CN1431478A - 微位移实时干涉测量仪 - Google Patents

微位移实时干涉测量仪 Download PDF

Info

Publication number
CN1431478A
CN1431478A CN 03115410 CN03115410A CN1431478A CN 1431478 A CN1431478 A CN 1431478A CN 03115410 CN03115410 CN 03115410 CN 03115410 A CN03115410 A CN 03115410A CN 1431478 A CN1431478 A CN 1431478A
Authority
CN
China
Prior art keywords
light source
light
beam splitter
displacement real
micrometric displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 03115410
Other languages
English (en)
Inventor
王向朝
李代林
刘英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN 03115410 priority Critical patent/CN1431478A/zh
Publication of CN1431478A publication Critical patent/CN1431478A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种微位移实时干涉测量仪,其特点是它包括:带有第一直流电源的光源,在该光源发射光束前进方向上同光轴地依次置有第一透镜、偏振分束器、分束器、参考平板和被测物体;在该分束器的反射光束f2方向置有接收元件,其输出送单片机,再接显示器;在该偏振分束器的反射光束f1前进的方向上,依次置有第二透镜和调制光源;该调制光源带有驱动器,该驱动器连接第二直流电源和移相器,该移相器另一端接正弦信号发生器,该正弦信号发生器经控制器接单片机。该光源和调制光源发出的光束是偏振面相互垂直的偏振光。本发明的优点是能高精度地实时完成信号的采集、处理和显示,而且操作简便、测量数据可靠。

Description

微位移实时干涉测量仪
技术领域:
本发明涉及微小位移干涉测量仪,特别是涉及到使用正弦相位调制的半导体激光微位移实时干涉测量仪。
背景技术:
由于半导体激光器(以下简称为LD)波长的温度稳定性得到较好的解决,半导体激光干涉仪正在被广泛地研究开发。LD除体积小、用电省、价格低外,一个突出的优点是波长调制简便。这使得能提高测量精度的光外差技术在半导体激光干涉仪中可以简单地通过直接调制LD的注入电流来实现。比如日本新泻(Niigata)大学的铃木孝昌(Takamasa Suzuki)先生提出的用来测量振动的干涉仪,(Takamasa Suzuki,Takao Okada,OsamiSasaki,and Takeo Maruyama,“Real-time vibration measurement using afeedback type of laser diode interferometer with an optical fiber”,Opt.Eng.,1997,36(9),2496-2502.)此干涉仪如图1所示。以半导体激光器作为光源1发出的光束由第一透镜2准直为平行光束,由分束器3反射的反射光束f照射到参考镜4上,透过分束器3的透射光束t3照射到被测物体5上,参考镜4、被测物体5的反射光束产生的干涉信号由接收元件6转换为电信号,由信号处理电路7进行数据处理,由示波器8显示。驱动器9分别与第一直流电源10和正弦信号发生器11连接。向光源1注入一个正弦电流信号使得光源1波长正弦变化,从而得到正弦相位调制的干涉信号。干涉信号经处理电路后7,可纳米精度测出被测物体的微小位移。
向作为光源1的半导体激光器注入电流后,其强度和波长分别为:
g(t)=β1[io+Δi(t)],                         (1)
λ(t)=λo2Δi(t),                         (2)
io与Δi(t)分别为驱动电流的直流和交流分量,β1、β2为比例常数,λo为对应于直流分量io的中心波长。交流分量
Δi(t)=acos(ωct+θ)                          (3)
接收元件6检测到的干涉信号为:
I(t)=Io(t)+so(t)cos[zcos(ωct+θ)+αo+α(t)]  (4)
其中Io(t)与so(t)为由于光源1的输出光强被调制所产生的随时间变化的函数,Z为干涉信号相位调制的振幅,αo=2πroo,α(t)=4πr(t)/λo,ro为被测物体5静止时的光程差,r(t)为待测的微小位移。干涉信号经处理电路7后由(4)式(Osami Sasaki Kazuhide Takahashi,and Takamasa Suzuki,“Sinusoidal phase modulating laser diode interferometer with afeedbacr control system to eliminate external disturbance,”Opt.Eng.,1990,29(12),1511-1515.)求得α(t),进而求得微小位移r(t)。
由于光源1的光强g(t)被调制,使得Io(t)和so(t)随时间变化,造成测量误差。为消除该误差,佐佐木修已先生采用软件的方法来补偿光源1输出光强的变化,这种补偿是在得到干涉信号后经数据处理时实现的,仅为粗略补偿,而且需根据外界条件的变化随时对软件进行修正。此干涉仪需要用户根据外界条件的变化随时修正软件,这将给正确测量造成极大麻烦;并且这种方法需要对干涉信号进行傅立叶变换和逆变换,需要一定的运算时间,因此也不适合用于实时控制。
发明内容:
本发明要解决的技术问题在于克服上述现有技术的缺陷,提供一种微位移实时干涉测量仪,以解决直接调制光源波长引起的光强度变化的补偿问题,使微位移测量的操作方便,而且测试结果可靠。
本发明的技术解决方案如下:
一种微位移实时干涉测量仪,其特征在于它的构成包括:
一光源带有第一直流电源,在该光源发射光束前进方向上同光轴地依次置有第一透镜、偏振分束器、分束器、参考平板和被测物体;
在该分束器的反射光束f2方向置有接收元件,其输出送单片机,再接显示器;
在该偏振分束器的反射光束f1前进的方向上,依次置有第二透镜和调制光源;该调制光源带有驱动器,该驱动器连接第二直流电源和移相器,该移相器的另一端接正弦信号发生器,该正弦信号发生器经控制器接单片机。
光源和调制光源发出的光束是偏振面相互垂直的偏振光。
所述光源和调制光源均是半导体激光器。
所述的接收元件是光电二极管或光电池。
所述的偏振分束器为偏振分光棱镜。
所述的分束器是可将入射光按1∶1的光强分成两束光的元件,如分光棱镜,一面镀析光膜的平行平板。
所述参考平板是一平行平板,其靠分束器的一面镀增透膜,近物体一面镀增反膜,其反射率为0.08~0.73,透光率为0.27~0.92。
本发明的优点有:
1)、由于干涉信号通过单片机来完成,能够使整个系统高精度地实时完成信号的采集、处理和显示,并且有效地扩大了系统的测量范围。
2)、提高了测量精度。已有技术中,直接调制光源1的波长时,光源1的输出光强随时间变化,影响了干涉信号的强度。由于位移是根据该强度求出的,因此输出光强的变化引入了测量误差。本发明含有调制光源15,利用光热效应调制光源1的波长,光源1的输出光强不随时间变化,避免了该测量误差,提高了测量精度。
3)、已有技术的输出光强变化是采用软件方法补偿的。该补偿是在得到干涉信号后,数据处理时实现的,仅为粗略补偿,存在残留误差,而且需根据外界条件的变化随时对软件进行修正。本发明避免了这一补偿问题。
4)、就已有技术直接调制光源1波长的干涉仪来说,用户必须根据外界条件的变化随时修正软件以补偿光强变化,这给用户正确使用该仪器带来困难。本发明的干涉仪使用操作简便。
附图说明:
图1为已有技术直接调制光源1波长的干涉仪结构框图;
图2为本发明微位移实时干涉仪实施例结构框图。
具体实施方式:
请参阅图2,图2是本发明微位移实时干涉测量仪实施例的结构框图,由图可见,本发明微位移实时干涉测量仪,包括置于机壳19内的装置、被测物体5、单片机7、示波器8。在机壳19内,带有第一直流电源10的光源1的发射光束前进方向上同光轴地依次置有第一透镜2,偏振分束器17,分束器3,参考平板18与被测物体5。在分束器3的反射光束f2上置有输出与连接到单片机7连接的接收元件6。在偏振分束器17的反射光束f1前进的方向上,依次置有第二透镜16和调制光源15。调制光源15带有驱动器9,驱动器9连接有第二直流电源14和移相器13。移相器13经过正弦信号发生器11与控制器12相连,控制器12连接到单片机7上。
上面所说的光源1和调制光源15均是采用波长为785nm的半导体激光器。
所说的接收元件6是光电二极管。
所说的偏振分束器17是偏振分光棱镜。
所说的分束器3是镀析光膜的平行平板。
所说的单片机是Aduc812数据采集系统芯片。
参考平板18是透射率和反射率之比为1∶1.65的平行平板。r(t)=62.47α(t)nm(α的单位为弧度)。
本发明的工作过程大致是:作为光源1的LD由第一直流电源10驱动,使得光源1的光强不随时间变化,光源1的波长由调制光源15正弦光波进行光热调制。光源1发出的光由第一透镜2准直,透过偏振分束器17和分束器3的透射光束t1照射到参考平板18上,透过参考平板18的透射光束t2照射到被测物体5上,参考平板18和被测物体5反射的光束产生的干涉信号由接收元件6转换为电信号,送入单片机7处理,结果显示在示波器8。正弦信号发生器11的信号经移相器13后进入调制光源15的驱动器9,调制光源15发出的光由第二透镜16准直,经偏振分束器17反射后,由第一透镜2聚焦于光源1上。光源1与调制光源15发出的光的偏振方向相互垂直,偏振分束器17使光源1的光透过而不反射到调制光源15上,同时使调制光源15的光入射到光源1上,其中被光源1反射的部分光束不会透过偏振分束器17。正弦信号发生器11通过移相器13向驱动器9加入正弦信号使调制光源15的输出光强正弦变化,此光强照射到光源1上后,由于光热效应,光源1的结温相应正弦变化,使得干涉仪光源1的波长按正弦变化。接收元件6接收到的干涉信号的相位被正弦调制。由于光源1的注入电流为直流,光源1的输出光强不随时间变化,因此接收元件6接收到的干涉信号
I(t)=Io+Socos[zcos(ωct+θ)+αo+α(t)]         (5)
其中,Io与So分别为干涉信号直流分量与交流分量的振幅,z为干涉信号相位调制的振幅,αo=2πroo,α(t)=4πr(t)/λo,ro为被测物体5静止时的光程差。r(t)为待测的微小位移。干涉信号经单片机采用相位连续化(phase-mwrapping)处理后(Osami Sasaki and Hirokazu Okazaki,“Sinusoidalphase modulating interferometer using optical fibers for displacementmeasurement,”Appl.Opt.1988,27(19),4139-4142.)求得α(t),
r(t)=mπ/4+λoα(t)/4πo                   (6)
其中m为整数,α(t)的测量精度达到0.01rad是较容易实现的。采用常用的波长为785nm的LD,位移的分辨率为0.62nm。若α的测量精度提高到0.001rad,则分辨率提高到0.062nm。
因光源1的输出强度不随时间变化,式(5)中的Io、So为常数,从而从根本上解决了调制波长时光强变化对测量的影响。

Claims (6)

1、一种微位移实时干涉测量仪,其特征在于它的构成包括:
光源(1)带有第一直流电源(10),在该光源(1)发射光束前进方向上同光轴地依次置有第一透镜(2)、偏振分束器(17)、分束器(3)、参考平板(18)和被测物体(5);
在该分束器(3)的反射光束f2方向置有接收元件(6),其输出送单片机(7),再接显示器(8);
在该偏振分束器(17)的反射光束f1前进的方向上,依次置有第二透镜(16)和调制光源(15);该调制光源(15)带有驱动器(9),该驱动器(9)连接第二直流电源(14)和移相器(13),该移相器(13)的另一端接正弦信号发生器(11),该正弦信号发生器(11)经控制器(12)接单片机(7);
光源(1)和调制光源(15)发出的光束是偏振面相互垂直的偏振光。
2、根据权利要求1所述的微位移实时干涉测量仪,其特征在于所述光源(1)和调制光源(15)均是半导体激光器。
3、根据权利要求1所述的微位移实时干涉测量仪,其特征在于所述的接收元件(6)是光电二极管或光电池。
4、根据权利要求1所述的微位移实时干涉测量仪,其特征在于所述的偏振分束器(17)为偏振分光棱镜。
5、根据权利要求1所述的微位移实时干涉测量仪,其特征在于所述的分束器(3)是可将入射光按1∶1的光强分成两束光的元件,如分光棱镜,一面镀析光膜的平行平板。
6、根据权利要求1所述的微位移实时干涉测量仪,其特征在于所述参考平板(8)是一平行平板,其靠分束器(3)的一面镀增透膜,近物体(5)一面镀增反膜,其反射率为0.08~0.73,透光率为0.27~0.92。
CN 03115410 2003-02-14 2003-02-14 微位移实时干涉测量仪 Pending CN1431478A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03115410 CN1431478A (zh) 2003-02-14 2003-02-14 微位移实时干涉测量仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03115410 CN1431478A (zh) 2003-02-14 2003-02-14 微位移实时干涉测量仪

Publications (1)

Publication Number Publication Date
CN1431478A true CN1431478A (zh) 2003-07-23

Family

ID=4790637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03115410 Pending CN1431478A (zh) 2003-02-14 2003-02-14 微位移实时干涉测量仪

Country Status (1)

Country Link
CN (1) CN1431478A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100516772C (zh) * 2004-09-09 2009-07-22 鸿富锦精密工业(深圳)有限公司 光学信号处理装置及方法
CN100538260C (zh) * 2007-02-07 2009-09-09 中国科学院上海光学精密机械研究所 微位移高精度实时干涉测量仪
CN100547344C (zh) * 2007-02-07 2009-10-07 中国科学院上海光学精密机械研究所 实时测量表面形貌的正弦相位调制干涉仪
CN105652313A (zh) * 2015-12-30 2016-06-08 西南交通大学 一种地震等级测量装置
CN109631767A (zh) * 2018-12-12 2019-04-16 上海卫星装备研究所 测距装置和测距方法
CN112747667A (zh) * 2019-10-31 2021-05-04 上海微电子装备(集团)股份有限公司 差分干涉仪装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100516772C (zh) * 2004-09-09 2009-07-22 鸿富锦精密工业(深圳)有限公司 光学信号处理装置及方法
CN100538260C (zh) * 2007-02-07 2009-09-09 中国科学院上海光学精密机械研究所 微位移高精度实时干涉测量仪
CN100547344C (zh) * 2007-02-07 2009-10-07 中国科学院上海光学精密机械研究所 实时测量表面形貌的正弦相位调制干涉仪
CN105652313A (zh) * 2015-12-30 2016-06-08 西南交通大学 一种地震等级测量装置
CN109631767A (zh) * 2018-12-12 2019-04-16 上海卫星装备研究所 测距装置和测距方法
CN112747667A (zh) * 2019-10-31 2021-05-04 上海微电子装备(集团)股份有限公司 差分干涉仪装置

Similar Documents

Publication Publication Date Title
KR20080100343A (ko) 표면 플라즈몬 공명 센서 및 이를 사용하여 샘플을 검출하는 방법
CN101858822B (zh) He-Ne激光器频率稳定度测量系统及其测量方法
CN100538260C (zh) 微位移高精度实时干涉测量仪
JPH10325795A (ja) 媒質の測定方法および測定装置
JP3569726B2 (ja) 試料の幾何学的厚さおよび屈折率測定装置およびその測定方法
CN2599525Y (zh) 微位移实时干涉测量仪
CN1710398A (zh) 激光回馈波片测量装置
CN1431478A (zh) 微位移实时干涉测量仪
CN2452005Y (zh) 同时测量厚度与折射率的激光干涉测量仪
CN101963495A (zh) 测量各向异性物质的物理参数的装置及方法
CN110631484A (zh) 基于激光自混合光栅干涉的三维位移测量系统及测量方法
Lu et al. High precision self-mixing interferometer based on reflective phase modulation method
CN1280293A (zh) 物体位移的纳米精度的测量方法
CN1129774C (zh) 用半导体激光器的微小位移干涉测量仪
CN106643478A (zh) 一种位移测量光学系统
CN101033938A (zh) 实时测量表面形貌的正弦相位调制干涉仪
CN2391169Y (zh) 微小位移的半导体激光干涉测量仪
CN1148575C (zh) 实时测量厚度与折射率的半导体激光干涉测量装置
CN1147702C (zh) 全光纤位移测量仪
CN1563890A (zh) 双正弦相位调制实时干涉测距仪
CN1236280C (zh) Y波导调制器半波电压测试方法
CN1165744C (zh) 微小位移自混合干涉测量装置及其信号控制器和测量方法
CN100395516C (zh) 光纤干涉式厚度测量装置
TWI405959B (zh) 利用穿透式外差干涉術量測異方性物質之物理參數的裝置及方法
CN2419594Y (zh) 物体振动振幅的光学测量仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication