CN1407626A - Vertical Nitride ROM - Google Patents
Vertical Nitride ROM Download PDFInfo
- Publication number
- CN1407626A CN1407626A CN 01131319 CN01131319A CN1407626A CN 1407626 A CN1407626 A CN 1407626A CN 01131319 CN01131319 CN 01131319 CN 01131319 A CN01131319 A CN 01131319A CN 1407626 A CN1407626 A CN 1407626A
- Authority
- CN
- China
- Prior art keywords
- layer
- vertical
- memory cell
- horizontal portion
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 26
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 21
- 239000004065 semiconductor Substances 0.000 claims description 19
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 18
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 17
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 16
- 229920005591 polysilicon Polymers 0.000 claims description 16
- 229910044991 metal oxide Inorganic materials 0.000 claims description 10
- 150000004706 metal oxides Chemical class 0.000 claims description 10
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims 3
- 239000000377 silicon dioxide Substances 0.000 description 12
- 235000012239 silicon dioxide Nutrition 0.000 description 11
- 230000000694 effects Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- 239000002784 hot electron Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000002513 implantation Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910015900 BF3 Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- RJCRUVXAWQRZKQ-UHFFFAOYSA-N oxosilicon;silicon Chemical compound [Si].[Si]=O RJCRUVXAWQRZKQ-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- -1 phosphorus ions Chemical class 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Landscapes
- Non-Volatile Memory (AREA)
Abstract
Description
技术领域technical field
本发明是关于一种半导体器件的结构,特别是关于一种具有垂直结构的氮化物只读存储单元(Nitride Read-Only-Memory cell,NROMcell)。The present invention relates to the structure of a semiconductor device, in particular to a nitride read-only memory cell (Nitride Read-Only-Memory cell, NROM cell) with a vertical structure.
背景技术Background technique
公知的氮化物只读存储器件,在具有金属氧化物半导体晶体管存储器件中,利用例如是氧化硅-氮化硅-氧化硅层(ONO层)作为捕捉或陷入(Trap)电荷的介电层,再进行程序化的步骤,将热电子(HotElectrons)经过位于氮化硅层下方的氧化硅层隧穿(Tunneling)至氮化物层中,并通过氮化硅层的捕捉或陷入电荷的功能,而将电荷储存于氮化物层内,以完成资料的存储。更详细地说,是在对源极、漏极与栅极提供程序化电压来进行程序化的时候,位于信道区上方的氧化硅-氮化硅-氧化硅层受到程序化电压的影响,而使热电子穿过底层的氧化硅层收集在氮化物层内。Known nitride read-only memory devices, in memory devices with metal oxide semiconductor transistors, use, for example, a silicon oxide-silicon nitride-silicon oxide layer (ONO layer) as a dielectric layer for trapping or trapping (Trap) charges, Then, the programming step is carried out, and the hot electrons (HotElectrons) are tunneled into the nitride layer through the silicon oxide layer under the silicon nitride layer, and through the function of trapping or trapping charges of the silicon nitride layer, and Charges are stored in the nitride layer to complete data storage. In more detail, when the programming voltage is provided to the source, drain and gate for programming, the silicon oxide-silicon nitride-silicon oxide layer above the channel region is affected by the programming voltage, while Hot electrons are collected in the nitride layer through the underlying silicon oxide layer.
另外,在公知的技术中,氮化物层所收集的电荷集中于邻近源极/漏极的区域内,而且收集在氮化物层的电荷会增加信道区的启始电压(Threshold Voltage)。当存储单元内存在有集中电荷时(例如程序化后的存储单元),此存储单元会受到启始电压升高的影响,而使此存储单元在进行资料读取时,因读取电压低于启始电压而使信道区成为非传导区。反之,当在存储单元内没有集中电荷时,则会因读取电压会超过启始电压,而使信道区成为传导区。In addition, in the known technology, the charge collected by the nitride layer is concentrated in the region adjacent to the source/drain, and the charge collected in the nitride layer will increase the threshold voltage (Threshold Voltage) of the channel region. When there is a concentrated charge in the memory cell (such as a programmed memory cell), the memory cell will be affected by the rise of the initial voltage, so that when the memory cell is reading data, because the read voltage is lower than The initial voltage makes the channel region a non-conductive region. Conversely, when there is no charge concentrated in the memory cell, the channel region becomes a conduction region because the read voltage exceeds the threshold voltage.
