CN1411190A - Vertical Bell laboratory ranked space and time code array linear detecting method - Google Patents

Vertical Bell laboratory ranked space and time code array linear detecting method Download PDF

Info

Publication number
CN1411190A
CN1411190A CN01135642A CN01135642A CN1411190A CN 1411190 A CN1411190 A CN 1411190A CN 01135642 A CN01135642 A CN 01135642A CN 01135642 A CN01135642 A CN 01135642A CN 1411190 A CN1411190 A CN 1411190A
Authority
CN
China
Prior art keywords
msub
mrow
mover
math
rightarrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01135642A
Other languages
Chinese (zh)
Other versions
CN1155190C (en
Inventor
张泉岭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CNB011356421A priority Critical patent/CN1155190C/en
Publication of CN1411190A publication Critical patent/CN1411190A/en
Application granted granted Critical
Publication of CN1155190C publication Critical patent/CN1155190C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Noise Elimination (AREA)

Abstract

A linear detection method for V-BLAST array includes setting initialized condition in memory after receiving N array vectors to determine linear decorrelation detection weight value multiplying the received array vector then to apply soft judgement to quantize the received result to obtain the strongest signal from the receiver signals and remove the obtained strongest signals from the received array vector signals, then to detect out the strongest subdata stream from the removed strongest subdata stream as the interference. In this way all the strongest subdata stream signals are detected to be quantized to get the sub data stream emitted by the emitter, that is the array vector detected.

Description

Vertical Bell laboratory layered space-time coding array linear detection method
Technical Field
The invention relates to an array linear detection method in a code division multiple access wireless system, in particular to a Vertical Bell laboratory Layered Space Time (V-BLAST) array linear detection method in the code division multiple access wireless system.
Background
V-BLAST is a high-rate data transmission technique that uses multiple-element antennas at both the transmitting and receiving ends, achieving transmission rates far exceeding those of the prior art. Laboratory results show that the transmission efficiency can reach 20-40 bps/Hz (Bit PerSecond/Hertz) when the average signal-to-noise ratio is 24-34 dB, which cannot be achieved by applying the existing technology.
The V-BLAST technique applies the propagation characteristics of a multipath environment and treats scattering multipath as parallel sub-streams to enhance the transmission accuracy, rather than reducing the transmission accuracy. The V-BLAST technique divides a user data stream into sub-streams, simultaneously transmits the parallel sub-streams using an array antenna, and all the sub-streams are transmitted in the same frequency band, so that the spectral efficiency is very high. Since user data is transmitted over multiple antennas in parallel, the effective transmission rate is proportional to the number of transmit antennas.
At the receiving end, the array antenna is also used to receive the transmitted signal and its scattered signal. Each receive antenna receives all of the sub-streams. If the multipath dispersion is sufficiently large, the dispersion of each sub-stream is different and the transmit antennas of the sub-streams are spatially different. The differences in scattering of these sub-streams enable the sub-streams to be identified and detected. In the process of detecting the sub-data stream by linear decorrelation, firstly, the strongest sub-data stream is detected, and then the strongest sub-data stream is taken as interference to be removed from a received signal; then, the strongest sub-data stream is detected from the received signals with the strongest sub-data stream removed, and then interference removal is performed. All the strongest sub-stream signals are detected in sequence, and the detected signals are quantized, namely the sub-streams transmitted by the transmitter.
In the V-BLAST technique, it is assumed that channel transmission characteristics are unknown to the transmit antennas and are known to the receive antennas, and the number of elements of the receive antennas is equal to or greater than the number of elements of the transmit antennas.
In a V-BLAST array test receiver, the detected signal is also quantized to obtain a more accurate transmitted signal. For the signal which is not subjected to channel coding, the quantization process adopts a hard decision process, and the point which is closest to the Euclidean distance of the detected signal on a constellation diagram of the corresponding modulation method is used as the quantization value of the signal. For the signal after channel coding, if the quantization method of hard decision is adopted, the quantization error is large, and the decoding precision later is influenced, so the quantization method of soft decision is adopted.
Disclosure of Invention
In view of the shortcomings of the prior art, it is an object of the present invention to provide an array linear detection method to more accurately detect a signal transmitted from a transmitting side at a receiving side.
To achieve the above objects, the present invention provides a V-BLAST array linear detection method in which a transmitter transmits Symbol M-dimensional column vectors <math> <mrow> <mover> <mi>a</mi> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msub> <mi>a</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> The channel transmission matrix from the transmitting side to the receiving side is HN*M,HN*MMiddle hijIs a transfer function from a transmitting array element j to a receiving array element i, M is less than or equal to N, the method comprising:
a) receiving Symbol N-dimensional column vectors <math> <mrow> <mover> <mi>r</mi> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msub> <mi>r</mi> <mi>N</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>;</mo> </mrow> </math>
b) Setting initialization conditions in a memory: i-1, G1=H+,k1=argminj‖(G1)j2(G1)jRepresents G1J-th row vector of k1=argminj‖(G1)j2Is shown in G1Finds the vector with the smallest norm and assigns the line ordinal number (1, 2, 3 … M) of the vector to k1
c) The k-th to be foundiThe vector is used as the weight value ( <math> <mrow> <msub> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <msubsup> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> </mrow> </math> ) Determining weights of linear decorrelation detectionAnd multiplying the weight value by the received Symbol column vector to obtain the k-thiA Symbol (b) <math> <mrow> <msub> <mi>y</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <msubsup> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> <msub> <mover> <mi>r</mi> <mo>&RightArrow;</mo> </mover> <mi>i</mi> </msub> </mrow> </math> );
d) For the obtained kthiThe Symbol is quantized by soft decision method () Determining the received signalThe ith strongest signal of
Figure A0113564200063
e) Removing the strongest signal found in step d) from the received column vector signals
Figure A0113564200064
(
Figure A0113564200065
) To obtain
Figure A0113564200066
Matrix with removed column vectors corresponding to detected Symbol
Figure A0113564200067
f) Find outPseudo-inverse of (1), (b) <math> <mrow> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>H</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> <mo>&PlusMinus;</mo> </msubsup> </mrow> </math> );
