-1~54-n、55-1~55-n、56的驱动电路。In this embodiment, the circuit for controlling the effective value voltage of the AC step-shaped voltage waveform to a rated value and the drive circuits for the bipolar switches 54-1 to 54-n, 55-1 to 55-n, and 56 are omitted.

在该构成中,交流阶梯状电压发生源5 1通过两极性开关54-1~54-n、56的动作经第一电容器3将包含零电压值的正半周期的交流阶梯状电压提供给放电灯2,通过两极性开关55-1~55-n、56的动作经第一电容器3将包含零电压值的负半周期的交流阶梯状电压提供给放电灯2。此时的交流阶梯状电压波形和流入放电灯2的负载电流波形的关系和第22实施例相同,如图41所示。In this configuration, the AC step voltage generating source 51 provides the positive half cycle AC step voltage including zero voltage value to the discharge through the first capacitor 3 through the action of the bipolar switches 54-1~54-n, 56. The lamp 2 supplies the discharge lamp 2 with a negative half-period AC stepped voltage including zero voltage value through the first capacitor 3 through the operation of the bipolar switches 55 - 1 to 55 - n and 56 . At this time, the relationship between the AC stepped voltage waveform and the load current waveform flowing into the discharge lamp 2 is the same as that of the twenty-second embodiment, as shown in FIG. 41 .

因此,例如,两极性开关54-1~54-n动作时,电灯电流最初从第一直流电压源52-1~52-n经两极性开关54-1~54-n和电容器3流入放电灯2,但在途中反转,从放电灯2侧经电容器3和两极性开关54-1~54-n流入第一直流电压源侧。两极性开关55-1~55-n动作时,电灯电流最初从第二直流电压源53-1~53-n经放电灯2和电容器3流入两极性开关55-1~55-n侧,但在途中反转,从两极性开关55-1~55-n侧经电容器3和放电灯2流入第二直流电压源侧。Therefore, for example, when the bipolar switches 54-1~54-n operate, the lamp current initially flows into the discharge lamp from the first DC voltage sources 52-1~52-n through the bipolar switches 54-1~54-n and the capacitor 3. 2, but reversed on the way, flowing from the side of the discharge lamp 2 to the side of the first DC voltage source through the capacitor 3 and the polarity switches 54-1~54-n. When the bipolar switches 55-1~55-n operate, the lamp current initially flows into the side of the bipolar switches 55-1~55-n from the second DC voltage source 53-1~53-n through the discharge lamp 2 and the capacitor 3, but It is reversed on the way, and flows into the second DC voltage source side from the side of the bipolar switches 55-1 to 55-n via the capacitor 3 and the discharge lamp 2.

由此,电灯电流无浪费地有效地流入放电灯2,可提高电灯的发光效率。在本实施例中,因为从交流阶梯状电压发生源51经第一电容器3向放电灯2提供交流阶梯状电压,所以和上述实施例一样,放电灯2在从断路(负载电流为零)到短路(负载电压为零)的宽范围中存在动作点,可扩大可适用的电灯电压的范围。而且,可抑制在放电灯2短路时流过的负载电流,可防止流过过量电流。Accordingly, the lamp current flows efficiently into the discharge lamp 2 without waste, and the luminous efficiency of the lamp can be improved. In this embodiment, since the AC stepped voltage is supplied from the AC stepped voltage generating source 51 to the discharge lamp 2 through the first capacitor 3, the discharge lamp 2 can be turned off (the load current is zero) to There are operating points in a wide range of short circuit (load voltage is zero), and the range of applicable lamp voltage can be expanded. Furthermore, the load current flowing when the discharge lamp 2 is short-circuited can be suppressed, and an excessive current can be prevented from flowing.

第24实施例24th embodiment

和上述第19至第23实施例相同的部分用相同的符号标号,这些部分的详细说明从略。如图44所示,交流阶梯状电压发生源61将n个支路62-1、62-2…并联连接到全波整流器12的输出端子上。The parts that are the same as those in the above-mentioned nineteenth to twenty-third embodiments are designated by the same symbols, and detailed descriptions of these parts are omitted. As shown in FIG. 44 , the AC stepped voltage generating source 61 connects n branches 62 - 1 , 62 - 2 . . . to the output terminal of the full-wave rectifier 12 in parallel.

上述各支路62-1、62-2…设置开关元件13-1、13-2…和构成直流电压源的n个电容器14-11、14-21…的串联电路。在开关元件13-1和电容器14-11的支路中,相同电容的(m-1)个电容器14-12、14-13…14-1m分别经MOSFET构成的开关元件并联连接到上述电容器14-11上。Each of the aforementioned branches 62-1, 62-2... is provided with a series circuit of switching elements 13-1, 13-2... and n capacitors 14-11, 14-21... constituting a DC voltage source. In the branch circuit of the switching element 13-1 and the capacitor 14-11, (m-1) capacitors 14-12, 14-13...14-1m of the same capacity are respectively connected in parallel to the above-mentioned capacitor 14 via switching elements composed of MOSFETs. -11 on.

即,上述电容器14-12的一端经开关元件63-11连接到上述电容器14-11的一端上,上述电容器14-12的另一端经开关元件64-11连接到上述电容器14-11的另一端上。上述电容器14-13的一端经开关元件63-12和63-11串联连接到上述电容器14-11的一端上,上述电容器14-13的另一端经开关元件64-12和64-11串联连接到上述电容器14-11的另一端上。同样地连接其它电容器,最后,上述电容器14-1m的一端经开关元件63-1(m-1)…63-12、63-11串联连接到上述电容器14-11的一端上,上述电容器14-1m的另一端经开关元件64-1(m-1)…64-12、64-11串联连接到上述电容器14-11的另一端上。That is, one end of the above-mentioned capacitor 14-12 is connected to one end of the above-mentioned capacitor 14-11 through the switching element 63-11, and the other end of the above-mentioned capacitor 14-12 is connected to the other end of the above-mentioned capacitor 14-11 through the switching element 64-11. superior. One end of the above-mentioned capacitor 14-13 is connected in series to one end of the above-mentioned capacitor 14-11 through the switching elements 63-12 and 63-11, and the other end of the above-mentioned capacitor 14-13 is connected in series to the capacitor through the switching elements 64-12 and 64-11. The other end of the capacitor 14-11. Connect other capacitors similarly, and finally, one end of the above-mentioned capacitor 14-1m is connected in series to one end of the above-mentioned capacitor 14-11 through switching elements 63-1(m-1)...63-12, 63-11, and the above-mentioned capacitor 14-1m The other end of 1m is connected in series to the other end of the capacitor 14-11 via switching elements 64-1(m-1)...64-12, 64-11.

在上述开关元件63-11和电容器14-12的串联电路上并联连接开关元件65-11,在上述开关元件63-12和电容器14-13的串联电路上并联连接开关元件65-12,以同样的构成连接开关元件,最后在上述开关元件63-1(m-1)和电容器14-1m的串联电路上并联连接开关元件65-1(m-1)。The switching element 65-11 is connected in parallel on the series circuit of the above-mentioned switching element 63-11 and the capacitor 14-12, and the switching element 65-12 is connected in parallel on the series circuit of the above-mentioned switching element 63-12 and the capacitor 14-13, to similarly The switching element is connected in the configuration, and finally the switching element 65-1 (m-1) is connected in parallel to the series circuit of the switching element 63-1 (m-1) and the capacitor 14-1m.

上述电容器14-22的一端经开关元件63-21连接到上述电容器14-21的一端上,上述电容器14-22的另一端经开关元件64-21连接到上述电容器14-21的另一端上。上述电容器14-23的一端经开关元件63-22和63-21串联连接到上述电容器14-21的一端上,上述电容器14-23的另一端经开关元件64-22和64-21串联连接到上述电容器14-21的另一端上。同样地连接其它电容器,最后,上述电容器14-2m的一端经开关元件63-2(m-1)…63-22、63-21串联连接到上述电容器14-21的一端上,上述电容器14-2m的另一端经开关元件64-2(m-1)…64-22、64-21串联连接到上述电容器14-21的另一端上。One end of the capacitor 14-22 is connected to one end of the capacitor 14-21 via a switching element 63-21, and the other end of the capacitor 14-22 is connected to the other end of the capacitor 14-21 via a switching element 64-21. One end of the above-mentioned capacitor 14-23 is connected in series to one end of the above-mentioned capacitor 14-21 through the switch elements 63-22 and 63-21, and the other end of the above-mentioned capacitor 14-23 is connected in series to the capacitor through the switch elements 64-22 and 64-21. The other end of the capacitor 14-21. Connect other capacitors similarly, and finally, one end of the above-mentioned capacitor 14-2m is connected in series to one end of the above-mentioned capacitor 14-21 through the switching elements 63-2(m-1)...63-22, 63-21, and the above-mentioned capacitor 14-2m is connected in series. The other end of 2m is connected in series to the other end of the capacitor 14-21 via switching elements 64-2(m-1)...64-22, 64-21.

在上述开关元件63-21和电容器14-22的串联电路上并联连接开关元件65-21,在上述开关元件63-22和电容器14-23的串联电路上并联连接开关元件65-22,以同样的构成连接开关元件,最后在上述开关元件63-2(m-1)和电容器14-2m的串联电路上并联连接开关元件65-2(m-1)。On the series circuit of the above-mentioned switching element 63-21 and the capacitor 14-22, the switching element 65-21 is connected in parallel, and on the series circuit of the above-mentioned switching element 63-22 and the capacitor 14-23, the switching element 65-22 is connected in parallel, to similarly The switching element is connected in the configuration, and finally the switching element 65-2 (m-1) is connected in parallel to the series circuit of the switching element 63-2 (m-1) and the capacitor 14-2m.

这样,剩下的全部支路也通过多个开关元件和电容器构成和上述2个支路62-1、62-2相同的电路。In this way, all the remaining branches also constitute the same circuit as the above-mentioned two branches 62-1, 62-2 by a plurality of switching elements and capacitors.

各支路的最终电容器14-1m、14-2m…和开关元件63-1(m-1)、63-2(m-1)的连接点分别经开关元件66-1、66-2…连接到极性反转电路16的开关元件16-1和16-3的连接点上。上述极性反转电路16的开关元件16-2和16-4的连接点连接到上述各电容器14-11、14-21…的另一端上。The connection points of final capacitors 14-1m, 14-2m... and switching elements 63-1(m-1), 63-2(m-1) of each branch are respectively connected via switching elements 66-1, 66-2... To the connection point of the switching elements 16 - 1 and 16 - 3 of the polarity inversion circuit 16 . The connection point of the switching elements 16-2 and 16-4 of the above-mentioned polarity reversing circuit 16 is connected to the other end of each of the above-mentioned capacitors 14-11, 14-21....

这种构成的交流阶梯状电压发生源61在充电时,在支路62-1中,开关元件13-1的阻抗被控制为有限值,使开关元件63-11~63-1(m-1)、64-11~64-1(m-1)进行开动作,使开关元件65-11~65-1(m-1)进行关动作。由此,支路62-1的各电容器14-11~14-1m全部并联连接,通过全波整流器12的输出电压充电为规定电平。When the AC stepped voltage generating source 61 of this structure is charging, in the branch 62-1, the impedance of the switching element 13-1 is controlled to a finite value, so that the switching elements 63-11~63-1 (m-1 ), 64-11 to 64-1 (m-1) perform the opening operation, and the switching elements 65-11 to 65-1 (m-1) perform the closing operation. Accordingly, all the capacitors 14-11 to 14-1m of the branch 62-1 are connected in parallel, and the output voltage of the full-wave rectifier 12 is charged to a predetermined level.

在下一个支路62-2中,开关元件13-2的阻抗被控制为有限值,使开关元件63-21~63-2(m-1)、64-21~64-2(m-1)进行开动作,使开关元件65-21~65-2(m-1)进行关动作。由此,支路62-2的各电容器14-21~14-2m全部并联连接,通过全波整流器12的输出电压充电为比各电容器14-11~14-1m高若干电平的规定电平。In the next branch 62-2, the impedance of the switching element 13-2 is controlled to a finite value, so that the switching elements 63-21~63-2(m-1), 64-21~64-2(m-1) The ON operation is performed, and the switching elements 65-21 to 65-2(m-1) are subjected to the OFF operation. Thus, all the capacitors 14-21 to 14-2m of the branch 62-2 are connected in parallel, and the output voltage of the full-wave rectifier 12 is charged to a predetermined level slightly higher than that of the capacitors 14-11 to 14-1m. .

这样,n级支路的全部电容器通过全波整流器12的输出电压充电为每个支路不同的电压值。In this way, all the capacitors of the n-level branches are charged to different voltage values for each branch by the output voltage of the full-wave rectifier 12 .

控制电容器的放电,使得各支路中开关元件13-1、13-2…的阻抗变为无限大,除此之外的各开关元件选择性地进行开动作。The discharge of the capacitor is controlled so that the impedance of the switching elements 13-1, 13-2, ... in each branch becomes infinite, and the other switching elements are selectively turned on.

例如,支路62-1中开关元件13-1的阻抗控制为无限大,在使开关元件63-11~63-1(m-1)、64-11~64-1(m-1)关动作、开关元件65-11~65-1(m-1)、66-1开动作时,支路62-1的各电容器14-11~14-1m全部串联连接,向极性反转电路16输出各电容器的充电电压m倍的电压值。For example, the impedance of the switching element 13-1 in the branch 62-1 is controlled to be infinite, and the switching elements 63-11~63-1(m-1), 64-11~64-1(m-1) are turned off. When the operation, switching elements 65-11~65-1(m-1) and 66-1 are opened and operated, all the capacitors 14-11~14-1m of the branch circuit 62-1 are connected in series, and the polarity reversal circuit 16 A voltage value m times the charging voltage of each capacitor is output.

在支路62-2中开关元件13-2的阻抗控制为无限大,在使开关元件63-21~63-2(m-1)、64-21~64-2(m-1)关动作、开关元件65-21~65-2(m-1)、66-2开动作时,支路62-2的各电容器14-21~14-2m全部串联连接,向极性反转电路16输出各电容器的充电电压m倍的电压值。In the branch 62-2, the impedance of the switching element 13-2 is controlled to be infinite, and the switching elements 63-21~63-2(m-1), 64-21~64-2(m-1) are turned off. , when the switching elements 65-21~65-2(m-1), 66-2 are on and in operation, all the capacitors 14-21~14-2m of the branch circuit 62-2 are connected in series, and output to the polarity inversion circuit 16 The voltage value of m times the charging voltage of each capacitor.

这样,在放电时,全部支路顺次动作,通过反复进行,高压的交流阶梯状电压波形以例如20KHz的高频从交流阶梯状电压发生源61经第一电容器3提供给放电灯2。In this way, during discharge, all branches operate sequentially, and through repetition, a high-voltage AC stepped voltage waveform is supplied to the discharge lamp 2 from the AC stepped voltage generator 61 through the first capacitor 3 at a high frequency of, for example, 20KHz.

这里,虽然以从交流阶梯状电压发生源61提供将各电容器充电电压升压到m倍的交流阶梯状电压波形为例进行描述,但通过控制各支路的开关元件,可在1倍到m倍的范围内控制输出电压。例如,若各支路的电容器全部并联连接,则变为和输入电压相同电平的输出电压,输出如图45(a)所示的交流阶梯状电压波形。若控制为仅串联连接2个各支路的电容器,则如图45(b)所示,输出升压为2倍的交流阶梯状电压波形。Here, although the AC stepped voltage waveform provided from the AC stepped voltage generating source 61 as an example to boost the charging voltage of each capacitor to m times is described, by controlling the switching elements of each branch, it can be adjusted from 1 times to m times. times the range to control the output voltage. For example, if all the capacitors in each branch are connected in parallel, the output voltage becomes the same level as the input voltage, and an AC stepped voltage waveform as shown in Fig. 45(a) is output. If it is controlled so that only two capacitors of each branch are connected in series, as shown in FIG. 45( b ), an AC stepped voltage waveform boosted by a factor of 2 is output.

这样,可发生各种交流阶梯状电压,可提高通用性。In this way, various AC stepped voltages can be generated, and versatility can be improved.

该电路的情况下,在提供升压的交流阶梯状电压波形时,由于电压电平不同,因此各支路中可不同时进行电容器的充电和放电。因此,在某个支路处于充电周期时,在处于对放电灯2的输出中必须使用该支路的状态时,必须对该期间的开关元件13-1…进行断开控制。因此,因为该期间充电停止,所以切断来自全波整流器12的输入电流。In the case of this circuit, since the voltage level is different when the boosted AC stepped voltage waveform is supplied, the charging and discharging of the capacitors can not be performed simultaneously in each branch. Therefore, when a certain branch is in a charge cycle and the branch must be used for the output to the discharge lamp 2, the switching elements 13-1... must be controlled to be off during that period. Therefore, since charging is stopped during this period, the input current from the full-wave rectifier 12 is cut off.

但是,若设向放电灯2提供升压的交流阶梯状电压波形期间仅仅是开始照明时,这个期间是非常短的时间,即使切断输入电流,也不会造成输入电流畸变。放电灯2开始照明后,若控制开关元件使得各支路中电容器并联连接,则因为电容器的充电和放电电压电平一致,所以在某个支路处于充电周期时,即使变成在向放电灯2的输出中必须使用该支路的状态,也不需要对开关元件13-1…进行断开控制。从而,可改善放电灯2照明时的输入功率因数。However, assuming that the period during which the boosted AC stepped voltage waveform is supplied to the discharge lamp 2 is only for the start of lighting, this period is very short, and the input current will not be distorted even if the input current is cut off. After the discharge lamp 2 starts to illuminate, if the switching elements are controlled so that the capacitors in each branch are connected in parallel, the charging and discharging voltage levels of the capacitors are consistent, so when a certain branch is in the charging cycle, even if it becomes the discharge lamp The state of this branch has to be used in the output of 2, and it is not necessary to turn off the switching elements 13-1 . . . Therefore, the input power factor at the time of lighting by the discharge lamp 2 can be improved.

在这种构成中,各支路的电容器分别并联连接来进行充电,从预热开始到照明时,各支路的电容器串联连接,向放电灯2提供升压的交流阶梯状电压波形。而且,预热在开关元件6导通一定时间后进行,此后,通过升压的交流阶梯状电压波形使放电灯2开始照明。照明后,各支路的电容器并联连接以与输入电压相同电平的输出电压维持照明。In this configuration, the capacitors in each branch are connected in parallel for charging, and the capacitors in each branch are connected in series from the start of warm-up to lighting to supply the discharge lamp 2 with a boosted AC stepped voltage waveform. In addition, the preheating is performed after the switching element 6 is turned on for a certain period of time, and thereafter, the discharge lamp 2 starts to illuminate with the boosted AC stepped voltage waveform. After lighting, the capacitors of each branch are connected in parallel to maintain lighting with an output voltage at the same level as the input voltage.

在该构成中,来自交流阶梯状电压发生源61的交流阶梯状电压波形经第一电容器3提供给放电灯2。因此,在本实施例中,在可变阶梯状电压波形的各电压的时间宽度来控制交流阶梯状电压波形有效值时,负载特性在从放电灯2的断路(负载电流为零)到短路(负载电压为零)的宽范围中存在动作点,可扩大可适用的电灯电压的范围。而且,可抑制在放电灯2短路时流过的负载电流,可防止流过过量电流。In this configuration, the AC stepped voltage waveform from the AC stepped voltage generator 61 is supplied to the discharge lamp 2 via the first capacitor 3 . Therefore, in the present embodiment, when the time width of each voltage of the stepped voltage waveform is variable to control the effective value of the AC stepped voltage waveform, the load characteristic ranges from the disconnection of the discharge lamp 2 (the load current is zero) to the short circuit ( There are operating points in a wide range where the load voltage is zero), and the range of applicable lamp voltages can be expanded. Furthermore, the load current flowing when the discharge lamp 2 is short-circuited can be suppressed, and an excessive current can be prevented from flowing.

在上述例子中,在开始照明时升压从交流阶梯状电压发生源61提供给放电灯2的交流阶梯状电压波形,但也可不升压交流阶梯状电压波形,在放电时各电容器并联连接,并且将放电充电最高电压的电容器的时间设长。从而,在开始照明时,从交流阶梯状电压发生源61提供给放电灯2的交流阶梯状电压波形如图45(c)所示。这样,施加在放电灯2上的有效值可比通常高,因此,放电灯可开始照明。In the above example, the AC stepped voltage waveform supplied from the AC stepped voltage generator 61 to the discharge lamp 2 is boosted when lighting is started, but the AC stepped voltage waveform may not be boosted, and the capacitors may be connected in parallel during discharge. And set the time to discharge and charge the capacitor with the highest voltage longer. Therefore, when lighting is started, the waveform of the AC stepped voltage supplied from the AC stepped voltage generating source 61 to the discharge lamp 2 is as shown in FIG. 45(c). In this way, the effective value applied to the discharge lamp 2 can be higher than usual, so that the discharge lamp can start to illuminate.

第25实施例25th embodiment

和上述第19至第24实施例相同的部分用相同的符号表示,这些部分的详细说明从略。The parts that are the same as those in the nineteenth to twenty-fourth embodiments described above are denoted by the same symbols, and detailed descriptions of these parts are omitted.

如图46所示,该交流阶梯状电压发生源7 1将n个支路72-1、72-2…并联连接到全波整流器12的输出端子上。上述n个支路72-1、72-2…分别由多个电容器和由多个MOSFET构成的开关元件构成。As shown in FIG. 46, the AC ladder-shaped voltage generating source 71 connects n branches 72-1, 72-2... to the output terminals of the full-wave rectifier 12 in parallel. The above-mentioned n branches 72-1, 72-2... are respectively constituted by a plurality of capacitors and switching elements constituted by a plurality of MOSFETs.

例如,支路72-1是经开关元件13-1将m个开关元件和m个电容器交互串联的电路,即,将开关元件73-11、电容器74-11、开关元件73-12、电容器74-12、开关元件73-13、电容器74-13…开关元件73-1m、电容器74-1m的串联电路并联连接到全波整流器12的输出端子上。上述各电容器74-11~74-1m构成直流电压源。For example, the branch 72-1 is a circuit in which m switching elements and m capacitors are alternately connected in series via the switching element 13-1, that is, the switching element 73-11, the capacitor 74-11, the switching element 73-12, the capacitor 74 -12. A series circuit of switching element 73 - 13 , capacitor 74 - 13 . The respective capacitors 74-11 to 74-1m constitute a DC voltage source.

在电容器74-11和开关元件73-12的串联电路上并联连接开关元件75-11,在电容器74-12和开关元件73-13的串联电路上并联连接开关元件75-12,在电容器74-13和开关元件73-14(未图示)的串联电路上并联连接开关元件75-13,…,在电容器74-1(m-1)(未图示)和开关元件73-1m的串联电路上并联连接开关元件75-1(m-1)。The switching element 75-11 is connected in parallel to the series circuit of the capacitor 74-11 and the switching element 73-12, the switching element 75-12 is connected in parallel to the series circuit of the capacitor 74-12 and the switching element 73-13, and the capacitor 74-12 is connected in parallel to the series circuit of the switching element 73-13. 13 and the series circuit of the switching element 73-14 (not shown), the switching element 75-13 is connected in parallel, ..., and the series circuit of the capacitor 74-1 (m-1) (not shown) and the switching element 73-1m A switching element 75-1 (m-1) is connected in parallel thereto.

在开关元件73-12和电容器74-12的串联电路上并联连接开关元件76-11,在开关元件73-13和电容器74-13的串联电路上并联连接开关元件76-12,…,在开关元件73-1m和电容器74-1m的串联电路上并联连接开关元件76-1(m-1)。The switching element 76-11 is connected in parallel on the series circuit of the switching element 73-12 and the capacitor 74-12, the switching element 76-12 is connected in parallel on the series circuit of the switching element 73-13 and the capacitor 74-13, ..., in the switch A switching element 76-1(m-1) is connected in parallel to the series circuit of the element 73-1m and the capacitor 74-1m.

支路72-2是经开关元件13-2将m个开关元件和m个电容器交互串联的电路,即,将开关元件73-21、电容器74-21、开关元件73-22、电容器74-22、开关元件73-23、电容器74-23…开关元件73-2m、电容器74-2m的串联电路并联连接到全波整流器12的输出端子上。上述各电容器74-21~74-2m构成直流电压源。Branch 72-2 is a circuit in which m switching elements and m capacitors are alternately connected in series via switching element 13-2, that is, switching element 73-21, capacitor 74-21, switching element 73-22, capacitor 74-22 , switching element 73 - 23 , capacitor 74 - 23 . The respective capacitors 74-21 to 74-2m constitute a DC voltage source.

在电容器74-21和开关元件73-22的串联电路上并联连接开关元件75-21,在电容器74-22和开关元件73-23的串联电路上并联连接开关元件75-22,在电容器74-23和开关元件73-24(未图示)的串联电路上并联连接开关元件75-23,…,在电容器74-2(m-1)(未图示)和开关元件73-2m的串联电路上并联连接开关元件75-2(m-1)。The switching element 75-21 is connected in parallel on the series circuit of the capacitor 74-21 and the switching element 73-22, the switching element 75-22 is connected in parallel on the series circuit of the capacitor 74-22 and the switching element 73-23, and the capacitor 74-22 is connected in parallel. 23 and the series circuit of the switching element 73-24 (not shown), the switching element 75-23 is connected in parallel, ..., and the series circuit of the capacitor 74-2 (m-1) (not shown) and the switching element 73-2m A switching element 75-2 (m-1) is connected in parallel thereto.

在开关元件73-22和电容器74-22的串联电路上并联连接开关元件76-21,在开关元件73-23和电容器74-23的串联电路上并联连接开关元件76-22,…,在开关元件73-2m和电容器74-2m的串联电路上并联连接开关元件76-2(m-1)。The switching element 76-21 is connected in parallel on the series circuit of the switching element 73-22 and the capacitor 74-22, the switching element 76-22 is connected in parallel on the series circuit of the switching element 73-23 and the capacitor 74-23, ..., in the switch A switching element 76-2(m-1) is connected in parallel to the series circuit of the element 73-2m and the capacitor 74-2m.

这样,全部支路通过多个开关元件和电容器构成和上述2个支路同样的电路。In this way, all the branches constitute the same circuit as the above-mentioned two branches through a plurality of switching elements and capacitors.

上述开关元件73-11、73-21…和电容器74-11、74-21…的连接点分别经开关元件66-1、66-2连接到极性反转电路16的开关元件16-1和16-3的连接点上。上述极性反转电路的开关元件16-2和16-4的连接点连接到上述各支路最另一端侧的电容器74-1m、74-2m的另一端上。The connection points of the above switching elements 73-11, 73-21... and capacitors 74-11, 74-21... are connected to the switching elements 16-1 and 16-3 on the connection point. The connection point of the switching elements 16-2 and 16-4 of the polarity inversion circuit is connected to the other end of the capacitors 74-1m and 74-2m on the othermost end side of each branch.

各支路72-1、72-2…的各开关元件由MOSFET构成,下面描述其具体例。Each switching element of each branch 72-1, 72-2... is comprised by MOSFET, and the specific example is described below.

图47示出了支路72-1的构成,开关元件13-1由二极管和1个MOSFET构成,其它的开关元件73-11~73-1m、75-11~75-1(m-1)、76-11~76-1(m-1)由2个MOSFET的源极和栅极公共连接的两极性开关构成。FIG. 47 shows the configuration of the branch 72-1, the switching element 13-1 is composed of a diode and a MOSFET, and the other switching elements 73-11~73-1m, 75-11~75-1(m-1) , 76-11 ~ 76-1 (m-1) consists of two polarity switches that are connected to the source and gate of two MOSFETs.

该构成对其它的支路72-2…也一样。在输出降压的电压时,交流阶梯状电压发生源71是这样的:充电时,在支路72-1中,开关元件13-1的阻抗被控制为有限值,使开关元件73-11~73-1m进行开动作,开关元件75-11~75-1(m-1)、76-11~76-(m-1)进行关动作。从而支路72-1的各电容器74-11~74-1m全部串联连接,通过全波整流器12的输出电压充电到规定电平。This configuration is also the same for the other branches 72-2.... When outputting the stepped-down voltage, the AC stepped voltage generating source 71 is as follows: when charging, in the branch 72-1, the impedance of the switching element 13-1 is controlled to a finite value, so that the switching element 73-11~ 73-1m performs the opening operation, and the switching elements 75-11 to 75-1(m-1), 76-11 to 76-(m-1) perform the closing operation. Accordingly, all the capacitors 74-11 to 74-1m of the branch 72-1 are connected in series, and the output voltage of the full-wave rectifier 12 is charged to a predetermined level.

在下一个支路72-2中,开关元件13-2的阻抗被控制为有限值,使开关元件73-21~73-2(m-1)进行开动作,使开关元件75-21~75-2(m-1)、76-21~76-2(m-1)、66-2进行关动作。由此,支路72-2的各电容器74-21~74-2m全部串联连接,通过全波整流器12的输出电压充电为比支路72-1高若干电平的规定电平。In the next branch 72-2, the impedance of the switching element 13-2 is controlled to a finite value, so that the switching elements 73-21~73-2(m-1) are opened, and the switching elements 75-21~75- 2(m-1), 76-21 to 76-2(m-1), and 66-2 perform the closing operation. Accordingly, all the capacitors 74-21 to 74-2m of the branch 72-2 are connected in series, and the output voltage of the full-wave rectifier 12 is charged to a predetermined level slightly higher than that of the branch 72-1.

这样,在充电时,n级支路的全部电容器串联连接,通过来自全波整流器12的输出电压,电容器的串联电路充电为每个支路不同的电压值。In this way, when charging, all the capacitors of the n-stage branches are connected in series, and the series circuit of the capacitors is charged to a different voltage value for each branch by the output voltage from the full-wave rectifier 12 .

交流阶梯状电压发生源71是这样的:放电时,在支路72-1中,使开关元件73-11~73-1m进行关动作,开关元件75-11~75-1(m-1)、76-11~76-1(m-1)、66-1进行开动作,从而支路72-1的各电容器74-11~74-1m全部变成并联连接,可输出1/m的电压。The AC stepped voltage generating source 71 is as follows: when discharging, in the branch circuit 72-1, the switching elements 73-11 to 73-1m are turned off, and the switching elements 75-11 to 75-1 (m-1) , 76-11~76-1(m-1), 66-1 perform the opening action, so that all the capacitors 74-11~74-1m of the branch circuit 72-1 become connected in parallel, and can output a voltage of 1/m .

在下一个支路72-2中,使开关元件73-21~73-2m进行关动作,开关元件75-21~75-2(m-1)、76-21~76-2(m-1)、66-2进行开动作,从而支路72-2的各电容器74-21~74-2m全部变成并联连接,可输出1/m的电压。In the next branch 72-2, the switching elements 73-21~73-2m are turned off, and the switching elements 75-21~75-2(m-1), 76-21~76-2(m-1) , 66-2 performs an open operation, and all the capacitors 74-21 to 74-2m of the branch circuit 72-2 are connected in parallel to output a voltage of 1/m.

因此,在该例中,放电时,各支路并联连接各电容器,在极性反转电路16中流过电流。因此,输入电压降压到1/m的交流阶梯状电压从交流阶梯状电压发生源71经第一电容器3提供给放电灯2。放电时,通过开关控制各支路72-1、72-2…的开关元件可串联连接任意个数的电容器,从而可任意降压交流阶梯状电压。Therefore, in this example, when discharging, each capacitor is connected in parallel to each branch, and a current flows through the polarity inversion circuit 16 . Therefore, an AC stepped voltage in which the input voltage is stepped down to 1/m is supplied from the AC stepped voltage generating source 71 to the discharge lamp 2 via the first capacitor 3 . When discharging, any number of capacitors can be connected in series by controlling the switching elements of each branch circuit 72-1, 72-2..., so that the AC stepped voltage can be stepped down arbitrarily.

在输出升压的电压时,交流阶梯状电压发生源71是这样的:充电时,在支路72-1中,开关元件13-1的阻抗被控制为有限值,使开关元件73-11、75-11~75-1(m-1)、76-11~76-(m-1)进行开动作,开关元件73-12、73-1m进行关动作。从而支路72-1的各电容器74-11~74-1m全部并联连接,通过全波整流器12的输出电压充电到规定电平。When outputting the boosted voltage, the AC stepped voltage generating source 71 is as follows: when charging, in the branch 72-1, the impedance of the switching element 13-1 is controlled to a finite value, so that the switching element 73-11, 75-11 to 75-1(m-1) and 76-11 to 76-(m-1) perform the opening operation, and the switching elements 73-12 and 73-1m perform the closing operation. Accordingly, all the capacitors 74-11 to 74-1m of the branch 72-1 are connected in parallel, and the output voltage of the full-wave rectifier 12 is charged to a predetermined level.

在下一个支路72-2中,开关元件13-2的阻抗被控制为有限值,使开关元件73-21、75-21~75-2(m-1)、76-21~76-2(m-1)进行开动作,使开关元件73-22~73-2m进行关动作。由此,支路72-2的各电容器74-21~74-2m全部并联连接,通过全波整流器12的输出电压充电为比支路72-2高若干电平的规定电平。In the next branch 72-2, the impedance of the switching element 13-2 is controlled to a finite value, so that the switching elements 73-21, 75-21~75-2(m-1), 76-21~76-2( m-1) turns on and makes the switching elements 73-22 to 73-2m turn off. Accordingly, all the capacitors 74-21 to 74-2m of the branch 72-2 are connected in parallel, and the output voltage of the full-wave rectifier 12 is charged to a predetermined level slightly higher than that of the branch 72-2.

这样,在充电时,n级支路的全部电容器并联连接,通过来自全波整流器12的输出电压,电容器的串联电路充电为每个支路不同的电压值。In this way, when charging, all the capacitors of the n-level branches are connected in parallel, and the series circuit of the capacitors is charged to a different voltage value for each branch by the output voltage from the full-wave rectifier 12 .

交流阶梯状电压发生源71是这样的:放电时,在支路72-1中,使开关元件73-11、75-11~75-1(m-1)、76-11~76-1(m-1)进行开动作,开关元件73-12~73-1m、66-1进行关动作,从而支路72-1的各电容器74-11~74-1m全部串联连接,电流从各电容器74-11~74-1m经开关元件66-1流入极性反转电路16。即,各电容器74-11~74-1m的充电电压相加后输出。The alternating current stepped voltage generation source 71 is such: during discharging, in the branch circuit 72-1, switch elements 73-11, 75-11~75-1(m-1), 76-11~76-1( m-1) is turned on, and the switching elements 73-12 to 73-1m and 66-1 are turned off, so that the capacitors 74-11 to 74-1m of the branch circuit 72-1 are all connected in series, and the current flows from the capacitors 74 -11 to 74-1m flow into the polarity inversion circuit 16 through the switching element 66-1. That is, the charging voltages of the respective capacitors 74-11 to 74-1m are added and output.

在下一个支路72-2中,使开关元件73-21、75-21~75-2(m-1)、76-21~76-2(m-1)进行关动作,开关元件73-22~73-2m、66-2进行开动作,从而支路72-2的各电容器74-21~74-2m全部串联连接,电流从各电容器74-21~74-2m经开关元件66-2流入极性反转电路16。即,各电容器74-21~74-2m的充电电压相加后输出。In the next branch 72-2, the switching elements 73-21, 75-21 to 75-2 (m-1), and 76-21 to 76-2 (m-1) are turned off, and the switching elements 73-22 ~73-2m, 66-2 carry out open operation, thereby each capacitor 74-21~74-2m of branch circuit 72-2 is all connected in series, and electric current flows in from each capacitor 74-21~74-2m through switching element 66-2 Polarity Reversal Circuit 16. That is, the charging voltages of the respective capacitors 74-21 to 74-2m are added and output.

这样,放电时,各支路串联连接各电容器,在极性反转电路16中流过电流。因此,输入电压升压为m倍的交流阶梯状电压从交流阶梯状电压发生源71经第一电容器3提供给放电灯2。放电时,通过开关控制各支路72-1、72-2…的开关元件可变化串联连接的电容器数,从而可改变升压的程度。这样,可发生各种交流阶梯状电压,可提高通用性。In this way, when discharging, each capacitor is connected in series in each branch, and a current flows through the polarity inversion circuit 16 . Therefore, an AC stepped voltage in which the input voltage is boosted by m times is supplied from the AC stepped voltage generating source 71 to the discharge lamp 2 via the first capacitor 3 . During discharge, the number of capacitors connected in series can be changed by controlling the switching elements of each branch 72-1, 72-2..., thereby changing the degree of voltage boosting. In this way, various AC stepped voltages can be generated, and versatility can be improved.

在该装置中,一个支路不能同时进行充电和放电。即,在支路72-1中,在充电期间进行放电的情况下,在关动作开关元件73-11并停止充电后进行放电。此时,由于充电的停止,输入电流被切断。为了避免这种情况,在充电期间不进行放电。即,在充电期间仅进行充电,由不处于充电期间的其它支路进行放电。从而,可避免输入电流被切断的现象。In this device, one branch cannot be charged and discharged at the same time. That is, in branch 72-1, when discharging is performed during charging, switching element 73-11 is turned off to stop charging and then discharge is performed. At this time, due to the stop of charging, the input current is cut off. To avoid this, no discharge is performed during charging. That is, only charging is performed during the charging period, and discharge is performed by other branches that are not during the charging period. Thus, the phenomenon that the input current is cut off can be avoided.

在这种构成中,来自交流阶梯状电压发生源71的交流阶梯状电压波形经第一电容器3提供给放电灯2。因此,在本实施例中,在可变阶梯状电压波形的各电压的时间宽度来控制交流阶梯状电压波形有效值时,放电灯2在从断路(负载电流为零)到短路(负载电压为零)的宽范围中存在动作点,可扩大可适用的电灯电压的范围。而且,可抑制放电灯2在短路时流过的负载电流,可防止流过过量电流。In this configuration, the AC stepped voltage waveform from the AC stepped voltage generator 71 is supplied to the discharge lamp 2 via the first capacitor 3 . Therefore, in this embodiment, when the time width of each voltage of the step-shaped voltage waveform is variable to control the effective value of the AC step-shaped voltage waveform, the discharge lamp 2 is from open circuit (load current is zero) to short circuit (load voltage is There are operating points in a wide range of zero), which can expand the range of applicable lamp voltage. Furthermore, it is possible to suppress the load current flowing through the discharge lamp 2 when the discharge lamp 2 is short-circuited, and it is possible to prevent excessive current from flowing.

发明效果Invention effect

根据权利要求1和2所述的发明,提供可将电容器充电电压控制为恒定的电源装置。According to the inventions of claims 1 and 2, there is provided a power supply device capable of controlling the charging voltage of a capacitor to be constant.

根据权利要求3-7所述的发明,还可平滑连续地流过输入电流。即,输入电流可成正弦波状。According to the inventions of claims 3-7, the input current can also flow smoothly and continuously. That is, the input current can be sinusoidal.

而且,根据权利要求5-7所述的发明,还可充分抑制输入电流中的高频分量来改善功率因数。Furthermore, according to the inventions of claims 5-7, it is also possible to sufficiently suppress high-frequency components in the input current to improve the power factor.

根据权利要求8和9所述的发明,通过有效值检测部检测流入放电灯的电灯电流的有效值,控制开关电路且可变控制包含零电压值的阶梯状电压波形的各电压值的输出时间使得该有效值检测部检测出的电灯电流有效值变为恒定,因此,可不使用线圈灯绕组部件来限流控制电灯电流,可实现装置的小型、轻量化。According to the invention according to claims 8 and 9, the effective value detection unit detects the effective value of the lamp current flowing into the discharge lamp, controls the switching circuit, and variably controls the output time of each voltage value of the stepped voltage waveform including the zero voltage value. The effective value of the lamp current detected by the effective value detecting unit becomes constant. Therefore, the lamp current can be limited and controlled without using coil lamp winding components, and the size and weight of the device can be realized.

根据权利要求10所述的发明,来自交流阶梯状电压发生源的交流阶梯状电压波形经电容器提供给放电灯,因此,可扩大可适用的放电灯的电灯电压范围,而且,可防止在放电灯短路时流过过量电流。According to the invention of claim 10, the AC stepped voltage waveform from the AC stepped voltage generating source is supplied to the discharge lamp through the capacitor, so that the applicable lamp voltage range of the discharge lamp can be expanded, and the discharge lamp can be prevented from being damaged. Excessive current flows during a short circuit.

Claims (10)

1.一种电源装置,多个可变电阻器和电容器的串联电路并联连接,上述各电容器通过商用电源电压凭借对应的可变电阻器进行充电,上述各可变电阻器被控制成仅在充电对应的电容器期间阻抗为有限值,在此之外的期间阻抗无限大,从各电容器向负载顺次流过放电电流,其特征在于,具有:阻抗控制单元,控制对应的可变电阻器的阻抗,使得在任意的可变电阻器中流过预先设定的目标值的输入电流;和振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得将上述任意电容器的充电电压变为恒定。1. A power supply device in which a series circuit of a plurality of variable resistors and capacitors is connected in parallel, each of the above-mentioned capacitors is charged by means of a corresponding variable resistor by a commercial power supply voltage, and each of the above-mentioned variable resistors is controlled to be charged only during charging The impedance of the corresponding capacitor period is a finite value, and the impedance during the other period is infinite, and the discharge current flows sequentially from each capacitor to the load, and it is characterized in that it has: an impedance control unit that controls the impedance of the corresponding variable resistor , causing an input current of a preset target value to flow through an arbitrary variable resistor; and an amplitude control unit, when the capacitor voltage is lower than the target value of the charging voltage, performing control to increase the amplitude of the input current of the target value , when the capacitor voltage is higher than the target value of the charging voltage, control is performed to reduce the amplitude of the input current of the target value so that the charging voltage of the above-mentioned arbitrary capacitor becomes constant. 2.一种电源装置,多个可变电阻器和电容器的串联电路并联连接,上述各电容器通过商用电源电压凭借对应的可变电阻器进行充电,上述各可变电阻器被控制成仅在充电对应的电容器期间阻抗为有限值,在此之外的期间阻抗无限大,从各电容器向负载顺次流过放电电流,其特征在于,具有:多个阻抗控制单元,控制对应的可变电阻器的阻抗,使得在上述可变电阻器中分别流过预先设定的目标值的输入电流;和多个振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得对应于各阻抗控制单元控制阻抗的可变电阻器的电容器充电电压变为恒定。2. A power supply device in which a series circuit of a plurality of variable resistors and capacitors is connected in parallel, each of the above-mentioned capacitors is charged by means of a corresponding variable resistor by a commercial power supply voltage, and each of the above-mentioned variable resistors is controlled to be charged only during charging The impedance of the corresponding capacitor is a finite value, and the impedance of the other period is infinite, and the discharge current flows sequentially from each capacitor to the load. It is characterized in that it has: a plurality of impedance control units, which control the corresponding variable resistors. impedance, so that input currents of preset target values respectively flow in the above-mentioned variable resistors; and a plurality of amplitude control units, when the capacitor voltage is lower than the target value of the charging voltage, input to increase the target value The control of the amplitude of the current, when the capacitor voltage is higher than the target value of the charging voltage, controls the amplitude of the input current to reduce the target value, so that the capacitor charging voltage of the variable resistor corresponding to the controlled impedance of each impedance control unit changes. is constant. 3.一种电源装置,多个可变电阻器和电容器的串联电路并联连接,上述各电容器通过商用电源电压凭借对应的可变电阻器进行充电,上述各可变电阻器被控制成仅在充电对应的电容器期间阻抗为有限值,在此之外的期间阻抗无限大,从各电容器向负载顺次流过放电电流,其特征在于,具有:多个阻抗控制单元,控制对应的可变电阻器的阻抗,使得在各可变电阻器中分别流过预先设定的目标值的输入电流;和振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得将各电容器中充电目标值最高的电容器的充电电压变为恒定,上述各阻抗控制单元控制对应的可变电阻器的阻抗,使得在各可变电阻器中流过跟踪由上述振幅控制单元进行振幅控制的输入电流目标值的输入电流。3. A power supply device in which a series circuit of a plurality of variable resistors and capacitors is connected in parallel, each of the above-mentioned capacitors is charged by means of a corresponding variable resistor by a commercial power supply voltage, and each of the above-mentioned variable resistors is controlled to be charged only during charging The impedance of the corresponding capacitor is a finite value, and the impedance of the other period is infinite, and the discharge current flows sequentially from each capacitor to the load. It is characterized in that it has: a plurality of impedance control units, which control the corresponding variable resistors. Impedance so that an input current of a preset target value flows through each variable resistor respectively; and an amplitude control unit that increases the input current of a target value when the capacitor voltage is lower than the target value of the charging voltage Amplitude control, when the capacitor voltage is higher than the target value of the charging voltage, control the amplitude of the input current that reduces the target value, so that the charging voltage of the capacitor with the highest charging target value among the capacitors becomes constant, and the above-mentioned impedances The control unit controls the impedance of the corresponding variable resistors such that an input current following an input current target value whose amplitude is controlled by the amplitude control unit flows through each variable resistor. 4.根据权利要求2或3所述的电源装置,其特征在于,振幅控制单元设置电源电压检测电路,根据该电源电压检测电路检测的电源电压,可改变对应的电容器充电电压目标值。4. The power supply device according to claim 2 or 3, wherein the amplitude control unit is provided with a power supply voltage detection circuit, and according to the power supply voltage detected by the power supply voltage detection circuit, the corresponding capacitor charging voltage target value can be changed. 5.根据权利要求2或3所述的电源装置,其特征在于,将各电容器充电电压的目标值设定为越是充电为高电压的电容器,和相邻电容器的充电电压比越小。5. The power supply device according to claim 2 or 3, wherein the target value of the charging voltage of each capacitor is set so that the higher the capacitor charged, the smaller the ratio of the charging voltage of the adjacent capacitor. 6.根据权利要求2或3所述的电源装置,其特征在于,在商用电源电压的绝对值上升期间,某个电容器电压和上述商用电源电压的绝对值相等时开始对该电容器进行充电,下级的电容器电压和上述商用电源电压相等时停止,在商用电源电压绝对值下降期间,前一个电容器的电压等于上述商用电源电压绝对值时开始某个电容器的充电,充电电压等于上述商用电源电压时停止。6. The power supply device according to claim 2 or 3, characterized in that, during the period when the absolute value of the commercial power supply voltage rises, a certain capacitor voltage starts to charge the capacitor when the absolute value of the above-mentioned commercial power supply voltage is equal, and the lower stage Stop when the capacitor voltage of the capacitor is equal to the above-mentioned commercial power supply voltage. During the period when the absolute value of the commercial power supply voltage drops, the charging of a certain capacitor starts when the voltage of the previous capacitor is equal to the above-mentioned commercial power supply voltage absolute value, and stops when the charging voltage is equal to the above-mentioned commercial power supply voltage. . 7.一种电源装置,多个可变电阻器和电容器的串联电路并联连接,上述各电容器通过商用电源电压凭借对应的可变电阻器进行充电,上述各可变电阻器被控制成仅在充电对应的电容器期间阻抗为有限值,在此之外的期间阻抗无限大,从各电容器向负载顺次流过放电电流,其特征在于,具有:多个阻抗控制单元,控制对应的可变电阻器的阻抗,使得在上述各可变电阻器中分别流过预先设定的目标值的输入电流;和振幅控制单元,在电容器电压低于充电电压的目标值时,进行增大目标值的输入电流的振幅的控制,在电容器电压高于充电电压的目标值时,进行减小目标值的输入电流的振幅的控制,使得将上述各电容器中某个特定电容器的充电电压变为恒定,上述各阻抗控制单元控制对应的可变电阻器的阻抗,使得流过跟踪由上述振幅控制单元进行振幅控制的输入电流目标值的输入电流,并且,将某个特定的电容器切换为其他电容器。7. A power supply device in which a series circuit of a plurality of variable resistors and capacitors is connected in parallel, each of the capacitors is charged by means of a corresponding variable resistor by a commercial power supply voltage, and each of the above-mentioned variable resistors is controlled to be charged only during charging The impedance of the corresponding capacitor is a finite value, and the impedance of the other period is infinite, and the discharge current flows sequentially from each capacitor to the load. It is characterized in that it has: a plurality of impedance control units, which control the corresponding variable resistors. Impedance, so that the input current of the preset target value flows respectively in each of the above-mentioned variable resistors; and the amplitude control unit, when the capacitor voltage is lower than the target value of the charging voltage, the input current of the target value is increased The control of the amplitude, when the capacitor voltage is higher than the target value of the charging voltage, the control of the amplitude of the input current that reduces the target value is performed, so that the charging voltage of a specific capacitor among the above-mentioned capacitors becomes constant, and the above-mentioned impedances The control unit controls the impedance of the corresponding variable resistor so that an input current following the input current target value whose amplitude is controlled by the amplitude control unit flows, and switches a specific capacitor to another capacitor. 8.一种放电灯照明装置,其特征在于,具有:多个直流电压源,产生不同的正电压值;开关电路,从各直流电压源中择一地取出直流电压值,输出包含零电压值的阶梯状电压波形;极性反转电路,输入来自开关电路的阶梯状电压波形,输出交流的阶梯状电压波形;放电灯,提供来自极性反转电路的交流阶梯状电压波形;有效值检测部,检测在该放电灯中流动的电灯电流的有效值;和控制单元,控制上述开关电路,并可变控制包含零电压值的阶梯状电压波形的各电压值的输出时间,使得上述有效值检测部检测的电灯电流的有效值变为恒定。8. A discharge lamp lighting device, characterized in that it has: a plurality of DC voltage sources, which generate different positive voltage values; a switch circuit, which selects one of the DC voltage sources to take out the DC voltage value, and the output contains zero voltage value The ladder-like voltage waveform; the polarity inversion circuit, input the ladder-like voltage waveform from the switching circuit, and output the AC ladder-like voltage waveform; the discharge lamp, provides the AC ladder-like voltage waveform from the polarity inversion circuit; RMS detection a section that detects the effective value of the lamp current flowing in the discharge lamp; and a control unit that controls the above-mentioned switching circuit and variably controls the output time of each voltage value of the step-shaped voltage waveform including the zero voltage value so that the above-mentioned effective value The effective value of the lamp current detected by the detection unit becomes constant. 9.一种放电灯照明装置,其特征在于,具有:多个第一直流电压源,产生不同的正电压值;多个第二直流电压源,产生绝对值与各第一直流电压源的电压值相等的包含零电压值的负电压值;第一开关电路,从上述各第一直流电压源中择一地取出直流电压值,输出包含零电压值的阶梯状电压波形;第二开关电路,以和第一开关电路不同的定时从上述各第二直流电压源中择一地取出直流电压值,输出包含零电压值的阶梯状电压波形;放电灯,提供来自上述各开关电路的阶梯状电压波形;有效值检测部,检测在该放电灯中流过的电灯电流的有效值;和控制单元,控制上述各开关电路,可变控制包含零电压值的阶梯状电压波形的各电压值的输出时间,使得上述有效值检测部检测的电灯电流的有效值变为恒定。9. A discharge lamp lighting device, characterized in that it has: a plurality of first DC voltage sources that generate different positive voltage values; a plurality of second DC voltage sources that generate an absolute value equal to the voltage of each first DC voltage source Negative voltage values that are equal in value and include zero voltage values; the first switch circuit selects one of the DC voltage values from the above-mentioned first DC voltage sources, and outputs a ladder-shaped voltage waveform including zero voltage values; the second switch circuit, Select one of the DC voltage values from the above-mentioned second DC voltage sources at a timing different from that of the first switching circuit, and output a ladder-shaped voltage waveform including zero voltage value; the discharge lamp provides the ladder-shaped voltage from each of the above-mentioned switching circuits a waveform; an effective value detection unit for detecting an effective value of a lamp current flowing through the discharge lamp; and a control unit for controlling each of the above-mentioned switching circuits, and variablely controlling the output time of each voltage value of the stepped voltage waveform including a zero voltage value , so that the effective value of the lamp current detected by the effective value detection unit becomes constant. 10.一种放电灯照明装置,其特征在于,具有:交流阶梯状电压发生源,电压值台阶状变化,正弦波那样增减的阶梯状正电压波形和电压值台阶状变化,交替地输出正弦波那样增减的阶梯状负电压波形;放电灯,提供来自交流阶梯状电压发生源的交流阶梯状电压波形;和串联连接在上述交流阶梯状电压发生源和上述放电灯之间的电容器。10. A discharge lamp lighting device, characterized in that it has: an alternating current step voltage generating source, a step-like change in voltage value, a step-like positive voltage waveform that increases and decreases like a sine wave, and a step-like change in voltage value, and alternately outputs a sine wave a stepped negative voltage waveform that increases and decreases like a wave; a discharge lamp that supplies an AC stepped voltage waveform from an AC stepped voltage generating source; and a capacitor connected in series between the AC stepped voltage generating source and the discharge lamp.
CNB031200915A 2002-01-31 2003-01-31 Power supply device and discharge lamp illuminator Expired - Fee Related CN1298100C (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002024014 2002-01-31
JP2002024014A JP3705217B2 (en) 2002-01-31 2002-01-31 Power supply
JP2002050066 2002-02-26
JP2002050066A JP3991150B2 (en) 2002-02-26 2002-02-26 Discharge lamp lighting device
JP2002155475 2002-05-29
JP2002155475A JP4039127B2 (en) 2002-05-29 2002-05-29 Discharge lamp lighting device

Publications (2)

Publication Number Publication Date
CN1440114A true CN1440114A (en) 2003-09-03
CN1298100C CN1298100C (en) 2007-01-31

Family

ID=27808403

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031200915A Expired - Fee Related CN1298100C (en) 2002-01-31 2003-01-31 Power supply device and discharge lamp illuminator

Country Status (1)

Country Link
CN (1) CN1298100C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102318445A (en) * 2008-01-28 2012-01-11 松下电工株式会社 High-voltage discharge lamp lighting device, and lighting equipment using the device
CN103582271A (en) * 2012-08-01 2014-02-12 优志旺电机株式会社 Discharge lamp lighting apparatus and projector
CN105094188A (en) * 2014-05-23 2015-11-25 财团法人精密机械研究发展中心 Voltage detection and compensation device
CN109983354A (en) * 2016-07-21 2019-07-05 百达力有限公司 Battery charger and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07123733A (en) * 1993-10-29 1995-05-12 Toshiba Lighting & Technol Corp Frequency conversion device, lamp lighting device, and lighting device
TW408558B (en) * 1996-12-25 2000-10-11 Tec Corp Power supply device and discharge lamp lighting apparatusv

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102318445A (en) * 2008-01-28 2012-01-11 松下电工株式会社 High-voltage discharge lamp lighting device, and lighting equipment using the device
CN103582271A (en) * 2012-08-01 2014-02-12 优志旺电机株式会社 Discharge lamp lighting apparatus and projector
CN103582271B (en) * 2012-08-01 2016-12-28 优志旺电机株式会社 Discharge lamp ignition device and scialyscope
CN105094188A (en) * 2014-05-23 2015-11-25 财团法人精密机械研究发展中心 Voltage detection and compensation device
CN109983354A (en) * 2016-07-21 2019-07-05 百达力有限公司 Battery charger and method
US11327119B2 (en) 2016-07-21 2022-05-10 Petalite Limited Battery charging circuit and method
US11719755B2 (en) 2016-07-21 2023-08-08 Petalite Limited Battery charging circuit and method

Also Published As

Publication number Publication date
CN1298100C (en) 2007-01-31

Similar Documents

Publication Publication Date Title
CN1613173A (en) Power factor improving converter and control method thereof
CN1134885C (en) High-frequency inverter and induction heating cooker using the high-frequency inverter
CN1926927A (en) Plasma generation power supply apparatus
CN1159846C (en) output control device
CN1277351C (en) Class D amplifier
CN1171376C (en) Piezoelectric Transformer Drive Circuit
CN1578114A (en) Modulation circuit device, modulation method and radio communication device
CN1397106A (en) High-frequency amplifier and high-frequency mixer
CN1617435A (en) Switching power supply circuit
CN1756060A (en) Switching power supply circuit
CN1801592A (en) Switching power supply circuit
CN1441547A (en) Differential circuit, amplifying circuit, driving circuit and display device using them
CN1750376A (en) Switching power supply circuit
CN1440586A (en) Switching DC-DC converter
CN1491476A (en) DC-DC Converter
CN100345363C (en) Power converter
CN1926752A (en) Multi-output current-resonant type DC-DC converter
CN1835366A (en) Dc-dc converter
CN1467916A (en) Analog-to-digital converter circuit and current source circuit
CN1422106A (en) Optical source apparatus
CN1705217A (en) Switching power supply circuit
CN1298100C (en) Power supply device and discharge lamp illuminator
CN1685593A (en) Switching power supply circuit
CN1042483C (en) Control System of Single Phase Pulse Width Modulation Converter
CN1741370A (en) An amplifier apparatus and method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070131

Termination date: 20150131

EXPY Termination of patent right or utility model