公知的氮化物只读存储器件使用于只读存储器(read onlymemory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、可擦除可编程只读闪存(Flash EPROM)、可电除可编程只读存储器(Electrically Erasable Programmable ROM,EEPROM)、或可电除可编程只读闪存(Flash Electrically Erasable Programmable ROM,FlashEEPROM)的中。由于氮化物只读存储器件经由信道区而将热电子注入并陷于氮化物层中以进行存储单元的程序化,因此在传统的可程序只读存储器器件中,使用氮化物只读存储器件时,消除程序化所使用的时间会远大于程序化所使用的时间,进而使整体程序化与消除程序化的时间增加。Known nitride read-only memory devices are used in read-only memory (read only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (Erasable Programmable ROM, EPROM), erasable Flash EPROM, Electrically Erasable Programmable ROM (EEPROM), or Flash Electrically Erasable Programmable ROM (FlashEEPROM). Since the nitride read-only memory device injects and traps hot electrons into the nitride layer through the channel region to program the memory cell, in the traditional programmable read-only memory device, when using the nitride read-only memory device, Deprogramming takes much longer than procedural time, increasing overall procedural and deprogramming times.
另外,在公知的氮化物只读存储器件中,由于信道区位于栅极下方,因此在更快速、更小型化、更密集封包的集成电路设计需求下,信道区的长度将有随之逐渐缩短的趋势,以使器件的操作速度加快。然而,当信道区的长度缩短至一定程度之后,则会产生短信道效应(Short Channel Effects)及热电子效应(Hot Electron Effects),进而导致器件的电性失效的结果。In addition, in the known nitride read-only memory devices, since the channel region is located under the gate, the length of the channel region will be gradually shortened under the requirements of faster, smaller, and denser integrated circuit design. trend to speed up device operation. However, when the length of the channel region is shortened to a certain extent, short channel effects (Short Channel Effects) and hot electron effects (Hot Electron Effects) will occur, which will lead to electrical failure of the device.
发明内容Contents of the invention
本发明提供一种金属氧化物半导体晶体管结构,以在降低器件尺寸的同时,仍可维持较佳的器件特性。The invention provides a metal oxide semiconductor transistor structure, which can maintain better device characteristics while reducing the device size.
本发明提供一种氮化物只读存储器件结构,其中此氮化物只读存储器具有垂直结构,以使信道区沿着垂直方向分布,以有效地降低器件尺寸。The invention provides a nitride read-only memory device structure, wherein the nitride read-only memory has a vertical structure, so that the channel area is distributed along the vertical direction, so as to effectively reduce the size of the device.
本发明提供一种氮化物只读存储器件结构,其中位线沿着X方向分布,以更进一步地缩小器件尺寸。The invention provides a nitride read-only memory device structure, wherein the bit lines are distributed along the X direction, so as to further reduce the size of the device.
本发明提供一种氮化物只读存储器件结构,以通过增加信道区的长度而使器件的接合电容可以有效地降低的同时,可同时提高氮化物只读存储器件的性能及降低器件尺寸。The invention provides a nitride read-only memory device structure, which can effectively reduce the joint capacitance of the device by increasing the length of the channel region, and at the same time improve the performance of the nitride read-only memory device and reduce the size of the device.
为了达成上述目的,本发明提出一种垂直式的氮化物只读存储单元,其结构包括具有沟渠的基底、具有覆盖基底的水平部分以及嵌在沟渠中一端与水平部分邻接的垂直部分的栅极、位于栅极与基底之间的捕捉层、位于栅极垂直部分的另一端的基底中的第一源极/漏极区、以及位于沟渠边缘的基底中而且与栅极的垂直部分及水平部分连接的第二源极/漏极区。In order to achieve the above object, the present invention proposes a vertical nitride read-only memory cell, the structure of which includes a base with a trench, a horizontal portion covering the base, and a gate embedded in the trench with a vertical portion adjacent to the horizontal portion at one end. , a capture layer between the gate and the substrate, a first source/drain region in the substrate at the other end of the vertical portion of the gate, and a vertical and horizontal portion in the substrate at the edge of the trench and connected to the gate connected to the second source/drain region.
由上述可知,本发明的垂直式只读存储器件所需的面积远小于传统的水平式只读存储器件,因此,可得到具有高密集程度的存储器件。It can be known from the above that the required area of the vertical read-only memory device of the present invention is much smaller than that of the conventional horizontal read-only memory device, therefore, a highly dense memory device can be obtained.
