CN1425707A - Method for ordered arrangement of nano particles on solid base surface - Google Patents

Method for ordered arrangement of nano particles on solid base surface Download PDF

Info

Publication number
CN1425707A
CN1425707A CN 02155019 CN02155019A CN1425707A CN 1425707 A CN1425707 A CN 1425707A CN 02155019 CN02155019 CN 02155019 CN 02155019 A CN02155019 A CN 02155019A CN 1425707 A CN1425707 A CN 1425707A
Authority
CN
China
Prior art keywords
film
nano particle
solid substrate
ordered arrangement
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 02155019
Other languages
Chinese (zh)
Other versions
CN1166725C (en
Inventor
张亚非
王英
徐东
张效岩
赵猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CNB021550190A priority Critical patent/CN1166725C/en
Publication of CN1425707A publication Critical patent/CN1425707A/en
Application granted granted Critical
Publication of CN1166725C publication Critical patent/CN1166725C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

The present invention relates to nano technology field. The process of arranging nano particles on the surface of solid base includes the specific steps of: dissolving chain organics molecule with hydrophilic or hydrophobic group into non-aqueous volatile solvent; dispersing nano particles in the said solution; spreading the non-aqueous solution on water as base liquid inside Langmuir tank and controlling the film pressure on the single-molecule film of the nano particles on the surface of water; transferring the film via vertical pulling process to treated surface of solid base to form Y-type LB film; and high temperature annealing or high-energy light beam irradiating the nano particle film to dissociate and evaporate organics molecule while leaving the nano particles on the base. The said process is simple, practical and effective and may be used widely.

Description

The method of solid substrate surface ordered arrangement nano particle
Technical field
What the present invention relates to is a kind of method of the nano particle of arranging, and the method for particularly a kind of solid substrate surface ordered arrangement nano particle belongs to field of nanometer technology.
Background technology
The focus that nano material becomes current research owing to the special property that shows at aspects such as electronics, magnetics, optics and catalysis and considerable application prospect.Nano-particle material can be prepared by high-quality by several different methods at present, as sol-gel method, optical radiation oxidation reduction process, electrochemical redox method and sputtering method etc.Yet, along with the development of nano electron device, on the increasing solid substrate surface that requires quantitatively to arrange nano particle different in an orderly manner.The LB technology because have that thin film deposition thickness is quantitatively controlled, zero defect, characteristics such as simple to operate and shown remarkable advantages in this field.In recent years, adopt the LB unimolecular film as matrix, successfully prepared semiconductor nano material films such as metal nanoparticle such as Ag, Au and CdS, ZnS, PbS, CdSe, PbSe by inducing organic and method inorganic nano-particle of nucleating growth thereon.By literature search, find relevant Chinese invention patent, its patent No. is 98103527.2, Granted publication number is CN 1075842C's, name is called " forming the method less than 10 nano metal clusters and sequential 2 D dot-matrix of metallic atoms on unimolecular film ", its readme is " a kind of method that forms on unimolecular film less than 10 nano metal clusters and sequential 2 D dot-matrix of metallic atoms; it is characterized in that; the two-dimentional structure of single channel process system atoms metal: in standard unimolecular film groove; with the pure water is end liquid; will be dissolved in the amphiphilic polymer among the chloroform or the unimolecular film of straight chain fatty acid or aliphatic amide and spread in the groove; then unimolecular film is depressed into constant pressure, after the balance, amphiphilic polymer need be used the UV-irradiation polymerization, or directly spreads the good film of polymerization.In end liquid, inject 5 * 10 then -6M to 5 * 10 -4The aqueous solution of M metal-salt or metal salt complex, the concentration that makes the metal ion in the end liquid is 5 * 10 -6M to 5 * 10 -4M; With horizontal crystal pulling method or vertical crystal pulling method polymeric film is transferred on the hydrophobic slide glass, slide glass is immersed fully rinsing in the pure water, and then immerse 10 -6M to 10 -4Reduce in the reductive agent aqueous solution of M, at last slide glass is cleaned, nitrogen dries up, and forms the sequential 2 D dot-matrix less than 10 nano metal atoms on unimolecular film.", it discloses a kind of method that forms less than 10 nano metals bunch and sequential 2 D dot-matrix of metallic atoms on unimolecular film.This method mainly adopts organic LB unimolecular film to induce parfacies solution metal ion or metal complex ion, and need in film process metal ion or metal complex ion be reduced to metallics when preparation metal nanoparticle film.This class methods raw material consumption amount is big, and the particulate size is difficult for regulating in the prepared film, and operation is comparatively complicated, is difficult for large-scale film forming and application.
Summary of the invention
The objective of the invention is to overcome deficiency of the prior art, the method of a kind of solid substrate surface ordered arrangement nano particle is provided, the present invention realizes the method for ordered arrangement nano particle on the solid substrate surface with simple, practical method, and the gained nanometer particle film is stable, orderly.Can be implemented in the operation of individual layer and the orderly film of multi-layer nano grade particles on the different solid substrate.
The present invention is achieved by the following technical solutions, and concrete steps of the present invention are as follows:
A. will have hydrophilic and chain organics molecule hydrophobic grouping is dissolved in the non-aqueous volatile solvent.Will with the chain organics molecule bonded nanoparticulate dispersed that has hydrophilic and hydrophobic grouping in above-mentioned solution.
B. solid substrate is carried out hydrophilic or hydrophobic treatment.
C. in the Langmuir groove, be end liquid, the above-mentioned non-aqueous solution that contains nano particle is spread in the groove, the mould of control water surface nano particle monomolecular film with the pure water.Transfer to the solid substrate surface of handling with film via vertical pulling and form Y~type LB film.
D. prepared nanometer particle film is carried out high temperature annealing or high energy irradiate light, some organic molecules dissociate, and evaporate from substrate, and nano particle is retained in the substrate.
In step a, organic molecule used in the present invention is a kind of hydrophilic and chain organics molecule hydrophobic grouping of having, and its hydrophilic radical can be groups such as amino, carboxyl, sulfydryl, carbonatoms 14~22.The kind and the concentration of control organic molecule in non-aqueous solvent that change organic molecule can change nano particle in the distribution density of film surface and the degree of order of arranging.Organic molecule optimum concentration range in the ordered arrangement process is 1 * 10 -5~6 * 10 -4Between, the concentration of nano particle in non-aqueous solvent is between 1~10mg/ml.Preferably use the mixing solutions of two organic molecular species that contain amino and carboxylic group respectively when arranging the Nanoalloy particle, the ratio of two organic molecular species blended amount of substances is controlled between 0.1: 1~10: 1 relatively good.Non-aqueous volatile solvent used in the present invention is hexane, chloroform, toluene.The nano particle that the present invention arranged is of a size of 1~30 nanometer, and the nano particle of being arranged comprises metallic particles, alloying pellet and metal oxide particle.Metal can be elements such as transition metal iron, cobalt, nickel, platinum, and the alloying pellet of being arranged mainly is iron platinum, cobalt platinum, cobalt-nickel alloy, and metal oxide particle mainly is cobalt oxide, nickel oxide, titanium oxide, ferric oxide, stannic oxide, zinc oxide.
In step b, solid state substrate used in the present invention mainly is the silicon chip of sheet glass, silicon chip and surface oxidation.
In step c, mould is controlled between 15~30mN/m.With the non-aqueous solution of nano particle sprawl after the water surface need static more than 30 minutes so that non-aqueous solvent fully volatilizees, push away film behind the required pressure under constant pressure balance 0.5~2 hour, membrane speed remains 1~10mm/min.
In steps d, the present invention stably is arranged in the solid substrate surface for making nano particle, after the film forming film has been taked the processing of high temperature annealing and high energy light photograph.Wherein metal and alloying pellet film adopt the method for high temperature annealing in inert gas environment, the annealing temperature of film is controlled at 500~650 ℃, and under this temperature, kept 1~60 minute, the nano-metal-oxide particle film adopts in air or oxygen atmosphere high temperature annealing or adopts the method for high energy irradiate light.According to the nano-metal-oxide particle of being arranged and the difference of employed organic molecule, the time of annealing and illumination is also different.The temperature that annealing comparatively is fit to is 300~650 ℃, and temperature kept 1~60 minute, and high energy light irradiation time kept 1~40 minute.
The present invention has substantive distinguishing features and marked improvement.The present invention utilizes the Langmuir-Blodgett technology to prepare the nanometer particle film of thickness homogeneous and controllable, and in unitary film, nano particle can realize that sequential 2 D arranges.Since in film process with the nano particle for preparing as raw material, therefore enlarged the kind of the nano particle that can arrange, and made the particle size of film surface convenient adjustable, be easy to control.Be dispersed in the chain length of organic molecule in the non-aqueous solvent and the ordered arrangement that concentration can realize nano particle easily by adjusting simultaneously.The order thin film of being arranged can keep advantages of higher stability after annealing or photo-irradiation treatment, steady time was above 72 hours.In addition since with nanoparticulate dispersed in non-aqueous solvent and sprawl on the water surface, thereby saved raw material greatly.Characteristics such as method provided by the present invention has simple, and transfer efficiency height, the particle size of film surface and thickness are conveniently adjustable, prepared film defects is few, and this method is applied widely, is easy to be extended and applied.
Embodiment
Provide following examples in conjunction with content of the present invention:
Arranging of embodiment 1 nanometer Fe-Pt alloy particle film
Through step a of the present invention, will contain 4 nanometer iron-platinum alloy particles concentration is 2.5mg/ml, and the organic molecule total concn is 2 * 10 -4The hexane solution of the 450 μ l of M spreads on the water surface, and balance is after 30 minutes, and to constant pressure 20mN/m, balance adopted film via vertical pulling to transfer on the sheet glass after 30 minutes with mould, and membrane speed remains 2mm/min, cleans oven dry.Repeat the multilayer film that the process of lifting can obtain controllable thickness.The gained film adds 600 ℃ of annealing of thermic 10 minutes under nitrogen protection, obtain the nanometer Fe-Pt alloy particle single thin film of cubic ordered arrangement.
Arranging of embodiment 2 iron nano-particle films
To contain 10 nanometer iron nano-particle concentration is 8mg/ml, and organic molecule concentration is 1 * 10 -4The chloroformic solution of the 350 μ l of M spreads on the water surface, and balance is after 30 minutes, and to constant pressure 28mN/m, balance adopted film via vertical pulling to transfer on the sheet glass after 30 minutes with mould, and membrane speed remains 8mm/min, cleans oven dry.Repeat the multilayer film that the process of lifting can obtain controllable thickness.The gained film is heated to 500 ℃ of annealing 20 minutes under nitrogen protection, obtain the iron nano-particle single thin film of six side's ordered arrangements.
Arranging of embodiment 3 TiOx nano particle films
With 30 nano-titanium oxide concentrations of nanoparticles is 5mg/ml, and organic molecule concentration is 4 * 10 -4The toluene solution of the 400 μ l of M spreads on the water surface, and balance is after 30 minutes, and to constant pressure 15mN/m, balance adopted film via vertical pulling to transfer on the sheet glass after 60 minutes with mould, and membrane speed remains 5mm/min, cleans oven dry.Repeat the multilayer film that the process of lifting can obtain controllable thickness.Resulting film according to 5 minutes, can obtain TiOx nano particle individual layer and multilayer order film through high energy light.

Claims (10)

1. the method for a solid substrate surface ordered arrangement nano particle is characterized in that, the present invention includes following steps:
A. will have hydrophilic and chain organics molecule hydrophobic grouping and be dissolved in the non-aqueous volatile solvent, will with the chain organics molecule bonded nanoparticulate dispersed that has hydrophilic and hydrophobic grouping in above-mentioned solution,
B. solid substrate is carried out hydrophilic or hydrophobic treatment,
C. in the Langmuir groove, with the pure water is end liquid, the above-mentioned non-aqueous solution that contains nano particle is spread in the groove mould of control water surface nano particle monomolecular film, transfer to the solid substrate surface of handling with film via vertical pulling and form Y-type LB film
D. prepared nanometer particle film is carried out high temperature annealing or high energy irradiate light, some organic molecules dissociate, and evaporate from substrate, and nano particle is retained in the substrate.
2. the method for this solid substrate according to claim 1 surface ordered arrangement nano particle, it is characterized in that, employed organic molecule is a kind of hydrophilic and chain organics molecule hydrophobic grouping of having in step a, its hydrophilic radical can be groups such as amino, carboxyl, sulfydryl, carbonatoms 14~22.
3. the method for this solid substrate according to claim 2 surface ordered arrangement nano particle is characterized in that the organic molecule concentration range is 1 * 10 -5~6 * 10 -4Between the M, the concentration in non-aqueous solvent of nano particle is between 1~10mg/ml.
4. the method for this solid substrate according to claim 3 surface ordered arrangement nano particle, it is characterized in that, use the mixing solutions of two organic molecular species that contain amino and carboxylic group respectively when arranging the Nanoalloy particle, the ratio of blended amount of substance is between 0.1: 1~10: 1.
5. the method for this solid substrate according to claim 3 surface ordered arrangement nano particle is characterized in that non-aqueous solvent is hexane, chloroform, toluene.
6. the method for this solid substrate according to claim 1 surface ordered arrangement nano particle, it is characterized in that, the nano particle of being arranged in step a is of a size of 1~30 nanometer, and the nano particle of being arranged comprises metallic particles, alloying pellet and metal oxide particle.Metal can be elements such as transition metal iron, cobalt, nickel, platinum, and the alloying pellet of being arranged mainly is iron platinum, cobalt platinum, cobalt-nickel alloy, and metal oxide particle mainly is cobalt oxide, nickel oxide, titanium oxide, ferric oxide, stannic oxide, zinc oxide.
7. the method for this solid substrate according to claim 1 surface ordered arrangement nano particle is characterized in that the solid substrate in step b mainly is the silicon chip of sheet glass, silicon chip and surface oxidation.
8. the method for this solid substrate according to claim 1 surface ordered arrangement nano particle, it is characterized in that, mould is controlled between 15~30mN/m among the step c, the non-aqueous solution of nano particle is sprawled need be static more than 30 minutes after the water surface, so that non-aqueous solvent fully volatilizees, push away film behind the required pressure under constant pressure balance 0.5~2 hour, membrane speed remains 1~10mm/min.
9. the method for this solid substrate according to claim 1 surface ordered arrangement nano particle, it is characterized in that, when high temperature annealing of in the steps d film being taked and high energy photo-irradiation treatment, wherein metal and alloying pellet film adopt the method for high temperature annealing in inert gas environment, the annealing temperature of film is controlled at 500~650 ℃, and keeps under this temperature 1~60 minute.
10. the method for this solid substrate according to claim 9 surface ordered arrangement nano particle is characterized in that, the nano-metal-oxide particle film adopts in air or oxygen atmosphere high temperature annealing or adopts the method for high energy irradiate light.The temperature that annealing comparatively is fit to is 300~650 ℃, and temperature kept 1~60 minute, and high energy light irradiation time kept 1~40 minute.
CNB021550190A 2002-12-19 2002-12-19 Method for ordered arrangement of nano particles on solid base surface Expired - Fee Related CN1166725C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB021550190A CN1166725C (en) 2002-12-19 2002-12-19 Method for ordered arrangement of nano particles on solid base surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB021550190A CN1166725C (en) 2002-12-19 2002-12-19 Method for ordered arrangement of nano particles on solid base surface

Publications (2)

Publication Number Publication Date
CN1425707A true CN1425707A (en) 2003-06-25
CN1166725C CN1166725C (en) 2004-09-15

Family

ID=4752540

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021550190A Expired - Fee Related CN1166725C (en) 2002-12-19 2002-12-19 Method for ordered arrangement of nano particles on solid base surface

Country Status (1)

Country Link
CN (1) CN1166725C (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036757A (en) * 2008-03-25 2011-04-27 康宁股份有限公司 Methods for coating a substrate
CN104990918A (en) * 2015-07-16 2015-10-21 重庆大学 Test paper film based on nanogold and method for detecting lead ion by test paper film
CN105067601A (en) * 2015-07-16 2015-11-18 重庆大学 Functional test paper film based on nanogold and method for detecting iron ions
CN106784186A (en) * 2016-12-23 2017-05-31 Tcl集团股份有限公司 A kind of LB quantum dot films, light emitting diode and preparation method
CN108602017A (en) * 2015-12-10 2018-09-28 康奈尔大学 Ordered nano particle and particle coating and production and preparation method thereof
CN110098427A (en) * 2019-05-27 2019-08-06 苏州氢极能源科技有限公司 Proton exchange membrane of fuel cell and preparation method thereof
CN111044511A (en) * 2019-12-27 2020-04-21 华南理工大学 Color-changing nano material-based colorimetric test paper sheet and preparation method and application thereof
CN111455466A (en) * 2020-04-14 2020-07-28 西安交通大学 Preparation method of colloidal crystal based on L B membrane method
CN117239030A (en) * 2023-11-13 2023-12-15 江西兆驰半导体有限公司 Electrode surface hydrophobic LED chip and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036757A (en) * 2008-03-25 2011-04-27 康宁股份有限公司 Methods for coating a substrate
CN104990918A (en) * 2015-07-16 2015-10-21 重庆大学 Test paper film based on nanogold and method for detecting lead ion by test paper film
CN105067601A (en) * 2015-07-16 2015-11-18 重庆大学 Functional test paper film based on nanogold and method for detecting iron ions
CN104990918B (en) * 2015-07-16 2017-06-27 重庆大学 A kind of test paper film based on nm of gold and its method for detecting lead ion
CN108602017A (en) * 2015-12-10 2018-09-28 康奈尔大学 Ordered nano particle and particle coating and production and preparation method thereof
US11309613B2 (en) 2015-12-10 2022-04-19 Cornell University Organized nanoparticulate and microparticulate coatings and methods of making and using same
CN106784186B (en) * 2016-12-23 2020-07-21 Tcl科技集团股份有限公司 L B quantum dot film, light-emitting diode and preparation method
CN106784186A (en) * 2016-12-23 2017-05-31 Tcl集团股份有限公司 A kind of LB quantum dot films, light emitting diode and preparation method
CN110098427A (en) * 2019-05-27 2019-08-06 苏州氢极能源科技有限公司 Proton exchange membrane of fuel cell and preparation method thereof
CN111044511A (en) * 2019-12-27 2020-04-21 华南理工大学 Color-changing nano material-based colorimetric test paper sheet and preparation method and application thereof
CN111455466A (en) * 2020-04-14 2020-07-28 西安交通大学 Preparation method of colloidal crystal based on L B membrane method
CN111455466B (en) * 2020-04-14 2021-07-13 西安交通大学 Preparation method of colloidal crystal based on LB membrane method
CN117239030A (en) * 2023-11-13 2023-12-15 江西兆驰半导体有限公司 Electrode surface hydrophobic LED chip and preparation method thereof

Also Published As

Publication number Publication date
CN1166725C (en) 2004-09-15

Similar Documents

Publication Publication Date Title
CN1166725C (en) Method for ordered arrangement of nano particles on solid base surface
Thambidurai et al. Influence of the Cd/S molar ratio on the optical and structural properties of nanocrystalline CdS thin films
Khan et al. Enhanced photoluminescence of ZnO nanorods via coupling with localized surface plasmon of Au nanoparticles
CN101429644A (en) Production method of metal or metal oxide nano particle
Gupta et al. Au-spotted zinc oxide nano-hexagonrods structure for plasmon-photoluminescence sensor
Abuelsamen et al. Effects of precursor concentrations on the optical and morphological properties of ZnO nanorods on glass substrate for UV photodetector
CN100437950C (en) Height tropism zinc oxide nano column array ultrasonic auxiliary water solution preparation method
Burova et al. Preparation and properties of ZnO nanoparticles in the mesoporous silica matrix
Mane et al. Room temperature synthesis of compact TiO2 thin films for 3-D solar cells by chemical arrested route
Sutanto et al. Deposition of Ag 2~ 6 mol%-doped ZnO photocatalyst thin films by thermal spray coating method for E. coli bacteria degradation
CN101759374B (en) Preparation method of visible light frequency band left-hand metamaterial based on three-dimensional nano silver tree dendritic structures
Rakhra et al. Structural, morphological, optical, electrical and agricultural properties of solvent/ZnO nanoparticles in the photodegradation of DR-23 dye
He et al. Vertically well-aligned ZnO nanowires generated with self-assembling polymers
Pedrini et al. Deposition of TiO 2 thin films by dip-coating technique from a two-phase solution method and application to photocatalysis
CN101376599A (en) Preparation of nano particle ordered single layer and multi-layer films
Saroja et al. Investigation of Mn doping concentration on the structural, optical, antimicrobial and dye degradation properties of ZnS thin films
Lu et al. DNA-templated photo-induced silver nanowires: fabrication and use in detection of relative humidity
Cirignano et al. Layer-by-layer assembly of CsPbX 3 nanocrystals into large-scale homostructures
CN102516579B (en) Preparation method of polyvinyl alcohol composite film with embedded silver-wrapped nanoparticles
CN112652723A (en) Polymer blend modified perovskite solar cell and preparation method thereof
Lu et al. Selective formation of monodisperse CdSe nanoparticles on functionalized self-assembled monolayers using chemical bath deposition
CN111378431A (en) Quantum dot film and preparation method and application thereof
Çolak et al. Comprehensive experimental study on production of vertically aligned ZnO nanorod thin films and their electrical, optical and antimicrobial properties
Imran et al. Study the effect of laser wavelength on ZnO nanoparticle characteristics synthesized by pulse laser ablation as an antibacterial application
CN111547760B (en) Preparation method and application of oxide substrate in-situ growth silver nanorod

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee