CN1345910A - Hydro inversion catalyzing multi-stage method, and refining hydrocarbon raw material - Google Patents

Hydro inversion catalyzing multi-stage method, and refining hydrocarbon raw material Download PDF

Info

Publication number
CN1345910A
CN1345910A CN 00130567 CN00130567A CN1345910A CN 1345910 A CN1345910 A CN 1345910A CN 00130567 CN00130567 CN 00130567 CN 00130567 A CN00130567 A CN 00130567A CN 1345910 A CN1345910 A CN 1345910A
Authority
CN
China
Prior art keywords
reactor
coal
liquid
raw material
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 00130567
Other languages
Chinese (zh)
Other versions
CN1189538C (en
Inventor
G·C·科莫利
L·-K·李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydrocarbon Technologies Inc
Original Assignee
Hydrocarbon Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydrocarbon Technologies Inc filed Critical Hydrocarbon Technologies Inc
Priority to CNB001305670A priority Critical patent/CN1189538C/en
Publication of CN1345910A publication Critical patent/CN1345910A/en
Application granted granted Critical
Publication of CN1189538C publication Critical patent/CN1189538C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

The multi-stage catalytic hydrogenation process of heavy hydrocarbon material includes the following steps: first stage, raw material and iron base catalyst are reacted in back mixing catalytic reactor, the efflucent is undergone the process of decompression treatment, the vapor and light fraction are removed from top of said reactork, the heavy liquid fraction of fed into secont-stage back mixing catalyst reactor. In the first and second stage catalyst reactors the temperature is 700-850 deg.F, hydrogen partial pressure is 1000-3500 psig, and space velocity is 20-80 lb/hr/ft cubed. The vapor removed from efflucents of first and second reactors is mixed with light fraction, and introduced into streamline fixed bed catalytic hydrotreater, and heteroatom is removed so as to obtain naphtha and intermediate distillate or distillate of full range. The bottom fraction of separator can be distilled under the condition of step-by-step gas pressure and vacuum, the liquid hydrocarbon product is discharged, and the heavy fraction can be circulated and concentrated, and the hydrocarbon liquid with low boiling point can be provided.

Description

The inversion catalyzing multi-stage method of hydrocracking, and refining hydrocarbon raw material
The present invention is the application number No.08/742 that submitted on November 1st, 1996,541 part renewal application, and No.08/742, and 541 is the application number No.08/609 that submitted on February 23rd, 1996,759 part renewal application.
The present invention relates to the inversion catalyzing multi-stage method of heavy hydrocarbon feeds hydrogenation and hydrocracking, this method is produced the low boiling hydrocarbon liquid feul by using the ferrum-based catalyst of high dispersing.The invention particularly relates to the multistage hydrogenation method of such catalysis, promptly streamline catalytic hydroprocessing step is adopted in coal, heavy crude residual oil, plastic waste and their combination.
Permitted just to know that various iron containing compoundses are (as pyrite (FeS many years ago 2) and red soil (Fe 2O 3)) can in coal hydrogenation and liquifying method, be used as catalyzer.These iron catalyst compound particles are usually with in the coal-slurry oil attitude feedstream that is added in the reactor upstream of operation under the high-temperature and high-pressure conditions on a small quantity.Yet, because the efficient of these known iron-based catalytic compounds is lower usually, this mainly is because their initial surface area is lower, high-caliber dispersity can not be provided under reaction conditions, therefore develop the shortening conversion method of coal and heavy crude residual oil raw material in the past in 30 years, adopt particulate vector type catalyst bed in the reactor usually.These carried catalysts can be to contain a small amount of one or more to be deposited on the bead or the extrusion molding thing of the active co catalyst metal (as cobalt, molybdenum or nickel) on the inert support material (as aluminum oxide or silicon-dioxide).That these granule type carriers can be used for maintaining is temperature required, in the down-type fixed-bed reactor or upflowing fluidized-bed reactor under the reaction conditions of pressure and air speed.
Although these particulate vector type catalyzer (as be deposited on aluminum oxide or the silica supports cobalt-molybdenum or nickel-molybdenum) and the shortening conversion method that adopts carried catalyst provide preferable effect for the hydrogenation and the hydrocracking of coal and heavy oil feedstock, but some shortcomings of these particulate vector type catalyzer are, they are relatively poor with contacting of raw material, and because the rapid inactivation that pollution caused of the metal (as iron, nickel, titanium and vanadium) that sedimentation of coke contains on catalyzer and in the raw material.U.S. Patent No. 4,136,013 (Moll etc.) disclose a kind of emulsion-type metal catalyst that is used for hydrogenation process, but it also has the shortcoming that catalytic activity is low, catalyst levels is high.Under the disclosed catalyst levels level of patent of Moll etc., the catalyzer cost is too high, unless reclaim catalyzer and reuse from unconverted raw material.U.S. Patent No. 4,077,867 and 4,134,825 (Bearden etc.) disclose the decentralized slurry attitude catalyzer of the containing metal-carbon of original position formation, and this catalyzer is called " M-Coke ", can be used for the hydrocracking of coal, heavy oil and composition thereof.The catalyzer of Bearden etc. is mainly based on molybdenum, and molybdenum than the iron costliness many.U.S. Patent No. 4,486,293 (Garg) disclose the co-catalyst combination of a kind of iron and VI family or group VIII non-ferrous metal, make gelatin liquefaction with the water-soluble salt of co-catalyst metal in awarding the hydrogen solvent.
Know, the catalyzer that makes from the salt of water-soluble precursor usually can be under the gelatin liquefaction condition sintering, thereby can lose the required high degree of dispersion of high catalytic activity.U.S. Patent No. 5,168,088 (Utz etc.) disclose a kind of uniqueness pass through with iron oxide precipitation on the matrix of coal when improving in gelatin liquefaction the method for decentralized slurry attitude catalyzer.But this deposition method of catalyst precipitation on whole coal raw material generally acknowledged that for commercial-scale production be difficulty and very expensive.Therefore, the form of catalyzer and composition also need to do further improvement, to being used for the catalyst hydrogenation treatment process of various carbon raw materials, also require further improvement in particular for the method for highly active, the environmental sound of shortening conversion process, the cheap iron oxide based catalyzer of decentralized.
The present invention is used for the improving one's methods of hydrogenation of heavy hydrocarbon feeds such as coal, comminuted coal, and with the slurry of the ferrum-based catalyst that contains high dispersing, import chopped-off head backmixing reactor under suitable high temperature and pressure condition with hydrogen, make the coal reaction, the high molecular carbonaceous material is decomposed into lower molecular weight, low-sulfur and low boiling hydrocarbon overhead product and gas.The direct catalytic liquefaction method that was used for coal and heavy oil in the past has tangible difference, because they use the particulate vector type catalyzer in fixed-bed type reactor or fluid bed-type of reactor system.The hydrogenation method of some coals depended on coal slurry shape oil separating in the past, provided to award the hydrogen solvent liquid in the reactor.But the existing known hydrogenation method that is used for heavy hydrocarbon pressure does not comprise the maximization of combination of process steps provided by the invention and catalyst activity and reactor kinetics.
Known, the carbonaceous material deposition occurs in gelatin liquefaction reactor assembly that is not mechanical backmixing and the fluidized bed type system that uses particulate vector type catalyzer, and the aging rapidly and inactivation of catalyzer is difficult to operation.Yet, the present invention is by adding the iron-based gel-type or the liquid-type catalyzer of new high dispersing continuously to two reactor, these problems have been avoided, can be used for and contain the fixed-bed catalytic hydrotreating reactor combination of supported catalyst, but the lightweight of this catalyzer hydrotreatment front liquefaction step or the overhead product fraction of medium boiling spread, the carrier hydrotreating catalyst is not exposed in unconverted heavy residue and the ash from coal, and the deactivation rate minimum of catalyzer.In addition, to the coal of low-grade elevated oxygen level, and the two reactor method that does not have the intermediate stage phase separation step, do not wish that hydrogen consumption increases the unwanted light C of generation when the oxygen in the raw material is converted into water and in second section catalyticreactor 1-C 3Gas.Yet, by the method for the shortening with intermediate phase separating step is provided, can overcome shortcoming of the prior art, therefore, because the contained oxygen of coal raw material is with CO 2Remove and reduced the consumption of hydrogen, fixed-bed catalytic hydrotreatment and molecular sieve under the lesser temps are reformed to be removed the lightweight overhead product.And, remove light fraction at middle separating step, can improve the kinetics of second section catalyticreactor by improving heavy oil and the concentration of the liquid that is derived from raw coal and the hydrogen dividing potential drop that enters second section.Although some known liquefaction and oily hydrogen addition technology have been used for streamline fixed-bed catalytic hydrotreating step, but the combination adopted among the present invention and order are not provided, and the catalytic reactor system that is used for the biggest ground hydrogenation, molecule reformation and removes heteroatomic and two backmixing high dispersing combines the production with the overhead product that makes most worthy.Employing the present invention can be from heavy hydrocarbon feeds such as coal, oil and the high-quality clean fuel liquid of plastic waste High-efficient Production, and this is that known various processes can't be predicted or expect.
The invention provides a kind of inversion catalyzing multi-stage method, can be used for hydrogen conversion and refining hydrocarbon feedstocks and comprise coal, heavy oil, plastic waste and their combination, be mainly used in and produce lower boiling clean fuel liquid product.Particularly, the invention provides the hydrogen conversion method of the hydrocarbon of the stable ferrum-based catalyst that uses high dispersing, this catalyzer can be added in the hydrocarbon feed equably, as is added to coal-slurry oil material or heavy oil feedstock.Hydrocarbon and dispersed catalyst are passed through preheating, and send into first section backmixing catalyticreactor with hydrogen, and in this reactor, raw material is by hydrogenation and hydrocracking.First section reaction conditions is: temperature 370-460 ℃ (700-850), hydrogen dividing potential drop are 5-20MPa (1000-3500psig), and air speed is 320-1280kg/h/m 3(20-80l/h/ft 3).Catalyzer is dispersive iron-based gel or powder slurries shape catalyzer, the catalyzer (being incorporated herein by reference) described in the United States Patent (USP) provisional application 08/742/541 of application on November 1st, 1996.Perhaps catalyzer can be iron-based ion type liquid or liquid-gel catalyst, its pH is 0.1-3.0, described in the United States Patent (USP) provisional application " the iron-based liquid catalyst that is used for the hydrotreatment carbon raw material " of application on January 28th, 1999 (being incorporated herein by reference).The general preferred iron-based ion liquid type catalyzer that uses pH as 0.1-0.5.First section catalyst reactor amount with respect to carbon raw material in the reactor, should be 200-15, and 000wppm with respect to fresh material, is 500-10 preferably, 000wppm.
Flow out fluid pressure 50-500psig from first of first section reactor, feed the interlude separator, remove wherein light hydrocarbon vapour and liquid from the top.Discharge residual bottom flow, feed second section catalysis backmixing reactor of lower pressure, with further hydrocracking liquid fraction in the presence of the ferrum-based catalyst of high dispersing.If desired, can directly inject other catalyzer,, keep 500-10, the 000wppm concentration of iron with respect to raw material wherein at second section reactor.Second section reaction conditions is: temperature 750-900 °F, the hydrogen dividing potential drop is 800-3000psig.
Second effluent fluid from second section catalyticreactor is separated in second separator.A key character of the present invention is, the low boiling hydrocarbon steam of removing from the second separator top combines with those steams of removing from interlude separator top, these flow groups merge with existing lesser temps and hydrogen dividing potential drop feeding streamline catalytic fixed bed hydrotreating reactor, removing heteroatoms, and further hydrogenation and refining (polish) gently distillate the liquid feul that fraction becomes cleaning.The adoptable reaction conditions of catalytic fixed bed hydrotreater is a 500-800 temperature, 800-3,000psig hydrogen dividing potential drop, and 0.2-5.0h -1Air speed.The catalyzer that uses in the hydrotreater is cobalt-molybdenum or the nickel-molybdenum on known particulate state hydrotreating catalyst such as the alumina supporter.
Fraction is distilling under normal pressure and the vacuum pressure subsequently step by step at the bottom of the liquid that contains no conversion hydrocarbon of discharging from second separator, reclaims the high boiling point product, and is partially recycled to reactor, with further hydrocracking.If desired, separate or the solid filtering step is further handled vacuum substrate fraction, make other heavy oil product and be fit to burning or partial oxidation produces the required hydrogen of this method contains solid heavy fluid by the selectivity critical solvent.
The invention provides a kind of improved inversion catalyzing multi-stage method, be used for the hydrotreatment heavy hydrocarbon feedstocks, make the low boiling hydrocarbon liquid product, by using two sections dispersed catalyst reactors and catalytic fixed bed hydrotreater, with raising overhead product productive rate and quality, and by improving second section reactor kinetics with hydrotreatment C 4-750 overhead products, and oxygen is removed as carbonic acid gas, rather than form water and consume hydrogen.In the past to the shortening method unique balance provided by the invention of carbon raw material, i.e. the combination of following several things: the iron-based pulp-like catalyzer, intermediate section that in reactor, uses high dispersing from remove that light hydrocarbon steams G﹠O, streamline pressurized catalysis fixed bed hydrocarbon treatment step so that only the low-boiling point liquid fraction remove the round-robin selectivity by the liquid of second section reactor and vacuum substrate.Hydrocarbon product liquid quality height of the present invention can be used for producing or making up the fuel of making redistribution.This catalytic two sections, the advantage of the dispersion shortening method of backmixing have overcome and have used the fixed bed of particulate vector catalyzer and the complicacy of ebullated bed reactor system, easily control the temperature rise of reactor, avoided the flow distribution inequality in the carbon distribution and metal refining and backmixing slurry reactor on catalyzer.Although this method is specially adapted to the shortening of coal raw material, also can be used for containing the raw material of heavy oil resistates, plastic waste and their combination.Through the laboratory in 25-50 kilogram coal raw material/sky long run test operation, verified by the present invention especially in conjunction with the economical effectiveness of the economic method that operation out of the ordinary provided.
With reference to following accompanying drawing the inventive method is described.
Fig. 1 is the schematic flow sheet that is used for the inversion catalyzing multi-stage method of heavy carbon raw material hydrogenation, the isolating two sections backmixing reactors of intermediate phase being arranged and containing in the fixed bed hydrogenation treatment reactor of particulate vector type catalyzer, use dispersive iron-based gel or ion liquid type catalyzer.
Fig. 2 is the schematic flow sheet that another kind is used for the multistage hydrogenation method of catalysis of particulate coal raw material.
The invention provides the improved inversion catalyzing multi-stage method that a kind of liquefaction for coal and/or other heavy hydrocarbon feeds, hydrogenation and hydrotreatment are upgrade, the method is used the ferrum-based catalyst of high degree of dispersion in two reactor, use supported catalyst in direct-connected series connection fixed bed hydrogenation tandem reactor. As shown in Figure 1, provide the particulate coal raw material 10, provide heavy hydrocarbon pulpous state oil or raw material 11, both and the 12 finely divided ferrum-based catalysts that provide or iron-based ionic liquid or liquid-gel catalyst mix. Coal, heavy-hydrocarbon oil and catalyst in blending tank 14 with some previous process in the catalyst mix at treated recycle oil and 13 places. Mixed coal, oil and iron-based disperse or ionic-liquid catalyst pressurizes in 15 places, and sends into preheater 17 with the 16 new hydrogen that provide and recycle hydrogen. Raw material after the heating is upwards inputted the reverse mixed catalytic reactor 20 of first paragraph, dissolves in this reactor, hydrocracking and hydroconversion reactions. Reactor 20 can be with suitable interior pump EGR 21, or carries out mechanical reverse mixing by the mechanical mixture device of other suitable pressurized reactor. The reaction condition of reactor 20: temperature is 700-850 °F, and the hydrogen dividing potential drop is 1000-3500psig, and air speed is 20-80lb material ft3-h, with respect to new raw material, catalytic amount is 200-15000wppm. Reaction condition is that temperature is 750-820 °F preferably, and the hydrogen dividing potential drop is 1200-3000psig.
From the first effluent fluid 22 of first paragraph catalytic reactor 20 at valve 23 decompression 50-500psig, pass into the interlude separator 24 of heat, remove steam and low boiling hydrocarbon distillate as top air-flow 25 from separator 24, and by phase separator 26, so that top hydrocarbon vapour fraction and liquid fraction 28 to be provided. Mix with other hydrogen 16a from preheater 17a from the remaining heavy bottom liquid stream 29 of intermediate separator 24, pass into second segment catalytic reactor 30, generally under the temperature than reactor 20 high 10-50 °F, carry out further hydrocracking reaction. Carry out reverse mixing in the second segment catalytic reactor, adopt the downspout road 31 that is connected to internal circulation pump 32 and flow distribution plate 32a, or by same effective reverse mixed flow structure. Second segment reaction condition preferably: temperature is 850 °F of 780-, and the hydrogen dividing potential drop is 1000-2500psig.
, pass in the second heat separator 34 at valve 33a place decompression 50-500psig from the second effluent fluid 33 of second segment catalytic reactor 30, be used for removing at 35 place top steam and light fraction, and end liquid stream 39 is provided. From the light hydrocarbon liquid of heat separator 26 stream 28 and top air-flow 35 combinations from second segment phase separator 34, the fluid 36 of combination is provided, fluid 36 input streamline fixed-bed catalytic hydrotreaters 38, the latter provides reactions such as removing hetero atom, hydrogenation and molecule reformation, produces the hydrocarbon product stream 40 of cleaning. The preferably reaction condition that is used for catalytic fixed bed hydrotreater 38: temperature is 550-750 °F, and pressure is 800-2500psig, and air speed is 0.2-2.0/hr. Product stream 40 from hydrotreater 38 cools off at 41 places, reduces pressure at 42 places, and is separated in separator 44 places, and top steam 45 is provided. Steam flow 45 passes into gas treatment step 46, removes CO2, unwanted H2S and ammonia. Remove unwanted emptying gas at 47 places. Hydrogen after the purification is circulated back to respectively first and second sections reactors 20 and 30 as air- flow 16 and 28, and the supplemental hydrogen that provides with the 48a place in case of necessity merges.
Bottom liquid 39 from the second separator 34 reduces pressure at 39a, and with distilling at air-distillation still 50 from the fluid 49 that distillates after the hydrotreatment of separator 44, make top IBP-400 °F of (IBP-204 ℃) logistics 51,400-650 °F of (204-343 ℃) logistics 52 and bottom liquid logistics 53. Bottoms 53 passes into vacuum (distilling) column 54, makes top 650-975 °F of (343-524 ℃) vacuum gas oil logistics 55, and concentrated heavy residual bottom stream 56, and it contains some for the catalyst such as the logistics 13 that reclaim.
If need to contain especially the coal raw material of ash content, concentrated bottom flow 56 can transform and filter or further process by the selective solvent separation at 58 devices by liquid/solid. But the concentrated bottom flow 59 importation oxidation steps (not marking) that contain ash content, no conversion hydrocarbon and some relict catalysts are to make the required hydrogen of this method.
In the another kind of method shown in Figure 2, before fluid 19 and the coal raw material 10 of premix were inputted main blending tank 14, heavy circulating fluid 13 was at first at tank 18 places and oily raw material 11 and catalyst 12 premixs. Pass into catalysis streamline hydrotreating reactor 38 after mixing from the steam of the vacuum gas oil of vacuum tank 54 stream 55 and combination and light fraction stream 36, react further to carry out hydrotreatment, produce other low-boiling point liquid product. In the decompression of 39b place, directly pass into vacuum tank 54 from the liquid of separator 34 stream 39, flow 56 combinations from heavy-fluid body stream 53 and the liquid of vacuum tank 54, circulate as logistics 13.
Further describe the present invention by the following examples, these embodiment do not constitute limitation of the scope of the invention.
Embodiment 1
To the multistage hydrogenation method of catalysis of the present invention, the intermediate phase separating step is provided between the two-stage catalytic reactor, to remove steam and light fraction, provide useful result.To containing the low grade coal raw material of higher concentration oxygen, in the method, be with CO xRemove deoxidation, rather than H 2O, thus demand can be reduced to hydrogen.In addition, produce less C 1-C 3Appropriate hydrocarbon gas is because minimum to the hydrocracking of the liquid starting material of second section catalyticreactor.To U.S.'s sub-bituminous coal raw material, adopt two kinds of similar catalysis two-stage hydrogenation methods, to have the intermediate phase separating step and not this step compare, important comparative result is listed in the table below 1.
Table 1
The comparative approach result, weight %MAF coal There is not the isolating previous method of intermediate phase Have middle to isolating the inventive method
????C 1-C 3Gas ????7.3 ????6.5
????C 4-C 7 ????4.1 ????4.1
??C 4-975 resistatess ????59.4 ????61.6
975 resistatess ????2.0 ????2.2
????CO x ????2.3 ????5.3
Water ????19.4 ????17.1
????H 2Consumption ????7.4 ????7.5
These results show: essentially identical about operational condition and liquid yield under, for the inventive method of intermediate phase separating step is arranged, reduced light C 1-C 3Gas, CO xObviously increase, and reduce the water that produces.
To two-stage hydrogenation method relatively, with bituminous coal Illinois#6 coal raw material, under the identical operations condition, in the middle of having to separating and not having intermediate phase to separate to operate, comparative approach the results are shown in table 2.
Table 2
The comparative approach result ??CMSL-02 ??CMSL-05
Middle separating step Do not have Have
Relative response intensity (relative reaction severity) ????1.1 ????1.25
??C 4-975 productive rates, weight %MAF coal ????76 ????78
975 resistatess transform weight %MAF coal ????91 ????94
????H 2Consumption, weight %MAF coal ????8.3 ????8.0
These results show: by removing steam and light fraction, C at middle separating step 4The conversion of the productive rate of-975 liquid products and remaining fraction (975) obviously improves, because improved the concentration that is derived from the intermediate product liquid of raw coal in second section reactor, and the hydrogen consumption is lowered with meeting the requirements.
Embodiment 2
To the mixing raw material of 35% (weight) sub-bituminous coal and 65% (weight) Hondo petroleum residual oil, adopt catalysis two reactor hydrogenation method, to having and not having intermediate section from comparing.The results are shown in following table 3.
Table 3
The productive rate of normalizing, weight %MAF raw material Do not have intermediate section from Have intermediate section from
Relative response intensity ????43 ????46
????C 1-C 3Gas ????6.2 ????7.3
????C 4-C 7Liquid ????9.7 ????9.3
Petroleum naphtha (C 4-3250°F) ????17.7 ????21.6
Middle distillate (350-650) ????31.5 ????37.3
Heavy overhead product (650-975) ????26.7 ????20.1
Resistates (975) ????10.4 ????7.5
The method performance, weight %MAF raw material
Coal transforms ????92.6 ????95.7
975 resistatess transform ????85.4 ????89.8
????C 4-975 product productive rates ????75.8 ????79.1
????H 2Consumption ????4.45 ????4.78
By these results as can be known, under same reaction conditions, when using the intermediate phase separating step, generally can obtain the transformation efficiency of higher coal and resistates raw mix, and higher C 4-975 product productive rates.This improvement mainly is owing to improved the reaction kinetics of liquid starting material in second section reactor.
Embodiment 3
Being used for the streamline catalytic hydrogenation step at the outflow steam fraction of the combination two reactor of this two-stage hydrogenation method, is the very effective and economic step that is used for reducing content of heteroatoms and product oil aromatic hydrocarbons.The heat release of the hydrogenation of coal or heavy-hydrocarbon oil raw material, and can be effective to the streamline hydrogenator from the high hydrogen dividing potential drop that the front reactor obtains, and can reach the obvious raising of product oil price value, improve.List in table 4 to being derived from the typical comparative result of making the streamline shortening of the petroleum naphtha fraction that obtains in the two-stage catalytic reactor operation of raw material with sub-bituminous coal:
Table 4
The quality of the petroleum naphtha fraction behind the streamline hydrogenation
The streamline hydrogenation Do not have Have
° api gravity ????36.2 ????39.9
Carbon, weight % ????86.6 ????86.3
Hydrogen, weight % ????13.3 ????13.7
Nitrogen, wppm ????1,280 ????9
Sulphur, wppm ????230 ????14
The mid-boiling point temperature, °F ????421 ????401
Hydrogen/carbon ratios ????1.85 ????1.91
Can know naphtha products after the hydrotreatment by above-mentioned comparison, compare to have higher ° of api gravity of requirement and obvious less nitrogen and sulphur content with naphtha products without hydrotreatment.
The comparative result that is presented at the performance variation that requires between the hydrocarbon feed of streamline catalytic hydroprocessing step and the product after the hydrotreatment is listed in table 5.
Table 5
The logistics characteristic Raw material to hydrotreater Product after the hydrotreatment
Proportion, ° API ????39.6 ????46.2
Carbon, weight % ????86.2 ????83.2
Hydrogen, weight % ????13.2 ????12.9
Sulphur, wppm ????297 ????9
Nitrogen, wppm ????161 ????1
Boiling spread, °F ?IBP-350 ?350-650 ?IBP-350 ?350-650
Paraffin, weight % ??24.3 ??12.2 ??22.8 ??13.7
Alkene, weight % ??0.3 ????- ??0.5 ?????-
Cycloalkanes, weight % ??67.0 ??48.2 ??69.3 ??55.7
Aromatic hydrocarbons, weight % ??8.4 ??39.6 ??7.4 ??30.6
Cetane index ???? ??38.0 ??39.5
Cetane value ????- ??39.0
Can be known by top comparative result, raw material is used the streamline hydrotreatment, almost can remove whole heteroatomss, sulphur and nitrogen have reduced aromatic hydrocarbons, simultaneously for the fraction of two boiling ranges, and the corresponding increase of cycloalkanes.Therefore, two sections combined methods of catalysis are in being useful on the centre of removing steam and light fraction isolating segmentation backmixing reactor, use iron-based dispersive slurry catalyst system, streamline fixed bed hydrogenation treatment step can be produced the product with premium properties, and reduces running cost.
Embodiment 4
Table 6 is listed known catalysis two-stage liquification (CTSL) method of using two sections sealing coupling ebullated bed reactors, use the direct comparison of catalysis two-stage reaction method of the iron-based slurry catalyst of high dispersing with the present invention, boiling reactor contains particulate vector type catalyzer or disperse type catalyzer separately, and method of the present invention has intermediate phase to separate and be used for the streamline catalytic hydroprocessing step of sub-bituminous coal.
Table 6
Two sections gelatin liquefactions of the catalysis of sub-bituminous coal
Process is arranged The carrier granule catalyzer Dispersed catalyst iron/molybdenum Gel catalyst TMIron/molybdenum/phosphorus
Functional symbol ????CC-1 ??CMSL-6 ????PB-04
Intermediate phase separates Do not have Do not have Have
The streamline hydrotreatment Do not have Do not have Have
Performance characteristic, weight % MAF coal
????C 1-C 3Gas ????8.0 ????8.0 ????7.9
????CO x ????0.5 ????4.5 ????6.5
????H 2O ????18.5 ????14.0 ????12.1
Coal transforms ????86.4 ????94.1 ????93.2
??C 4-975 liquid fraction ????62.6 ????63.1 ????67.5
??975°F +Liquid fraction ????84.8 ????83.0 ????89.4
????H 2Consumption ????7.7 ????7.1 ????7.2
As shown in Table 6, catalysis two-stage hydrogenation method of the present invention comprises that intermediate phase separates and streamline catalytic hydroprocessing step, and described method makes CO xObviously increase, the water of generation obviously reduces, and also improves the productive rate and the percentage transformation efficiency of product overhead product, does not increase the hydrogen consumption.Adopt the inventive method, make every barrel of Yue Wei $28/bbl of projected cost of oil production by the coal raw material, and use the known catalysis two-stage method of the sealing coupling reactor of supported catalyst to be $32-38$/bbl separately.
Although briefly described the present invention, should understand in scope and can carry out various modifications and changes described method by claims definition by embodiment preferably.

Claims (16)

1. one kind is used for the hydrogenation of carbon raw material and the inversion catalyzing multi-stage method that hydrocracking prepares the low boiling hydrocarbon product liquid, and described method comprises the following steps:
(a) ferrum-based catalyst of carbon raw material and high dispersing and hydrogen are reacted in first section backmixing reactor, first reactor effluent that contains steam and liquid fraction stream is provided, the reaction conditions that keeps in the reactor is: temperature is 370-460 ℃, the hydrogen dividing potential drop is 5-20MPa, and the reactor air speed is 320-1280 kg/h/m 3, catalytic amount is 500-15 with respect to raw material, 000wppm;
(b) flow out logistics with described first and be separated and be steam and liquid fraction, the first separator top logistics is provided, in second section catalyticreactor, described liquid distillate is further reacted, second reactor effluent that contains steam and liquid fraction stream is provided;
(c) the described second reactor effluent stream is separated is steam and liquid fraction, the second separator top logistics is provided, the second separator top steam fraction and the described first separator top steam are merged, the vapor fraction top logistics of the described merging of catalytic hydroprocessing in streamline fixed-bed catalytic hydrotreating reactor provides the product liquid after the hydrotreatment;
(d) distillation is discharged the low boiling hydrocarbon product liquid from the liquid fraction of described second section phase separator from this process.
2. shortening method as claimed in claim 1, its feature are that also described carbon raw material is a particulate coal, and reaction conditions is: temperature is 400-450 ℃, and the hydrogen dividing potential drop is 7-17MPa, and air speed is 400-1000kg/h/m 3Reactor volume.
3. shortening method as claimed in claim 1, its feature are that also described first section temperature of reactor is than low 10-50 ℃ of second section temperature of reactor.
4. shortening method as claimed in claim 1, its feature are that also described first section temperature of reactor is than second section high 10-50 of temperature of reactor ℃.
5. shortening method as claimed in claim 1, its feature also are the reaction conditions of described catalytic fixed bed hydrotreating reactor: temperature is 500-800 °F, and pressure is 800-3000psig, and the reactor air speed is 0.2-5.0/h.
6. the multistage hydrogenation method of catalysis as claimed in claim 1, its feature is that also carbon raw material is a coal.
7. shortening method as claimed in claim 1, its feature are that also carbon raw material is a heavy crude residual oil.
8. shortening method as claimed in claim 1, its feature are that also carbon raw material is the mixture of coal and heavy crude residual oil.
9. shortening method as claimed in claim 1, its feature are that also described carbon raw material is the mixture of coal and blend plastic waste.
10. shortening method as claimed in claim 1, its feature are that also described carbon raw material is the mixture of heavy crude residual oil and blend plastic waste.
11. shortening method as claimed in claim 1, its feature are that also described carbon raw material is the mixture of coal, heavy crude residual oil and blend plastic waste.
12. shortening method as claimed in claim 1, its feature are that also described ferrum-based catalyst is that pH is the ionic liquid of 0.1-3.0.
13. shortening method as claimed in claim 1, its feature are that also the logistics of vacuum distilling top is recycled to catalysis streamline hydrotreating reactor.
A 14. multistage hydrogenation of catalysis and hydroconversion process that is used for coal, described method is used the ferrum-based catalyst of high dispersing, separate and the streamline catalytic hydroprocessing in conjunction with intermediate phase, to improve reactive behavior and to make the productive rate of low boiling hydrocarbon product liquid reach maximum, described method comprises the following steps:
(a) with coal particle in the iron-based ionic-liquid catalyst of hydrocarbon pulpous state oil and high dispersing and first section backmixing reactor that hydrogen is imported pressurization, described reactor contains liquid and the hydrogen that is derived from coal; With the coal raw material is benchmark, and described catalyzer provides 500-15,000wppm iron;
(b) described blended coal slurry material, dispersed catalyst and hydrogen are reacted in described first section catalyticreactor, the reaction conditions that catalyticreactor keeps is: temperature is 750-820 °F, and the hydrogen dividing potential drop is 1200-3000psig, and air speed is 20-80 lb coal/h/ft 3Reaction volume, heating and shortening coal, first reactor effluent that is derived from coal that makes the partial hydrogenation that contains steam and liquid fraction and hydrocracking flows;
(c) remove described first of steam and the liquid fraction that contain and flow out logistics, reduce this logistics pressure 50-500psig, described first reactor effluent stream that is separated provides its steam and lightweight top fraction and separator bottom material;
(d) described separator bottom material is fed second section catalyticreactor with other hydrogen, described second section reactor keeps reaction conditions to be: temperature is 780-850 °F, the hydrogen dividing potential drop is 1000-2500psig, further hydrocracking liquid fraction wherein provides second reactor effluent that contains steam and low boiling hydrocarbon liquid fraction stream;
(e) the described second reactor effluent stream is separated is top steam and light liquid fraction; Top steam and light liquid fraction that merging is separated from first and second sections reactors, the fraction of the described merging of catalytic hydroprocessing in fixing direct coupling bed type catalytic hydroprocessing reactor, with further hydrogenation and remove heteroatoms, provide the product liquid after the hydrotreatment;
(f) with continuous atmospheric and vacuum distillation step, distillation is from the described bottom liquid fraction of described second separator; And the vacuum bottoms is circulated back to coal slurrying step;
(g) from process, reclaim appropriate hydrocarbon gas and the spissated C of lower boiling 4The hydrocarbon product liquid of-750 fractions.
15. the multistage hydrogenation method of catalysis as claimed in claim 14 is characterized in that described method also comprises the outflow logistics of further processing catalytic hydroprocessing reactor, removes CO 2, NH 3And H 2S impurity provides the hydrogen of purification, is used to be circulated back to described first and second sections reactors.
16. the multistage hydrogenation method of catalysis as claimed in claim 14, its feature also are further to process described round-robin vacuum distilling bottoms, Gu remove solid by liquid/filtration method or selectivity critical solvent partition method.
CNB001305670A 2000-09-28 2000-09-28 Hydro inversion catalyzing multi-stage method, and refining hydrocarbon raw material Expired - Fee Related CN1189538C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB001305670A CN1189538C (en) 2000-09-28 2000-09-28 Hydro inversion catalyzing multi-stage method, and refining hydrocarbon raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB001305670A CN1189538C (en) 2000-09-28 2000-09-28 Hydro inversion catalyzing multi-stage method, and refining hydrocarbon raw material

Publications (2)

Publication Number Publication Date
CN1345910A true CN1345910A (en) 2002-04-24
CN1189538C CN1189538C (en) 2005-02-16

Family

ID=4594200

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001305670A Expired - Fee Related CN1189538C (en) 2000-09-28 2000-09-28 Hydro inversion catalyzing multi-stage method, and refining hydrocarbon raw material

Country Status (1)

Country Link
CN (1) CN1189538C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102037101B (en) * 2008-05-20 2014-08-20 Ifp新能源公司 Process for multistage residue hydroconversion integrated with straight-run and conversion gasoils hydroconversion steps
WO2015007230A1 (en) * 2013-07-18 2015-01-22 中国石油大学(北京) Iron-based hydrogenation catalyst and applications thereof
CN111944554A (en) * 2020-08-12 2020-11-17 中国科学院青岛生物能源与过程研究所 Homogeneous hydrogenation method for producing biodiesel by using liquid catalyst

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8226821B2 (en) * 2009-08-19 2012-07-24 Macarthur James B Direct coal liquefaction with integrated product hydrotreating and catalyst cascading
CN104419436B (en) * 2013-08-29 2016-08-10 任相坤 A kind of direct coal liquefaction process using poor oil
CN104419439B (en) * 2013-08-29 2016-08-17 任相坤 A kind of direct coal liquefaction process of two-stage hydrogenation
CN104419438B (en) * 2013-08-29 2016-06-29 任相坤 A kind of direct coal liquefaction process being mixed with middle coalite tar

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102037101B (en) * 2008-05-20 2014-08-20 Ifp新能源公司 Process for multistage residue hydroconversion integrated with straight-run and conversion gasoils hydroconversion steps
WO2015007230A1 (en) * 2013-07-18 2015-01-22 中国石油大学(北京) Iron-based hydrogenation catalyst and applications thereof
CN104918698A (en) * 2013-07-18 2015-09-16 中国石油大学(北京) Iron-based hydrogenation catalyst and applications thereof
CN104918698B (en) * 2013-07-18 2016-10-12 中国石油大学(北京) A kind of iron-based hydrogenation catalyst and application thereof
US10335773B2 (en) 2013-07-18 2019-07-02 China University of Petroleum—Beijing Fe-based hydrogenation catalyst and use thereof
CN111944554A (en) * 2020-08-12 2020-11-17 中国科学院青岛生物能源与过程研究所 Homogeneous hydrogenation method for producing biodiesel by using liquid catalyst

Also Published As

Publication number Publication date
CN1189538C (en) 2005-02-16

Similar Documents

Publication Publication Date Title
US6190542B1 (en) Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds
JP4874977B2 (en) Recycling method of active slurry catalyst composition in heavy oil upgrade
CN1067100C (en) Heavy hydrocarbon fraction converting process relating to hydrogenation demetalization in catalyst bubbling bed
US8557105B2 (en) Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
EP1783194B1 (en) A process for direct liquefaction of coal
CN1098337C (en) Normal pressure suspension bed hydrogenation process adopting liquid multiple-metal catalyst
KR102093454B1 (en) Integrated ebullated-bed process for whole crude oil upgrading
US9790440B2 (en) Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
CN1093871C (en) Multi-step converting catalyzing process for heavy hydrocarbon fraction
US8236170B2 (en) Reactor for use in upgrading heavy oil
CN101045884A (en) Process of producing clean diesel oil and low carbon olefin with residual oil and heavy fraction oil
US8956528B2 (en) Slurry bed hydroprocessing and system using feedstock containing dissolved hydrogen
CN1896192A (en) Two-way combined process of wax-oil hydrogenation treatment and catalytic cracking
CN104662134A (en) Residue hydrocracking
CN102041084A (en) Heavy hydrocarbon hydrogenation combined process
CN1171976C (en) Combined hydrogenation method of producing diesel oil with high cetane number and low solidifying point
CN1093872C (en) Petroleum residue catalyzing converting process relating to catalyst fixed bed hydrogenation demetalization
CN1262306A (en) Hydrogenation and catalystic cracking combined process for residual oil
CN1189538C (en) Hydro inversion catalyzing multi-stage method, and refining hydrocarbon raw material
CN1202216C (en) Hydrocracking process for maximally producing middle distillate
CN100345945C (en) Two-stage hydrocracking method for increasing yield of middle distillate oil
CN1175090C (en) Method for producing the clean diean diesel oil with low sulfur and low arene
CN101434867B (en) Suspension bed residual oil hydrogenation-catalytic cracking combined technological process
CN1446888A (en) Suspension bed hydrocracking technique for producing gasoline with high octane number and diesel oil with high cetane number simultaneously
CN103339233A (en) Method for converting hydrocarbon feedstock comprising a shale oil by hydroconversion in an ebullating bed, fractionation by atmospheric distillation and liquid/liquid extraction of the heavy fraction

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1045710

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050216

Termination date: 20180928