g) At Gi+1Finds the vector with the smallest norm and assigns the line ordinal number (1, 2, 3 … M) of the vector to k1( <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <mrow> <mi>j</mi> <mo>&NotElement;</mo> <mo>{</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <msub> <mi>k</mi> <mi>i</mi> </msub> <mo>}</mo> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>j</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </math> )
h) If i < M, i ═ i +1, go back to step c);
i) if i is equal to M, the M strongest signals are determined (M
Figure A01135642000613
...、
Figure A01135642000614
) I.e. the detected column vector.
The above V-BLAST array linear detection method, wherein the soft decision method is a hyperbolic tangent quantization method.
The above V-BLAST array linear detection method, wherein the transmitting party transmits Symbol M dimensional column vector <math> <mrow> <mover> <mi>a</mi> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msub> <mi>a</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mrow> </math> Is a signal modulated by a QPSK (Quadrature phase shift Keying) method.
The above V-BLAST array linear detection method, wherein the hyperbolic tangent quantization method is:
Figure A01135642000616
wherein, <math> <mrow> <msub> <mi>y</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <msubsup> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> <msub> <mover> <mi>r</mi> <mo>&RightArrow;</mo> </mover> <mi>i</mi> </msub> </mrow> </math> <math> <mrow> <mo>=</mo> <msubsup> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mover> <mi>h</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mover> <mi>h</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </math> <math> <mrow> <mo>=</mo> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <msubsup> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mover> <mi>h</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </math> <math> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mover> <mi>h</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <mi>v</mi> </mrow> </math> are interference and noise terms, obey a Gaussian distribution, with a variance of
The V-BLAST array detection receiver adopting the linear decorrelation detection provided by the invention quantizes the received signals by adopting a soft decision method, wherein a soft decision algorithm adopts a hyperbolic tangent nonlinear detection method, so that the signals transmitted by a transmitting party can be more accurately detected at a receiving party, and the demodulation and decoding precision in the conventional wireless communication system is improved.
Drawings
Fig. 1 is a diagram illustrating a transmission process of a downlink of V-BLAST.
Fig. 2 is a diagram illustrating a reception process of V-BLAST downlink.
FIG. 3 is a flow chart of the V-BLAST array linear detection method using soft decision according to the present invention.
Detailed Description
The transmission process of the downlink of V-BLAST is shown in fig. 1. The signal to be transmitted is encoded in step 110; at step 120, rate matching is performed on the encoded signal; at step 130, interleaving the rate matched signal; in step 140, carrier Modulation is performed on the interleaved signal, and the Modulation mode may be determined according to specific needs, such as QPSK Modulation, 8PSK Modulation (8-Phase Shift Keying), 16QAM (Quadrature Amplitude Modulation), and the like; in step 150, the modulated signals are split into M signals as required to form an M-dimensional column vector, where M represents the number of elements of the transmitting antenna; in step 160, the M-dimensional column vector is spread and scrambled using the same spreading code and scrambling code; the spread and scrambled M-dimensional column vectors are then transmitted through the antenna array consisting of M antenna elements, step 170. Wherein, the M (M is more than 1 and less than M) th element of the M-dimensional column vector is transmitted by the M antenna.
The downlink reception process of V-BLAST is shown in fig. 2. In step 210, a receiving antenna array composed of N antenna elements receives an N-dimensional signal formed by multipath scattering; in step 220, despreading and descrambling the N-dimensional signals received by each antenna array element to obtain a group of N-dimensional column vector signals; in step 230, the M-dimensional column vector signal transmitted by the transmitting side is detected using a V-BLAST linear decorrelation detection method; in step 240, the detected M-dimensional column vector signal is further processed by a carrier demodulation method corresponding to the modulation method of the transmitting party (if the transmitting party modulates the interleaved signal in QPSK, the receiving party demodulates the detected signal in corresponding QPSK carrier demodulation method); in step 250, deinterleaving the demodulated signal; in step 260, the de-interleaved signal is decoded to obtain the data signal transmitted by the transmitting party.
In the receiving method, the V-BLAST linear decorrelation detection method is the core content of V-BLAST, and it utilizes the zero forcing decision feedback method in multi-user detection. Firstly, detecting a strongest signal, and then removing the strongest signal from a received signal as interference; then, the strongest signal is detected from the received signals with the strongest signal removed, and then the strongest signal is taken as interference removal; this sequentially detects all signals. The M strongest signals found are the detected M-dimensional column vectors. This method is described in detail below in conjunction with fig. 3.
Setting M transmitting antenna elements on a transmitting party, N receiving antenna elements on a receiving party, and setting a channel transmission matrix from the transmitting party to the receiving party as HN*M,hijIs the transfer function from the transmitting array element j to the receiving array element i, M is less than or equal to N. Suppose that the carrier modulation of the transmitting side adopts QPSK (Quadrature Phase Shift Keying) modulation mode, and the M-dimensional column vector of the transmitting Symbol is <math> <mrow> <mover> <mi>a</mi> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msub> <mi>a</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> Receive a Symbol N-dimensional column vector of <math> <mrow> <msub> <mover> <mi>r</mi> <mo>&RightArrow;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <mi>H</mi> <mover> <mi>a</mi> <mo>&RightArrow;</mo> </mover> <mo>+</mo> <mover> <mi>v</mi> <mo>&RightArrow;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein,
Figure A0113564200083
is a wide stationary noise. Linear decorrelation detection is used, and S is set to be { k ═ k in sequence1,k2,…,KmIs to receive a Symbol N-dimensional column vector
Figure A0113564200084
The sequence of the sequentially detected middle transmitting symbols, the weight vectori is 1, 2, …, M satisfies
Figure A0113564200086
Figure A0113564200087
Is the k-th of HjAnd (4) columns.
The V-BLAST detection algorithm using the detection sequence of the present invention is as follows:
initialization setting:
i=1 (3.1)
G1=H+ (3.2)
k1=argminj‖(G1)j2 (3.3)
the following iterative process is performed: <math> <mrow> <msub> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <msubsup> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3.4</mn> <mo>)</mo> </mrow> </mrow> </math> <math> <mrow> <msub> <mi>y</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <msubsup> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> <msub> <mover> <mi>r</mi> <mo>&RightArrow;</mo> </mover> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3.5</mn> <mo>)</mo> </mrow> </mrow> </math> <math> <mrow> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>H</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> <mo>&PlusMinus;</mo> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3.8</mn> <mo>)</mo> </mrow> </mrow> </math> <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <mrow> <mi>j</mi> <mo>&NotElement;</mo> <mo>{</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <msub> <mi>k</mi> <mi>i</mi> </msub> <mo>}</mo> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>j</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3.9</mn> <mo>)</mo> </mrow> </mrow> </math> if ( i < M ) , i + + - - - ( 3.10 )
the meanings of the above formulae are explained below: in (3.2), H+Representing the pseudo-inverse of the channel transmission matrix H from the transmitter to the receiver. In (3.3), (G)1)jRepresents G1The jth row vector of (1). Formula (3.3) is represented by G1Finds the vector with the smallest norm and assigns the line ordinal number (1, 2, 3 … M) of the vector to k1. (3.4) denotes the kth to be foundiThe vector is used as a weight. (3.5) multiplying the weight by the received Symbol column vector to obtain the kthiA Symbol(3.6) shows the kthiA Symbol
Figure A0113564200099
A quantization operation is performed. And (3.7) shows the strongest signal detected by the removal from the received signal. (3.8) in the above step (3),show thatRemoving the column vectors corresponding to the detected Symbol to obtain a matrix. (3.9) has the meaning similar to (3.3), indicated at Gi+1Finds the vector with the smallest norm and assigns the line ordinal number (1, 2, 3 … M) of the vector to Ki+1. (3.10) shows that the iterations (3.4) to (3.10) are continued until all M symbols have been detected.
In the case of (3.5), <math> <mrow> <msub> <mi>y</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <msubsup> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> <msub> <mover> <mi>r</mi> <mo>&RightArrow;</mo> </mover> <mi>i</mi> </msub> </mrow> </math> <math> <mrow> <mo>=</mo> <msubsup> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mover> <mi>h</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mover> <mi>h</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3.11</mn> <mo>)</mo> </mrow> </mrow> </math> <math> <mrow> <mo>=</mo> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <msubsup> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mover> <mi>h</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </math> <math> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mover> <mi>h</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <mi>v</mi> </mrow> </math> is an interference and noise term, obeys Gaussian distribution, and has variance ofThen k isiThe signal-to-noise ratio of Symbol is <math> <mrow> <mi>SNR</mi> <mo>=</mo> <mfrac> <msup> <mrow> <mo>|</mo> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mrow> <msubsup> <mi>&sigma;</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> <mn>2</mn> </msubsup> <msup> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3.12</mn> <mo>)</mo> </mrow> </mrow> </math>
From (3.12), (3.3) at G1Find out the vector with the smallest norm as the weight, which means that the formula (3.5) will detect
Figure A0113564200101
The strongest Symbol of (a).
And (3.6) the process of quantization by using a soft decision method is shown. For a signal which is not subjected to channel coding, the quantization process is a hard decision process, and a point which is closest to the detected signal in Euclidean distance on a constellation diagram of a corresponding modulation method is used as a quantization value of the signal. For the data which is subjected to channel coding, if a quantization method of hard decision is adopted, the quantization error is large, and the subsequent decoding precision is influenced, so that the quantization is carried out by adopting a method of soft decision. The invention provides a soft decision algorithm for quantization aiming at a V-BLAST array detection receiver adopting linear decorrelation detection, namely, a hyperbolic tangent nonlinear detection method is adopted for quantization. For example, with QPSK modulation for the transmitter side carrier modulation, the soft decision algorithm can be expressed as:
Figure A0113564200102
where tanh () represents a hyperbolic tangent function, real () represents the real part of a complex number, and imag () represents the imaginary part of a complex number
The soft decision algorithm is optimal in the sense of minimum mean square error, and has the advantages that: when the signal-to-noise ratio is large, <math> <mrow> <mi>tanh</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> <mi>real</mi> <mrow> <mo>(</mo> <msub> <mi>y</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>)</mo> </mrow> </mrow> <msubsup> <mi>&sigma;</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> <mn>2</mn> </msubsup> </mfrac> <mo>)</mo> </mrow> </mrow> </math> and <math> <mrow> <mi>tanh</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> <mi>imag</mi> <mrow> <mo>(</mo> <msub> <mi>y</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>)</mo> </mrow> </mrow> <msubsup> <mi>&sigma;</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> <mn>2</mn> </msubsup> </mfrac> <mo>)</mo> </mrow> </mrow> </math> the method is close to the range of +/-1,trend toward accurate values; when the signal-to-noise ratio is small, the signal is annihilated in the interference and the noise, if a hard judgment method is used, the interference and the noise play a decisive role in judgment, the judgment error probability is high, and the judgment is passed <math> <mrow> <mi>tanh</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> <mi>real</mi> <mrow> <mo>(</mo> <msub> <mi>y</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>)</mo> </mrow> </mrow> <msubsup> <mi>&sigma;</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> <mn>2</mn> </msubsup> </mfrac> <mo>)</mo> </mrow> </mrow> </math> And <math> <mrow> <mi>tanh</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msqrt> <mn>2</mn> </msqrt> <mi>imag</mi> <mrow> <mo>(</mo> <msub> <mi>y</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>)</mo> </mrow> </mrow> <msubsup> <mi>&sigma;</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> <mn>2</mn> </msubsup> </mfrac> <mo>)</mo> </mrow> </mrow> </math> the probability of error can be reduced. By using the soft decision algorithm, the signal transmitted by the transmitting party can be more accurately detected at the receiving party, so that the accuracy of later demodulation and decoding is improved. A flow chart of a V-BLAST array detection receiving method using a soft decision algorithm and linear decorrelation detection is shown in fig. 3.
The receiving party receives the received Symbol N-dimensional column vector <math> <mrow> <mover> <mi>r</mi> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msub> <mi>r</mi> <mi>N</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> After each column vector is descrambled and despread, a V-BLAST linear detection process of the N-dimensional column vector signals is started. First, initialization conditions are set at step S10: i-1, G1=H+,k1=argminj‖(G1)j2Wherein (G)1)jRepresents G1J-th row vector of k1=argminj‖(G1)j2Is shown in G1Finds the vector with the smallest norm and assigns the line ordinal number (1, 2, 3 … M) of the vector to k1. At step S20, the kth position to be foundiThe vector is used as the weight value ( <math> <mrow> <msub> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <msubsup> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> </mrow> </math> ) Ensure thatWeight value of definite linear decorrelation detectionIn step S30, the weight is multiplied by the received Symbol column vector to obtain the kth Symbol in the received signaliA Symbol (b) <math> <mrow> <msub> <mi>y</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <msubsup> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> <msub> <mover> <mi>r</mi> <mo>&RightArrow;</mo> </mover> <mi>i</mi> </msub> </mrow> </math> ). At step S40, the k-th result is processediThe Symbol is quantized by soft decision method (
Figure A0113564200116
) Find the received signalThe ith strongest signal ofIn step S50, the strongest signal found in step d) is removed from the received column vector signals
Figure A0113564200119
( ) To obtainMatrix with removed column vectors corresponding to detected Symbol
Figure A01135642001112
Find outPseudo-inverse of (1), (b) <math> <mrow> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>H</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> <mo>&PlusMinus;</mo> </msubsup> </mrow> </math> ) (ii) a At Gi+1Find the vector with the smallest norm in the row vectors of (1) (( <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>arg</mi> <mi> mi</mi> <msub> <mi>n</mi> <mrow> <mi>j</mi> <mo>&NotElement;</mo> <mo>{</mo> <msub> <mi>k</mi> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </msub> <msub> <mi>k</mi> <mrow> <mn>2</mn> <mo>,</mo> </mrow> </msub> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <msub> <mi>k</mi> <mi>i</mi> </msub> <mo>}</mo> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>j</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </math> ). In step S60, it is determined whether i is greater than M, if i < M, i is set to i +1, and steps S20 to S60 are repeated; if i is equal to M, the M strongest signals are determined (M ...、
Figure A01135642001119
) I.e. the detected column vector.
The scope of the invention is set forth in the appended claims. However, all obvious modifications which are within the spirit of the invention are to be considered within the scope of the invention.

Claims (5)

1. A V-BLAST array linear decorrelation detection method, in which a transmitter transmits Symbol M-dimensional column vectors <math> <mrow> <mover> <mi>a</mi> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msub> <mi>a</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> The channel transmission matrix from the transmitting side to the receiving side is HN*M,HN*MMiddle hijIs a transfer function from a transmitting array element j to a receiving array element i, M is less than or equal to N, characterized in that the method comprises:
a) receiving Symbol N-dimensional column vectors <math> <mrow> <mover> <mi>r</mi> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msub> <mi>r</mi> <mi>N</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>;</mo> </mrow> </math>
b) Setting initialization conditions in a memory: i-1, G1=H+
k1=argminj‖(G1)j2Wherein (G)1)jRepresents G1The (j) th row vector of (a),
k1=argminj‖(G1)j2is shown in G1Find out the one with the minimum norm in the row vector of
Vector and assigning the number of line sequences of this vector to k1
c) The k-th to be foundiThe number of vectors is used as a weight value, <math> <mrow> <msub> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <msubsup> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> <mo>,</mo> </mrow> </math> determining weights for linear decorrelation detection
Figure A0113564200026
And multiplying the weight value by the received Symbol column vector to obtain the k-thiA plurality of first and second electrodes, a first electrode, <math> <mrow> <msub> <mi>y</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <msubsup> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> <msub> <mover> <mi>r</mi> <mo>&RightArrow;</mo> </mover> <mrow> <mi>i</mi> <mo>;</mo> </mrow> </msub> </mrow> </math>
d) for the obtained kthiQuantizing the Symbol column vector by soft decision methodI.e. to obtain the received signal
Figure A0113564200029
The ith strongest signal of
Figure A01135642000210
Figure A01135642000211
Is that
Figure A01135642000212
An estimated value of (d);
e) removing the strongest signal found in step d) from the received column vector signals To obtainMatrix with removed column vectors corresponding to detected Symbol
Figure A01135642000216
f) Find out
Figure A01135642000217
The pseudo-inverse of (a) is, <math> <mrow> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mo>+</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>H</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> <mo>&PlusMinus;</mo> </msubsup> <mo>;</mo> </mrow> </math>
g) at Gi+1Find a vector with the minimum norm from the row vectors <math> <mrow> <msub> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>arg</mi> <mi> mi</mi> <msub> <mi>n</mi> <mrow> <mi>j</mi> <mo>&NotElement;</mo> <mo>{</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <msub> <mi>k</mi> <mi>i</mi> </msub> <mo>}</mo> </mrow> </msub> <mo>|</mo> <mo>|</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mi>j</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </math>
h) If i < M, i ═ i +1, go back to step c);
i) if i is M, the M strongest signals are obtained
Figure A01135642000221
...
Figure A01135642000223
I.e. the detected column vector.
2. The V-BLAST array linear detection method according to claim 1, wherein: and 5, the soft decision method is a hyperbolic tangent quantization method.
3. The V-BLAST array linear detection method according to claim 1, wherein: a transmit Symbol M-dimensional column vector of the transmitter <math> <mrow> <mover> <mi>a</mi> <mo>&RightArrow;</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <msub> <mi>a</mi> <mi>M</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mrow> </math> Is a signal modulated by the QPSK method.
4. The V-BLAST array linear detection method according to claim 3, wherein: the soft decision method is a hyperbolic tangent quantization method.
5. The method for linear array inspection by V-BLAST according to claim 4, wherein the hyperbolic tangent quantization method is:
wherein, <math> <mrow> <msub> <mi>y</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <msubsup> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> <msub> <mover> <mi>r</mi> <mo>&RightArrow;</mo> </mover> <mi>i</mi> </msub> </mrow> </math> <math> <mrow> <mo>=</mo> <msubsup> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mover> <mi>h</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mover> <mi>h</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </math> <math> <mrow> <mo>=</mo> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <msubsup> <mover> <mi>w</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mover> <mi>h</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mover> <mi>h</mi> <mo>&RightArrow;</mo> </mover> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <msub> <mi>a</mi> <msub> <mi>k</mi> <mi>i</mi> </msub> </msub> <mo>+</mo> <mi>v</mi> </mrow> </math> are interference and noise terms, obey a Gaussian distribution, with a variance of
Figure A0113564200037
v is the wide stationary noise; real () denotes taking the real part of the complex number and imag () denotes taking the imaginary part of the complex number.
CNB011356421A 2001-10-09 2001-10-09 Vertical Bell laboratory ranked space and time code array linear detecting method Expired - Fee Related CN1155190C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB011356421A CN1155190C (en) 2001-10-09 2001-10-09 Vertical Bell laboratory ranked space and time code array linear detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB011356421A CN1155190C (en) 2001-10-09 2001-10-09 Vertical Bell laboratory ranked space and time code array linear detecting method

Publications (2)

Publication Number Publication Date
CN1411190A true CN1411190A (en) 2003-04-16
CN1155190C CN1155190C (en) 2004-06-23

Family

ID=4673228

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011356421A Expired - Fee Related CN1155190C (en) 2001-10-09 2001-10-09 Vertical Bell laboratory ranked space and time code array linear detecting method

Country Status (1)

Country Link
CN (1) CN1155190C (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314216C (en) * 2005-04-28 2007-05-02 北京邮电大学 Quasi maximum posterior probability detection method for layer space hour code system
CN100349387C (en) * 2004-04-13 2007-11-14 上海贝尔阿尔卡特股份有限公司 Detecting method and device for vertical-bell laboratory layered space-time code
CN100361414C (en) * 2004-06-01 2008-01-09 华为技术有限公司 Grouping vertical layered space-time detecting method and device
CN100362772C (en) * 2004-06-29 2008-01-16 华为技术有限公司 Receiver of multiple input and multiple output system
CN100370709C (en) * 2004-06-29 2008-02-20 华为技术有限公司 Multiple code receiver of multiple input and multiple output system
CN100370719C (en) * 2005-02-04 2008-02-20 西安交通大学 Receiving and detecting method of vertical layered space-time system based on self adaptive modulation
CN100373841C (en) * 2004-08-27 2008-03-05 电子科技大学 Multiuser space hour group coding detection method
CN100508507C (en) * 2005-03-11 2009-07-01 中国科学技术大学 Adaptive equilibrium method of multi-input multi-output communication system
CN1862999B (en) * 2005-03-14 2010-04-14 三星电子株式会社 Apparatus and mehtod for distributing users in multi-antenna mobile communication system
CN1750447B (en) * 2004-03-08 2010-05-26 三星电子株式会社 Method for deciding signal detection order in mobile communication system
CN101106406B (en) * 2006-07-13 2011-04-06 中国科学院上海微系统与信息技术研究所 Single rate and multi-rated multi-antenna signal transmission method under integrated transmission structure
CN102332967A (en) * 2004-02-13 2012-01-25 日本电气株式会社 Radio communication system, reception device, demodulation method used for them, and program thereof
CN101217345B (en) * 2008-01-18 2012-03-28 西安电子科技大学 A detecting method on vertical layered time space code message system
CN101227254B (en) * 2008-01-23 2013-02-27 中兴通讯股份有限公司 Method for detecting V-BLAST in MIMO system
CN114567339A (en) * 2022-02-24 2022-05-31 哲库科技(北京)有限公司 Baseband chip, signal demodulation method, terminal device, storage medium and product

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332967A (en) * 2004-02-13 2012-01-25 日本电气株式会社 Radio communication system, reception device, demodulation method used for them, and program thereof
CN102332967B (en) * 2004-02-13 2014-04-16 日本电气株式会社 Radio communication system, reception device, demodulation method
CN1750447B (en) * 2004-03-08 2010-05-26 三星电子株式会社 Method for deciding signal detection order in mobile communication system
CN100349387C (en) * 2004-04-13 2007-11-14 上海贝尔阿尔卡特股份有限公司 Detecting method and device for vertical-bell laboratory layered space-time code
CN100361414C (en) * 2004-06-01 2008-01-09 华为技术有限公司 Grouping vertical layered space-time detecting method and device
CN100362772C (en) * 2004-06-29 2008-01-16 华为技术有限公司 Receiver of multiple input and multiple output system
CN100370709C (en) * 2004-06-29 2008-02-20 华为技术有限公司 Multiple code receiver of multiple input and multiple output system
CN100373841C (en) * 2004-08-27 2008-03-05 电子科技大学 Multiuser space hour group coding detection method
CN100370719C (en) * 2005-02-04 2008-02-20 西安交通大学 Receiving and detecting method of vertical layered space-time system based on self adaptive modulation
CN100508507C (en) * 2005-03-11 2009-07-01 中国科学技术大学 Adaptive equilibrium method of multi-input multi-output communication system
CN1862999B (en) * 2005-03-14 2010-04-14 三星电子株式会社 Apparatus and mehtod for distributing users in multi-antenna mobile communication system
CN1314216C (en) * 2005-04-28 2007-05-02 北京邮电大学 Quasi maximum posterior probability detection method for layer space hour code system
CN101106406B (en) * 2006-07-13 2011-04-06 中国科学院上海微系统与信息技术研究所 Single rate and multi-rated multi-antenna signal transmission method under integrated transmission structure
CN101217345B (en) * 2008-01-18 2012-03-28 西安电子科技大学 A detecting method on vertical layered time space code message system
CN101227254B (en) * 2008-01-23 2013-02-27 中兴通讯股份有限公司 Method for detecting V-BLAST in MIMO system
CN114567339A (en) * 2022-02-24 2022-05-31 哲库科技(北京)有限公司 Baseband chip, signal demodulation method, terminal device, storage medium and product
CN114567339B (en) * 2022-02-24 2024-04-12 哲库科技(北京)有限公司 Baseband chip, signal demodulation method, terminal device, storage medium and product

Also Published As

Publication number Publication date
CN1155190C (en) 2004-06-23

Similar Documents

Publication Publication Date Title
CN1155190C (en) Vertical Bell laboratory ranked space and time code array linear detecting method
Foschini et al. Simplified processing for high spectral efficiency wireless communication employing multi-element arrays
CN1275481C (en) Adaptive modulation coding equipment for mobile communication system and method thereof
Golden et al. Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture
CN100530981C (en) Successive interference cancellation receiver processing with selection diversity
KR100591890B1 (en) Method for adaptive transmission and receiving in a wireless communication system with multiple antennas
RU2006129316A (en) SPATIAL DATA TRANSFER WITH SPREADING OF THE SPECTRUM IN THE MIMO COMMUNICATION SYSTEM
KR100930522B1 (en) Receiving device and method in multi-input wireless communication system
CN1325198A (en) Multi-input multi-output orthogonal frequency-division multiplexing system
MXPA04008473A (en) Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (mimo) system.
KR101106682B1 (en) Apparatus and method for generating of multiple antenna log likelihood ratio
KR100470401B1 (en) A wireless communication system and method using grouping Maximum Lilelihood Detection
JP2009531878A (en) Decoding frequency channelized signals
US20050276362A1 (en) Method for detecting signal in multiple input multiple output system and receiving device of multiple input multiple output system
JP4331563B2 (en) Transceiver for supporting transmit antenna diversity using space-time block code
US20080118008A1 (en) Decoding MIMO space time code symbol-pairs
US8223624B2 (en) Method and apparatus for transmitting and receiving a data symbol stream
US20040218697A1 (en) Array processing using an aggregate channel matrix generated using a block code structure
JP2008503955A (en) Modulate data stream with constellation subset mapping
EP1851871A2 (en) Signal separation techniques to provide robust spread spectrum signal decoding
KR100557085B1 (en) Receiving apparatus for wireless telecommunication system using at least 3 transmit antennas
US6980600B1 (en) Receiver system for Multiple-Transmit, Multiple-Receive (MTMR) wireless communications systems
CN1437345A (en) Space-time iterative multiuser detecting algorithm based on soft sensitive bit and space grouping
US6985699B2 (en) Efficient and optimal channel encoding and channel decoding in a multiple access communications system
CN109818663A (en) A kind of low complex degree difference quadrature spatial modulation detection method

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
DD01 Delivery of document by public notice

Addressee: Huawei Technology Co Ltd

Document name: Notification to Pay the Fees

DD01 Delivery of document by public notice
DD01 Delivery of document by public notice

Addressee: Huawei Technologies Co., Ltd.

Document name: Notification of Termination of Patent Right

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040623

Termination date: 20161009