由上述可知,本发明的信道区沿着垂直方向延伸,因此位线沿着X方向延伸,可更进一步缩小氮化物只读存储单元的尺寸。It can be known from the above that the channel region of the present invention extends along the vertical direction, so the bit line extends along the X direction, which can further reduce the size of the nitride read-only memory cell.
由上述可知,本发明的信道区沿着垂直方向延伸,因此信道区的长度可随着沟渠深度的调整而调整,进而有效地降低接合电容的需求。而且可在降低器件尺寸的同时,避免短信道效应的发生,进而有效地提升器件的稳定性。From the above, it can be seen that the channel region of the present invention extends along the vertical direction, so the length of the channel region can be adjusted with the adjustment of the trench depth, thereby effectively reducing the demand for junction capacitance. Moreover, while reducing the size of the device, the occurrence of the short channel effect can be avoided, thereby effectively improving the stability of the device.
由上述可知,本发明在降低接合电容的同时,可以有效地降低电阻-电容延迟时间(RC delay time),因此,可以有效地增加器件的操作速度,进而改善器件的性能。As can be seen from the above, the present invention can effectively reduce the resistance-capacitance delay time (RC delay time) while reducing the junction capacitance, therefore, can effectively increase the operating speed of the device, and then improve the performance of the device.
附图说明Description of drawings
图1至图6所示为本发明的一较佳实施例的垂直式的氮化物只读存储单元的制造过程的示意图。附图标记说明:1 to 6 are schematic diagrams of the manufacturing process of a vertical nitride read only memory cell according to a preferred embodiment of the present invention. Explanation of reference signs:
100:半导体基底100: Semiconductor substrate
102:沟渠102: Ditch
103:离子植入103: Ion implantation
104:第一源极/漏极区104: first source/drain region
106:第二源极/漏极区106: Second source/drain region
108:一般源极/漏极区108: General source/drain region
110,114:二氧化硅层110, 114: Silicon dioxide layer
112:氮化硅层112: Silicon nitride layer
116:栅极导体层116: Gate conductor layer
具体实施方式Detailed ways
本发明叙述垂直式的氮化物只读存储单元的结构与其制造方法。请参照图1所示,提供半导体基底100,并在半导体基底100中形成沟渠102。形成沟渠102的方法例如是使用传统微影蚀刻制作方法,较佳的蚀刻制作方法,例如是使用适合的电浆混合气体进行非等向性蚀刻。另外,也可以进行额外的处理,例如是利用稀薄H2O2溶液将基底100表面于非等向蚀刻制作过程中所形成的不必要的氧化物移除。另外,蚀刻制作方法也可以使用适当的湿式蚀刻剂进行湿式蚀刻。接着,进行信道区离子植入步骤(未显示),以调整启始电压。例如是使用斜角植入技术的信道区离子植入的方法,利用介于3×1011离子/平方厘米至5×1013离子/平方公分厘米的剂量及介于5KeV至50KeV之间的能量,将诸如硼或者氟化硼离子植入NMOS器件中,或是将诸如砷或者磷离子植入PMOS器件中。The invention describes the structure and manufacturing method of the vertical nitride read-only memory unit. Referring to FIG. 1 , a
接着,请参照图2所示,进行离子植入103,以在沟渠边缘的基底中形成第一源极/漏极区104与第二源极/漏极区106,以及在沟渠102的底部基底中形成一般源极/漏极区108。源极/漏极区104、106、108的植入方法例如是使用介于5×1012离子/平方厘米至2×1016离子/平方厘米之间的剂量以及介于5KeV至80KeV之间的能量,进行氟化硼、砷或磷离子的植入。另外,在形成源极/漏极区104、106、108之后,进行一热处理,以在10秒(快速热反应(RTA),高温)至60分钟(低温)之间,将器件加热至摄氏800度至摄氏1100度之间,以使所植入的掺质活性化。Next, referring to FIG. 2 , ion implantation 103 is performed to form a first source/
接着,请参照图3至图5所示,在基底与沟渠之上形成捕捉层。如图5所示,例如是由二氧化硅层110-氮化硅层112-二氧化硅层114所构成的捕捉层,形成于基底100与沟渠102(如图1所示)之上。请参照图3所示,在低温氧化操作之下,在基底100与沟渠102(如图1所示)之上形成厚度为50埃至150埃之间的底二氧化硅层110,且底二氧化硅层110的较佳厚度为80埃左右。氧化温度介于摄氏750度至摄氏1000度之间,较佳为摄氏800度左右。Next, as shown in FIGS. 3 to 5 , a capture layer is formed on the substrate and the trench. As shown in FIG. 5 , for example, a capture layer composed of silicon dioxide layer 110 -silicon nitride layer 112 -
接着,请参照图4所示,使用化学气相沉积法,在底二氧化硅层110上覆盖一层厚度介于20埃至150埃之间的氮化硅层112,氮化硅层112的较佳厚度为100埃左右。另外形成氮化硅层112的方法虽以化学气相沉积法为例进行说明,然而并不是以此为限,也可以改用其它沉积法。Next, as shown in FIG. 4 , a
接着,请参照图5所示,利用热氧化法,在氮化硅层112之上形成一顶二氧化硅层114。形成顶二氧化硅层114的方法,虽然以热氧化法为例进行说明,然而并不是以此为限,也可以改用沉积法或结合法。需要注意的是,利用热氧化法形成顶二氧化硅层114期间,会消耗部分氮化硅层112,且氮化硅层112的消耗厚度为顶二氧化硅层114的形成厚度的一半。因此,如果顶二氧化硅层114的预定形成厚度为100埃时,则氮化硅层112的厚度至少比最后所需的氮化硅层112的厚度多50埃,以通过消耗额外的氮化硅而形成顶二氧化硅层114。另外,顶二氧化硅层114的较佳厚度系为50埃至150埃。Next, as shown in FIG. 5 , a top
接着,请参照图6所示,在基底100之上,覆盖一层栅极导体层116,并填满沟渠102(如第1图所示)。栅极导体层116例如是掺杂多晶硅层。栅极导体层116的形成方法例如是利用低压化学气相沉积法(low pressure chemical vapor deposition,LPCVD),在基底上覆盖一层未掺杂多晶硅层,再将活性掺质植入未掺杂多晶硅层中,以形成掺杂多晶硅层。Next, please refer to FIG. 6 , on the
由上述垂直式氮化物只读存储器晶体管可得知,垂直式只读存储器件所需的面积远小于传统的水平式结构晶体管。再由现行的设计法则可知,具有较小需求面积的器件将可更进一步地提升器件的密集度而得到高密集程度的电路器件。因此,使用本发明的垂直式氮化物只读存储器,可得到高密集程度的存储器件。From the foregoing vertical nitride ROM transistors, it can be known that the required area of the vertical ROM device is much smaller than that of the traditional horizontal structure transistor. Furthermore, it can be seen from the current design rules that a device with a smaller required area can further increase the density of the device to obtain a highly dense circuit device. Therefore, using the vertical nitride read-only memory of the present invention, a highly dense storage device can be obtained.
由上述垂直式氮化物只读存储器晶体管可得知,由于信道区沿着垂直方向延伸,因此位线沿着X方向延伸,故可更进一步缩小氮化物只读存储单元的尺寸。It can be seen from the above vertical NROM transistor that since the channel region extends along the vertical direction, the bit line extends along the X direction, so the size of the NROM cell can be further reduced.
由上述垂直式氮化物只读存储器晶体管可得知,由于信道区沿着垂直方向延伸,因此信道区的长度可随着沟渠深度的调整而调整,进而有效地降低接合电容的需求。且可在降低器件尺寸的同时,避免短信道效应的发生,进而有效地提升器件的稳定性。It can be seen from the vertical nitride ROM transistor above that since the channel region extends along the vertical direction, the length of the channel region can be adjusted with the adjustment of the trench depth, thereby effectively reducing the requirement of junction capacitance. Moreover, while reducing the size of the device, the occurrence of the short channel effect can be avoided, thereby effectively improving the stability of the device.
由上述可知,本发明降低接合电容的同时,可以有效地降低电阻-电容延迟时间。因此可以有效地增加器件的操作速度,进而改善器件的性能。From the above, it can be known that the present invention can effectively reduce the resistance-capacitance delay time while reducing the junction capacitance. Therefore, the operating speed of the device can be effectively increased, thereby improving the performance of the device.
虽然在本较佳实施例中是以氮化物只读存储器晶体管进行说明,然而本发明并不限定于此,在不脱离本发明的精神和范围内,也可以适用于其它金属氧化物半导体晶体管的制造。Although a nitride read-only memory transistor is used for illustration in this preferred embodiment, the present invention is not limited thereto, and can also be applied to other metal-oxide-semiconductor transistors without departing from the spirit and scope of the present invention. manufacture.
虽然本发明已以一较佳实施例公开如上,然并非用以来限定本发明,在不脱离本发明的精神和范围内,可作各种的更动与润饰。也可以依据本发明的权利要求所界定的精神和范围作各种的更动与润饰。所有在本发明中所使用的实施例与附图仅用来对本发明进行说明,并不以此为限。Although the present invention has been disclosed above with a preferred embodiment, it is not intended to limit the present invention, and various modifications and modifications can be made without departing from the spirit and scope of the present invention. Various changes and modifications can also be made according to the spirit and scope defined by the claims of the present invention. All the embodiments and drawings used in the present invention are only used to illustrate the present invention and are not limited thereto.
Claims (26)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 01131319 CN1407626A (en) | 2001-09-06 | 2001-09-06 | Vertical Nitride ROM |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 01131319 CN1407626A (en) | 2001-09-06 | 2001-09-06 | Vertical Nitride ROM |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1407626A true CN1407626A (en) | 2003-04-02 |
Family
ID=4670503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 01131319 Pending CN1407626A (en) | 2001-09-06 | 2001-09-06 | Vertical Nitride ROM |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1407626A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1326233C (en) * | 2003-08-22 | 2007-07-11 | 南亚科技股份有限公司 | Multi-bit vertical memory cell and manufacturing method thereof |
CN100343980C (en) * | 2004-03-29 | 2007-10-17 | 力晶半导体股份有限公司 | Non-volatile memory element and manufacturing method thereof |
CN100362664C (en) * | 2004-03-26 | 2008-01-16 | 力晶半导体股份有限公司 | non-volatile memory unit and its manufacturing method |
CN101385087B (en) * | 2005-12-22 | 2012-01-11 | Nxp股份有限公司 | SONOS memory device with reduced short-channel effects |
-
2001
- 2001-09-06 CN CN 01131319 patent/CN1407626A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1326233C (en) * | 2003-08-22 | 2007-07-11 | 南亚科技股份有限公司 | Multi-bit vertical memory cell and manufacturing method thereof |
CN100362664C (en) * | 2004-03-26 | 2008-01-16 | 力晶半导体股份有限公司 | non-volatile memory unit and its manufacturing method |
CN100343980C (en) * | 2004-03-29 | 2007-10-17 | 力晶半导体股份有限公司 | Non-volatile memory element and manufacturing method thereof |
CN101385087B (en) * | 2005-12-22 | 2012-01-11 | Nxp股份有限公司 | SONOS memory device with reduced short-channel effects |
US8525250B2 (en) | 2005-12-22 | 2013-09-03 | Nxp B.V. | SONOS memory device with reduced short-channel effects |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6486028B1 (en) | Method of fabricating a nitride read-only-memory cell vertical structure | |
CN101325200B (en) | Memory cell and method for manufacturing the same | |
US6468864B1 (en) | Method of fabricating silicon nitride read only memory | |
JP2787908B2 (en) | Method for manufacturing semiconductor device | |
CN101071815A (en) | Semiconductor device and a method of manufacturing the same | |
KR100949231B1 (en) | Nonvolatile Semiconductor Memory Device and Manufacturing Method Thereof | |
CN1610100A (en) | Manufacturing method of non-volatile memory device | |
CN1220274C (en) | Self-aligned non-volatile memory cell | |
JP2009527900A (en) | Method of manufacturing an integrated circuit with embedded non-volatile memory | |
CN1260788C (en) | Method for forming high voltage junction in semiconductor device | |
CN1407626A (en) | Vertical Nitride ROM | |
CN1240127C (en) | Method for manufacturing vertical nitride read-only memory cell | |
KR100576503B1 (en) | Gate oxide film formation method of a semiconductor device | |
US6140246A (en) | In-situ P doped amorphous silicon by NH3 to form oxidation resistant and finer grain floating gates | |
CN1293617C (en) | Non-volatile memory with source side boron implantation | |
CN1428847A (en) | Manufacturing method for raising new property of semiconductor element | |
CN1848390A (en) | Method for making polysilicon gate transistors with reduced polysilicon depletion effect | |
US7307024B2 (en) | Flash memory and fabrication method thereof | |
CN119653781B (en) | Semiconductor device and method for manufacturing the same | |
US7118965B2 (en) | Methods of fabricating nonvolatile memory device | |
CN111712900A (en) | Floating gate spacers for controlling source region formation in memory cells | |
CN1259714C (en) | Method for fabricating non-volatile memory with shallow junctions | |
TW506084B (en) | Vertical nitride read only memory cell | |
CN1420541A (en) | Method for making a system integrated chip | |
CN1420553A (en) | A method of making an embedded memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |