CN1363629A - Process for preparing electrically conductive high-molecular composite material by in-situ graft to modify electrically conductive filler - Google Patents
Process for preparing electrically conductive high-molecular composite material by in-situ graft to modify electrically conductive filler Download PDFInfo
- Publication number
- CN1363629A CN1363629A CN 02114762 CN02114762A CN1363629A CN 1363629 A CN1363629 A CN 1363629A CN 02114762 CN02114762 CN 02114762 CN 02114762 A CN02114762 A CN 02114762A CN 1363629 A CN1363629 A CN 1363629A
- Authority
- CN
- China
- Prior art keywords
- conductive filler
- matrix
- composite material
- polymer
- electrically conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011231 conductive filler Substances 0.000 title claims abstract description 41
- 239000002131 composite material Substances 0.000 title claims abstract description 33
- 238000011065 in-situ storage Methods 0.000 title abstract description 6
- 238000004519 manufacturing process Methods 0.000 title abstract description 4
- 239000011159 matrix material Substances 0.000 claims abstract description 42
- 229920000642 polymer Polymers 0.000 claims abstract description 33
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 17
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 15
- 239000006229 carbon black Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 9
- 239000000178 monomer Substances 0.000 claims description 8
- 239000003999 initiator Substances 0.000 claims description 6
- 229920001169 thermoplastic Polymers 0.000 claims description 6
- -1 methyl acrylic ester Chemical class 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 239000003112 inhibitor Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 3
- 229910001431 copper ion Inorganic materials 0.000 claims description 3
- 239000003063 flame retardant Substances 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 238000009775 high-speed stirring Methods 0.000 claims description 3
- 239000000314 lubricant Substances 0.000 claims description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 2
- 239000000945 filler Substances 0.000 claims description 2
- 229920002521 macromolecule Polymers 0.000 claims 3
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 claims 1
- 239000012752 auxiliary agent Substances 0.000 claims 1
- 238000007599 discharging Methods 0.000 claims 1
- 239000012458 free base Substances 0.000 claims 1
- 239000012764 mineral filler Substances 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 239000004033 plastic Substances 0.000 claims 1
- 239000003381 stabilizer Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 15
- 230000000694 effects Effects 0.000 abstract description 7
- 238000012545 processing Methods 0.000 abstract description 6
- 230000003993 interaction Effects 0.000 abstract description 5
- 229920001940 conductive polymer Polymers 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 239000000758 substrate Substances 0.000 abstract description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 11
- 229920001684 low density polyethylene Polymers 0.000 description 11
- 239000004702 low-density polyethylene Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 9
- 239000005038 ethylene vinyl acetate Substances 0.000 description 8
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000004132 cross linking Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 6
- 229920000459 Nitrile rubber Polymers 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 5
- 229920001903 high density polyethylene Polymers 0.000 description 5
- 239000004700 high-density polyethylene Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 4
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000004709 Chlorinated polyethylene Substances 0.000 description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 238000010382 chemical cross-linking Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 2
- 239000012760 heat stabilizer Substances 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 239000004611 light stabiliser Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
Abstract
本发明公开了一种由原位接枝方法改性导电性填料填充单一或共混高分子基体制造的具有正温度系数(PTC)特征的导电高分子复合材料。本发明采用加入可反应性处理剂的方法对导电填料进行预处理,在加工过程中实现导电填料与处理剂和高分子基体的化学接枝反应,从而改善导电填料与高分子基体的相互作用,改善基体、导电填料与金属电极之间的粘结,最终达到改善复合材料的PTC效应及其稳定性的目的,为制造自限温加热器和过电流保护元件等提供基材。The invention discloses a conductive polymer composite material with positive temperature coefficient (PTC) characteristics produced by filling a single or blended polymer matrix with a modified conductive filler by an in-situ grafting method. The present invention adopts the method of adding a reactive treatment agent to pretreat the conductive filler, and realizes the chemical grafting reaction of the conductive filler, the treatment agent and the polymer matrix during the processing, thereby improving the interaction between the conductive filler and the polymer matrix. Improve the bonding between the matrix, the conductive filler and the metal electrode, and finally achieve the purpose of improving the PTC effect and stability of the composite material, and provide a substrate for the manufacture of self-limiting temperature heaters and overcurrent protection components.
Description
技术领域Technical field
本发明涉及采用原位接枝的方法改性导电填料填充高分子或其共混物树脂基体所构成的具有正温度系数特征(PTC)的导电高分子复合材料。The invention relates to a conductive polymer composite material with a positive temperature coefficient (PTC) which is formed by modifying a conductive filler to fill a polymer or a resin matrix of a blend thereof by using an in-situ grafting method.
背景技术 Background technique
用未改性的导电性填料如炭黑等填充单一高分子基体所构成的具有正温度系数特征的导电高分子复合材料,具有在较大范围内可调的导电性能、易于成型、可曲挠、成本低及PTC强度高(≥105)等特点(参见:US4,514,620;US4,732,701;US5,164,133;CN87102932;CN87102924)。在此基础上,采用未改性的导电性填料填充共混高分子基体所构成的PTC复合材料(中国专利申请:CN97108956),使复合材料的PTC效应稳定性得到改善,综合机械性能,尤其是曲挠性显著提高。A conductive polymer composite material with positive temperature coefficient characteristics composed of a single polymer matrix filled with unmodified conductive fillers such as carbon black, has adjustable conductivity in a wide range, easy to shape, and flexible , low cost and high PTC strength (≥10 5 ), etc. (see: US4,514,620; US4,732,701; US5,164,133; CN87102932; CN87102924). On this basis, the PTC composite material (Chinese patent application: CN97108956) composed of a blended polymer matrix is filled with an unmodified conductive filler, so that the stability of the PTC effect of the composite material is improved, and the comprehensive mechanical properties, especially Flexibility is significantly improved.
但是,由于基体与未改性的导电填料如炭黑粒子之间的界面相互作用较弱,而分散在基体中的炭黑粒子又具有较强的附聚力,因此炭黑粒子在基体中的分散是热力学不稳定的。PTC型复合材料的PTC效应主要取决于炭黑在高分子基体中的分散程度和分布状态及其随外部条件(氧化降解与交联、局部过热、电场、光和机械应力的作用)变化的结果,未改性的导电填料填充无论是单一的还是共混的高分子基体,所得复合材料的PTC效应稳定性都不是很理想。在实际使用过程前,还需要对复合材料进行交联,改善电阻温度行为的复演性,消除负电阻温度系数(NTC)现象。通常的交联的方法有化学交联,辐照交联或硅烷交联等,虽然它们对改善材料电性能有很大帮助,但实际应用中也存在着一些问题:首先是交联对工艺或设备有较高的要求,例如,化学交联对加工工艺的要求很严,在加工过程中很难控制,辐照交联则要求有高能辐照源,这是一般工厂所不具备的。另外,交联对复合材料的力学性能也有损害。However, due to the weak interfacial interaction between the matrix and unmodified conductive fillers such as carbon black particles, and the carbon black particles dispersed in the matrix have strong agglomeration force, the carbon black particles in the matrix The dispersion is thermodynamically unstable. The PTC effect of PTC composites mainly depends on the degree of dispersion and distribution of carbon black in the polymer matrix and the results of changes with external conditions (oxidative degradation and crosslinking, local overheating, electric field, light and mechanical stress) , the stability of the PTC effect of the resulting composites is not very ideal whether the unmodified conductive filler is filled with a single or blended polymer matrix. Before the actual use process, it is also necessary to cross-link the composite material to improve the reproducibility of the resistance temperature behavior and eliminate the negative temperature coefficient of resistance (NTC) phenomenon. The usual cross-linking methods include chemical cross-linking, radiation cross-linking or silane cross-linking, etc. Although they are of great help to improve the electrical properties of materials, there are also some problems in practical applications: firstly, cross-linking has great influence on the process or Equipment has high requirements. For example, chemical cross-linking has strict requirements on processing technology and is difficult to control during processing. Radiation cross-linking requires high-energy radiation sources, which are not available in general factories. In addition, crosslinking can also damage the mechanical properties of composites.
发明内容Contents of Invention
本发明的目的是提供一种采用原位接枝的方法制造的聚合物基PTC导电复合材料,其导电填料与高分子基体的界面作用得到增强,具有较高的PTC效应及其复演稳定性和加工性能稳定性,并提高了基体与金属电极间的粘结性,从而克服了现有PTC复合材料所存在的上述不足,为制造自限温加热器和过电流保护元件等提供良好的基材。The purpose of the present invention is to provide a polymer-based PTC conductive composite material manufactured by an in-situ grafting method, the interface interaction between the conductive filler and the polymer matrix is enhanced, and it has a higher PTC effect and its recurrence stability and processing performance stability, and improve the adhesion between the substrate and the metal electrode, thereby overcoming the above-mentioned shortcomings of the existing PTC composite materials, and providing a good basis for the manufacture of self-limiting temperature heaters and overcurrent protection components. material.
本发明的具有正温度系数的导电复合材料,含有结晶性高分子基体A1,导电填料B,和其它助剂C,取高分子基体A1重量为100%,复合材料中各组分相对于基体的配比为:The conductive composite material with positive temperature coefficient of the present invention contains crystalline polymer matrix A1, conductive filler B, and other additives C, taking the weight of polymer matrix A1 as 100%, and the weight of each component in the composite material relative to the matrix The ratio is:
A1: 100wt%(A1)A1: 100wt% (A1)
B: 5-40wt%(A1)B: 5-40wt% (A1)
C: 1-15wt%(A1)C: 1-15wt% (A1)
其中A1为结晶度大于15%的热塑性高分子,B为平均粒径10-200nm的炭黑、石墨、金属或金属氧化物粉末,C为润滑剂、抗氧剂、光稳定剂、铜离子抑制剂、热稳定剂、阻燃剂和无机填料中的一种或两种以上的混合物;其特征是所说的导电填料B是经过以下预处理的导电填料:将未改性的导电填料加入反应装置中,在高速搅拌下缓慢加入反应性处理剂,搅拌均匀后出料,密闭条件下放置备用;所用反应性处理剂为丙烯酸、甲基丙烯酸、丙烯酸酯及甲基丙烯酸酯类或马来酸酐单体与过氧化物、偶氮类自由基引发剂的混合物,单体量为填料重量的10-50wt%,所用自由基引发剂的用量为单体用量的0.1-5wt%。Among them, A1 is a thermoplastic polymer with a crystallinity greater than 15%, B is carbon black, graphite, metal or metal oxide powder with an average particle size of 10-200nm, and C is a lubricant, antioxidant, light stabilizer, copper ion inhibitor agent, heat stabilizer, flame retardant and inorganic filler or a mixture of two or more; it is characterized in that said conductive filler B is a conductive filler that has undergone the following pretreatment: adding unmodified conductive filler to the reaction In the device, slowly add the reactive treatment agent under high-speed stirring, discharge the material after stirring evenly, and store it under airtight conditions for later use; the reactive treatment agent used is acrylic acid, methacrylic acid, acrylate and methacrylate or maleic anhydride The mixture of monomers, peroxides and azo free radical initiators, the amount of monomers is 10-50 wt% of the weight of the filler, and the amount of free radical initiators used is 0.1-5 wt% of the monomers.
本发明的复合材料还可含有第二高分子基体A2,A2与A1构成共混基体;A2为与A1相容或部分相容的结晶性或无定形热塑性高分子;取高分子基体(A1+A2)为100,复合材料中各组分相对基体的配比为:The composite material of the present invention can also contain the second polymer matrix A2, and A2 and A1 form a blended matrix; A2 is a crystalline or amorphous thermoplastic polymer that is compatible or partially compatible with A1; the polymer matrix (A1+ A2) is 100, and the ratio of each component relative to the matrix in the composite material is:
A1: 50-95wt%(A1+A2)A1: 50-95wt% (A1+A2)
A2: 5-50wt%(A1+A2)A2: 5-50wt% (A1+A2)
B: 5-40wt%(A1+A2)B: 5-40wt% (A1+A2)
C: 1-15wt%(A1+A2)C: 1-15wt% (A1+A2)
本发明的上述复合材料所用的导电填料B通常为平均粒径15-100nm的导电炭黑(最好为油炉法造粒导电炭黑)。The conductive filler B used in the composite material of the present invention is usually conductive carbon black with an average particle size of 15-100 nm (preferably oil furnace granulated conductive carbon black).
本发明的具有正温度系数的导电复合材料所采用的原位接枝的加工方法,是通过在加工前对导电填料用反应性组分(含双键的化合物和自由基聚合引发剂)进行预处理,然后在与高分子材料进行混炼过程中实现对导电填料表面进行化学接枝改性。例如用丙烯酸(AA)和过氧化二异丙苯(DCP),按一定比例对炭黑进行处理,然后将其按一定顺序和比例与高分子基体加到混炼设备混炼,在此过程中DCP分解引发AA对炭黑表面的化学接枝反应,同时与聚合物基体间实现化学键合作用,AA在导电填料与聚合物基体之间起到了桥梁作用,将导电填料以以化学键连接到聚合物基体上,从而调节导电填料与导电填料、导电填料与高分子基体之间的界面相互作用力的平衡,以降低炭黑离子的运动能力,限制其运动区域,从本质上控制导电填料的的分散程度与分布状态,并使其回复重现性提高。The in-situ grafting processing method adopted by the conductive composite material with a positive temperature coefficient of the present invention is to pre-process the conductive filler with reactive components (compounds containing double bonds and free radical polymerization initiators) before processing. The surface of the conductive filler is chemically grafted and modified during the mixing process with the polymer material. For example, carbon black is treated with acrylic acid (AA) and dicumyl peroxide (DCP) in a certain proportion, and then mixed with the polymer matrix in a certain order and proportion to the mixing equipment. The decomposition of DCP triggers the chemical grafting reaction of AA on the surface of carbon black, and at the same time achieves chemical bonding with the polymer matrix. AA acts as a bridge between the conductive filler and the polymer matrix, connecting the conductive filler to the polymer with chemical bonds. On the matrix, so as to adjust the balance of the interface interaction force between the conductive filler and the conductive filler, the conductive filler and the polymer matrix, so as to reduce the mobility of carbon black ions, limit their movement area, and essentially control the dispersion of the conductive filler The degree and distribution state, and improve the reproducibility of the response.
本发明对结晶性高分子A1无特殊限制,凡结晶度大于15%的热塑性高分子均可以使用,如:高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)、线型低密度聚乙烯(LLDPE)、聚偏氟乙烯(PVDF)、等规聚丙烯(IPP)、乙烯—丙烯共聚物(EPM)、乙烯—乙酸乙烯酯共聚物(EVA)、乙烯—丙烯酸乙酯共聚物(EEA)、聚酰胺(PA)、聚碳酸酯(PC)、聚砜(PSF)和热塑性聚酯。第二高分子A2是与结晶性高分子(A1)相容或部分相容的结晶性或无定形热塑性高分子;视结晶性高分子的不同,第二高分子A2最好是含有极性链段或官能团的热塑性弹性体,具有比结晶性高分子更好的韧性、抗曲挠和抗应力开裂性,如:乙烯—乙酸乙烯酯共聚物(EVA)、乙烯—丙烯酸乙酯共聚物(EEA)、乙烯—顺丁烯二酸酐共聚物(EMA)、氯化聚乙烯(CPE)等,以及各种橡胶,如:天然橡胶(NR)、丁腈胶(NBR)等;无定形树脂可以是聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚碳酸酯(PC)以及聚砜等。The present invention has no special restrictions on crystalline polymer A1, and all thermoplastic polymers with crystallinity greater than 15% can be used, such as: high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyvinylidene fluoride (PVDF), isotactic polypropylene (IPP), ethylene-propylene copolymer (EPM), ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA) , polyamide (PA), polycarbonate (PC), polysulfone (PSF) and thermoplastic polyester. The second polymer A2 is a crystalline or amorphous thermoplastic polymer that is compatible or partially compatible with the crystalline polymer (A1); depending on the crystalline polymer, the second polymer A2 preferably contains a polar chain Thermoplastic elastomers with segments or functional groups have better toughness, flex resistance and stress crack resistance than crystalline polymers, such as: ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA ), ethylene-maleic anhydride copolymer (EMA), chlorinated polyethylene (CPE), etc., and various rubbers, such as: natural rubber (NR), nitrile rubber (NBR), etc.; amorphous resins can be Polymethyl methacrylate (PMMA), polystyrene (PS), polycarbonate (PC) and polysulfone, etc.
导电性填料一般是粉末状,如:炭黑、石墨、金属或金属氧化物粉末。上述导电性填料可以单独使用,也可不同种类、不同粒径混合使用。导电粉末的粒径,通常具有平均粒径10-200nm。在加工前需要对导电填料进行预处理。Conductive fillers are generally in powder form, such as: carbon black, graphite, metal or metal oxide powder. The above-mentioned conductive fillers can be used alone, or mixed with different types and different particle sizes. The particle size of the conductive powder usually has an average particle size of 10-200 nm. Conductive fillers need to be pretreated before processing.
对导电填料的预处理步骤及工艺条件如下:将未改性的导电填料加入反应装置中,在高速搅拌下缓慢加入反应性处理剂,搅拌均匀后出料,密闭条件下放置备用。所用反应性处理剂为丙烯酸(AA)、甲基丙烯酸、丙烯酸乙酯(EA)、丙烯酸丁酯(BA)、丙烯酸异辛酯(2-EHA)、及甲基丙烯酸酯类或马来酸酐(MA)等与过氧化物、偶氮类自由基引发剂的混合物,单体量为炭黑重量的10-50wt%,所用自由基引发剂的量为单体用量的0.1-5wt%(最好为0.2-2wt%)。The pretreatment steps and process conditions for the conductive filler are as follows: add the unmodified conductive filler into the reaction device, slowly add the reactive treatment agent under high-speed stirring, discharge the material after stirring evenly, and place it under airtight conditions for later use. The reactive treatment agent used is acrylic acid (AA), methacrylic acid, ethyl acrylate (EA), butyl acrylate (BA), isooctyl acrylate (2-EHA), and methacrylates or maleic anhydride ( MA) etc. and the mixture of peroxide, azo free radical initiator, monomer amount is 10-50wt% of carbon black weight, the amount of free radical initiator used is 0.1-5wt% of monomer consumption (preferably 0.2-2wt%).
此外,还可以加入适量的其他助剂,如:润滑剂、抗氧剂、光稳定剂、铜离子抑制剂、热稳定剂、阻燃剂、无机填料等来调节PTC材料的综合性能。In addition, appropriate amount of other additives can be added, such as: lubricants, antioxidants, light stabilizers, copper ion inhibitors, heat stabilizers, flame retardants, inorganic fillers, etc. to adjust the overall performance of PTC materials.
本发明复合材料是将高分子基体A1或A1+A2,预处理后的导电填料B以及其他助剂C经混炼、造粒/破碎、成型、热处理等步骤制造而成,具体步骤及工艺条件如下:The composite material of the present invention is produced by polymer matrix A1 or A1+A2, pretreated conductive filler B and other additives C through steps such as mixing, granulation/crushing, molding, and heat treatment. The specific steps and process conditions as follows:
①混炼:将各组分原料按一定比例加入到混炼设备中,在不低于基体的熔点或软化点的混炼温度混炼5-60分钟,混炼设备的滚筒或螺杆转速为20-80rpm;① Mixing: Add the raw materials of each component into the mixing equipment in a certain proportion, and mix for 5-60 minutes at a mixing temperature not lower than the melting point or softening point of the matrix. The drum or screw speed of the mixing equipment is 20 -80rpm;
②造粒/破碎:将上述混合物料用造粒机或粉碎机破碎后,得到复合材料粒料;②Granulation/crushing: After crushing the above-mentioned mixed material with a granulator or a pulverizer, composite material granules are obtained;
③成型:根据产品形状的的需要将上述粒料通过模压、挤出或注射成型等技术成型;③ Molding: according to the shape of the product, the above-mentioned pellets are molded by molding, extrusion or injection molding;
④热处理:成型后的PTC复合材料在低于高分子基体熔点25-30℃的温度下处理5-15小时,得到产品复合材料。④Heat treatment: The molded PTC composite material is treated for 5-15 hours at a temperature 25-30°C lower than the melting point of the polymer matrix to obtain the product composite material.
本发明按照上述物料组成配方及制造工艺制备的PTC导电高分子复合材料,室温电阻率在103-106Ω.cm,PTC强度>103,并且能有效地抑制NTC效应,复合材料电阻率发生跃迁的温度可以在50-160℃范围内调节。由于采用原位接枝的方法对导电填料和基体树脂同时进行了改性,调节了导电填料与高分子基体的界面相互作用力,使得导电填料发生微观的选择性分散,加上改性剂的润滑作用等的协同效果,导致复合材料的PTC强度、PTC效应重复稳定性能显著提高,电阻率跃迁的范围变窄。 The present invention prepares the PTC conductive polymer composite material according to the above -mentioned material composition formula and manufacturing process . The temperature at which the transition occurs can be adjusted in the range of 50-160°C. Due to the simultaneous modification of the conductive filler and the matrix resin by the method of in-situ grafting, the interfacial interaction force between the conductive filler and the polymer matrix is adjusted, so that the conductive filler is microscopically selectively dispersed, and the addition of the modifier The synergistic effect of lubrication and the like leads to a significant increase in the PTC strength and PTC effect repetition stability of the composite material, and narrows the range of resistivity transition.
本发明的PTC材料可作为电热器的发热材料,具有良好的热传导性,产生的焦耳热分布均匀,自限温调节特性良好,连续工作和间歇工作寿命(反复通电加热断电冷却循环)长(>5000h)。The PTC material of the present invention can be used as a heating material for an electric heater, has good thermal conductivity, produces Joule heat that is evenly distributed, has good self-limiting temperature adjustment characteristics, and has a long continuous and intermittent working life (repeated power-on heating and power-off cooling cycle) ( >5000h).
附图说明Description of drawings
图1是实施例2、实施例3和比较例1复合材料的室温电阻率ρ25随热循环次数的变化的关系曲线。Fig. 1 is the relationship curve of the room temperature resistivity p 25 of the composite material of
图2是比较例1复合材料在多次热循环条件下的电阻率ρ随温度T变化的关系曲线。Fig. 2 is the relationship curve of the resistivity ρ changing with the temperature T of the composite material of Comparative Example 1 under the condition of multiple heat cycles.
图3是实施例3复合材料在多次热循环条件下的电阻率ρ随温度T变化的关系曲线。Fig. 3 is the relationship curve of the resistivity ρ varying with the temperature T of the composite material of Example 3 under the condition of multiple heat cycles.
具体实施方式 Detailed ways
以下通过实施例及附图对本发明作进一步的说明。The present invention will be further described below through embodiments and accompanying drawings.
实施例1-11按前述各具体步骤和工艺条件制造PTC导电复合材料,比较例1-4除导电填料未经处理外,其他步骤和工艺条件均同实施例。以下表1、表2为实施例和比较例中使用的各组分原料的性质,表3为各实施例和比较例中组分原料的投料量(按重量比),表4为各实施例和比较例的产品复合材料的性能。Examples 1-11 manufactured PTC conductive composite materials according to the above-mentioned specific steps and process conditions, and Comparative Examples 1-4 except that the conductive filler was not treated, other steps and process conditions were the same as in the examples. Following table 1, table 2 are the character of each component raw material used in embodiment and comparative example, and table 3 is the charging amount (by weight) of component raw material in each embodiment and comparative example, and table 4 is each embodiment And the performance of the product composite material of comparative example.
表1高分子基体性质种类 品名 熔体指数 熔点 密度 生产厂家Table 1 Types of polymer matrix properties Product name Melt index Melting point Density Manufacturer
(g/10min) (℃) (g/cm3)结晶性高分子 LDPE 0.3-0.7 100-115 0.910-0.925 北京燕山石化公司(A1) HDPE 0.2-0.8 130-140 0.920-0.945(g/10min) (°C) (g/cm 3 ) Crystalline polymer LDPE 0.3-0.7 100-115 0.910-0.925 Beijing Yanshan Petrochemical Company (A1) HDPE 0.2-0.8 130-140 0.920-0.945
PVDF 0.1-0.5 180-195第二高分子 EVA 2.0-15.0 80-95 0.930-0.980 日本三菱油化公司(A2) (VAC含量PVDF 0.1-0.5 180-195 second polymer EVA 2.0-15.0 80-95 0.930-0.980 Mitsubishi Petrochemical Corporation (A2) (VAC content
10-40%)10-40%)
NBR(AN含 兰州化学工业公司NBR (with AN
量15-50%)Quantity 15-50%)
表2导电填料性质(炭黑)平均粒径 比表面积 DBP吸收值 真密度 表面元素含量比 生产厂家(nm) (m2/g) (ml/100mg) (g/cm3) [O]/[C]15-70 150-300 120-125 1.90 0.0277 中橡集团自贡Table 2 Conductive filler properties (carbon black) Average particle size Specific surface area DBP absorption value True density Surface element content ratio Manufacturer (nm) (m 2 /g) (ml/100mg) (g/cm 3 ) [O]/[ C]15-70 150-300 120-125 1.90 0.0277 China Rubber Group Zigong
炭黑研究院Carbon Black Research Institute
表3 PTC材料组成配比Table 3 PTC material composition ratio
A1/A2 B C 处理剂实施例1 LDPE 25 3.2 AAA1/A2 B B C C Treatment Agent Example 1 LDPE 25 3.2 AA
100 2.5实施例2 LDPE 25 3.2 AA100 2.5 Example 2 LDPE 25 3.2 AA
100 5实施例3 LDPE 25 3.2 AA100 5 Example 3 LDPE 25 3.2 AA
100 7.5实施例4 LDPE/EVA 25 3.2 AA100 7.5 Example 4 LDPE/EVA 25 3.2 AA
80/20 7.5实施例5 LDPE 25 3.2 AA80/20 7.5 Example 5 LDPE 25 3.2 AA
100 12.5实施例6 HDPE/NBR 30 3.2 AA100 12.5 Example 6 HDPE/NBR 30 3.2 AA
80/20 9实施例7 PVDF 30 3.2 AA80/20 9 Example 7 PVDF 30 3.2 AA
100 9实施例8 LDPE 25 3.2 BA100 9 Example 8 LDPE 25 3.2 BA
100 7.5实施例9 LDPE/EVA 25 3.2 BA100 7.5 Example 9 LDPE/EVA 25 3.2 BA
80/20 7.5实施例10 HDPE/NBR 30 3.2 BA80/20 7.5 Example 10 HDPE/NBR 30 3.2 BA
80/20 9实施例11 PVDF 30 3.2 BA80/20 9 Example 11 PVDF 30 3.2 BA
100 9比较例1 LDPE 25 3.2 0
100比较例2 LDPE/EVA 25 3.2 0100 Comparative example 2 LDPE/EVA 25 3.2 0
80/20比较例3 HDPE/NBR 30 3.2 0
80/20比较例4 PVDF 30 3.2 0
100100
表4 PTC材料性能比较Table 4 PTC material performance comparison
室温电阻率 PTC强度 T10 T100 T100-T10 Room temperature resistivity PTC strength T 10 T 100 T 100 -T 10
(Ω.cm) (℃) (℃) (℃)(Ω.cm) (°C) (°C) (°C)
实施例1 880 1.10×102 72 89 17Example 1 880 1.10×10 2 72 89 17
实施例2 865 1.60×102 71 87 16Example 2 865 1.60×10 2 71 87 16
实施例3 810 1.23×103 69 81 12Example 3 810 1.23×10 3 69 81 12
实施例4 805 1.26×103 65 80 15Example 4 805 1.26×10 3 65 80 15
实施例5 12000 - - - -Example 5 12000 - - - -
实施例6 450 6.0×103 102 113 11Example 6 450 6.0×10 3 102 113 11
实施例7 350 5.7×103 161 175 14Example 7 350 5.7×10 3 161 175 14
实施例8 870 7.6×102 70 83 13Example 8 870 7.6×10 2 70 83 13
实施例9 855 6.4×102 67 86 19Example 9 855 6.4×10 2 67 86 19
实施例10 465 3.9×103 107 119 12Example 10 465 3.9×10 3 107 119 12
实施例11 345 2.8×103 164 180 16Example 11 345 2.8×10 3 164 180 16
比较例1 900 1.12×102 72 90 18Comparative example 1 900 1.12×10 2 72 90 18
比较例2 860 0.97×102 68 87 19Comparative example 2 860 0.97×10 2 68 87 19
比较例3 430 8.0×102 107 125 18Comparative example 3 430 8.0×10 2 107 125 18
比较例4 320 7.5×102 165 182 17Comparative example 4 320 7.5×10 2 165 182 17
*为表征材料的PTC效应或电阻率(ρ)-温度(T)曲线特征,将该关系曲线上电阻率跃迁峰值ρmax与室温(25℃)电阻率ρ25的比值ρmax/ρ25定义为PTC强度;将电阻率增大至ρ25十倍时所对应的温度记为T10;将电阻率增大至ρ25的一百倍时所对应的温度记为T100。ρmax/ρ25值越大,则复合材料的PTC强度越高;T10和T100的差值T100-T10越小,则复合材料电阻率发生跃迁的温度区间越窄,跃迁更为陡峭。*In order to characterize the PTC effect of the material or the characteristics of the resistivity (ρ)-temperature (T) curve, the ratio ρ max /ρ 25 of the resistivity transition peak value ρ max on the relationship curve to the room temperature (25°C) resistivity ρ 25 is defined is the PTC strength; the temperature corresponding to the resistivity increased to ten times of ρ 25 is recorded as T 10 ; the temperature corresponding to the resistivity increased to one hundred times of ρ 25 is recorded as T 100 . The larger the value of ρ max /ρ 25 , the higher the PTC strength of the composite material; the smaller the difference between T 10 and T 100 T 100 -T 10 , the narrower the temperature range for the transition of the resistivity of the composite material, and the transition is more precise. steep.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 02114762 CN1263801C (en) | 2002-01-21 | 2002-01-21 | Process for preparing electrically conductive high-molecular composite material by in-situ graft to modify electrically conductive filler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 02114762 CN1263801C (en) | 2002-01-21 | 2002-01-21 | Process for preparing electrically conductive high-molecular composite material by in-situ graft to modify electrically conductive filler |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1363629A true CN1363629A (en) | 2002-08-14 |
CN1263801C CN1263801C (en) | 2006-07-12 |
Family
ID=4743278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 02114762 Expired - Fee Related CN1263801C (en) | 2002-01-21 | 2002-01-21 | Process for preparing electrically conductive high-molecular composite material by in-situ graft to modify electrically conductive filler |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1263801C (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100429268C (en) * | 2005-08-02 | 2008-10-29 | 中国石油天然气股份有限公司 | Polymer composition with positive temperature coefficient of resistance and preparation method thereof |
CN103073686A (en) * | 2013-01-07 | 2013-05-01 | 安邦电气集团有限公司 | High thermal stability polymer matrix conductive composite and method for preparing self-regulating heating cable by adopting high thermal stability polymer matrix conductive composite |
WO2014029068A1 (en) * | 2012-08-20 | 2014-02-27 | Feng Lin | Conductive engineering plastic and preparation method thereof |
CN105694412A (en) * | 2012-08-20 | 2016-06-22 | 冯林 | Conducting engineering plastic |
CN105981114A (en) * | 2014-02-06 | 2016-09-28 | 国立研究开发法人科学技术振兴机构 | Resin composition for temperature sensor, element for temperature sensor, and method for producing element for temperature sensor |
CN106833026A (en) * | 2017-02-08 | 2017-06-13 | 广西华纳新材料科技有限公司 | A kind of surface treatment method of PVC powdered whitings |
CN111944594A (en) * | 2020-08-26 | 2020-11-17 | 惠州市阿特斯润滑技术有限公司 | Guide rod conductive grease |
-
2002
- 2002-01-21 CN CN 02114762 patent/CN1263801C/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100429268C (en) * | 2005-08-02 | 2008-10-29 | 中国石油天然气股份有限公司 | Polymer composition with positive temperature coefficient of resistance and preparation method thereof |
WO2014029068A1 (en) * | 2012-08-20 | 2014-02-27 | Feng Lin | Conductive engineering plastic and preparation method thereof |
CN103814077A (en) * | 2012-08-20 | 2014-05-21 | 冯林 | Conductive engineering plastic and preparation method thereof |
CN103814077B (en) * | 2012-08-20 | 2016-03-30 | 深圳市捷创新材料有限公司 | A kind of method preparing conductive engineering plastics |
CN105694412A (en) * | 2012-08-20 | 2016-06-22 | 冯林 | Conducting engineering plastic |
CN103073686A (en) * | 2013-01-07 | 2013-05-01 | 安邦电气集团有限公司 | High thermal stability polymer matrix conductive composite and method for preparing self-regulating heating cable by adopting high thermal stability polymer matrix conductive composite |
CN105981114A (en) * | 2014-02-06 | 2016-09-28 | 国立研究开发法人科学技术振兴机构 | Resin composition for temperature sensor, element for temperature sensor, and method for producing element for temperature sensor |
CN105981114B (en) * | 2014-02-06 | 2018-05-04 | 国立研究开发法人科学技术振兴机构 | Resin composition for temperature sensor, element for temperature sensor, temperature sensor, and method for manufacturing temperature sensor element |
US10302506B2 (en) | 2014-02-06 | 2019-05-28 | Japan Science And Technology Agency | Resin composition for temperature sensor, element for temperature sensor, temperature sensor, and method for producing element for temperature sensor |
CN106833026A (en) * | 2017-02-08 | 2017-06-13 | 广西华纳新材料科技有限公司 | A kind of surface treatment method of PVC powdered whitings |
CN111944594A (en) * | 2020-08-26 | 2020-11-17 | 惠州市阿特斯润滑技术有限公司 | Guide rod conductive grease |
Also Published As
Publication number | Publication date |
---|---|
CN1263801C (en) | 2006-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1100087C (en) | Stuffing mother particle for toughening polyolefine and preparation process and usage thereof | |
CN1072243C (en) | Manufacture of positive temperature coefficient type conductive high polymer composite material using modified conductive filler | |
CN101407637B (en) | Fiber reinforced composite material and preparation thereof | |
CN106366373B (en) | A kind of wear-resisting ageing-resistant power cable sheath material and preparation method thereof | |
CN104530613B (en) | Rubber-phase fluorinated polysiloxane thermoplastic elastomer with core-shell structure and preparation method of rubber-phase fluorinated polysiloxane thermoplastic elastomer | |
CN1152914C (en) | Components and producing method of positive-temperature-coefficient conductive polymer composite material | |
CN101638509B (en) | Method for preparing toughened calcium carbonate filled polylactic acid | |
MXPA05003336A (en) | Curable thermoplastic elastomeric blend, method of manufacture, and use thereof. | |
CN1876705A (en) | Polymer conductive composite material for temperature and stress sensor and its preparation method | |
JP2012509972A (en) | Use of expanded graphite in polymer raw materials | |
CN101845193A (en) | Dynamically vulcanized styrene thermoplastic elastomer and preparation method thereof | |
CN112080060A (en) | Irradiation crosslinking low-smoke halogen-free high-flame-retardant polyolefin cable material composition | |
CN107151384A (en) | It is a kind of for modified poly propylene composition of solar cell backboard and preparation method thereof | |
CN1363629A (en) | Process for preparing electrically conductive high-molecular composite material by in-situ graft to modify electrically conductive filler | |
CN101935503B (en) | Heat conduction type ethylene vinylacetate copolymer hot melt adhesive and preparation method thereof | |
CN1704447A (en) | Conductive composite materials with positive temperature coefficient effect and process for making same | |
CN111205634B (en) | Heat-conducting insulating polycaprolactam material and preparation method thereof | |
CN1445279A (en) | Thermoplastic elastomer made from nylon/ethylene propylene rubber and its preparing method | |
CN1818005A (en) | Insulative heat-conducting materials of heating electric cable and use thereof | |
CN114015229B (en) | Nylon flame-retardant heat-conducting composite material and preparation method thereof | |
CN106928624B (en) | Core-shell nylon toughening agent based on extruder process, and preparation method and application thereof | |
CN1769366A (en) | A long afterglow luminescent thermoplastic composition and its preparation method | |
CN1646625A (en) | Electroconductive resin composition | |
CN104031312A (en) | Conductive polyethylene and preparation method thereof | |
CN1884309A (en) | Stress induction method for polyolefin material melt extrusion functionalization reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |