CN1344926A - Adaptive surface plasma wave gas refractivity sensor - Google Patents

Adaptive surface plasma wave gas refractivity sensor Download PDF

Info

Publication number
CN1344926A
CN1344926A CN 01134380 CN01134380A CN1344926A CN 1344926 A CN1344926 A CN 1344926A CN 01134380 CN01134380 CN 01134380 CN 01134380 A CN01134380 A CN 01134380A CN 1344926 A CN1344926 A CN 1344926A
Authority
CN
China
Prior art keywords
face
plasma wave
surface plasma
sensor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 01134380
Other languages
Chinese (zh)
Other versions
CN1141571C (en
Inventor
郭继华
殷纯永
吴健
陈涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB01134380XA priority Critical patent/CN1141571C/en
Publication of CN1344926A publication Critical patent/CN1344926A/en
Application granted granted Critical
Publication of CN1141571C publication Critical patent/CN1141571C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

The self-adaptive surface plasma wave gas refractivity sensor includes one triangular prism and one roof prism attached to the outgoing surface of the triangular prism. It is featured by that the incident light to one surface of the triangular prism is reflected by one transducing surface, one roof surface and the reflaction of light goes on till to meet the original incident surface to pass through out. Compared with prior art of surface plasma wave sensor, the present invention has high reflectivity resolution superior to 1E-(-7) and less optical axis drift sensitivity. Theoretical calculation shows that optical axis drift of 1E(-5) arc will result in 1E(-7) refractivity change measured. Therefore, the present invention can raise the relief map stability of the system greatly.

Description

Adaptive surface plasma wave gas refractivity sensor
Technical field
The present invention relates to a kind of adaptive surface plasma wave gas refractivity sensor, belong to the commercial measurement technical field.
Background technology
Utilize photoresonance excitating surface plasma ripple (Surface plasmon resonance, be called for short SPR) technology, can develop the high resolving power index sensor, add specific functional membrane, the sensitivity of selection humidification can be arranged specific molecule, make Measurement Resolution improve tens times.Thereby the SPR technology obtains extensive concern in physics, chemical-biological and industrial application.The core of spr sensor is a refractive index sensing element.
Early stage SPR index sensor mainly utilizes catoptrical amplitude characteristic, and the resolution of this index sensor is usually 10 -5-10 -6The scope of refractive index unit.Recent studies show that: utilize catoptrical phase propetry and interference technique, the short-term resolution of SPR index sensor can be brought up to be better than * 10 -7But spr sensor is the refractive index sensitivity not only, and is sensitive equally to lambda1-wavelength and incident angle.If the long-term measuring error that guarantees to cause except that variations in refractive index is less than 1 * 10 -7Refractive index unit.Concerning the light of λ=632.8, require wavelength stability to be better than 1 * 10 -7Be easy to satisfy this requirement with stabilizing He Ne laser, and the stability requirement of incident angle is less than 2 * 10 -7Orphan's degree wants to drift about less than 2 * 10 in the direction of long-time inner control light beam -7Orphan's degree then is quite difficult.This mainly is that sensing element refractive index, wavelength and incident angle in the sensor is all responsive.If can design a kind of novel sensing element, this element is refractive index and wavelength sensitive only, and insensitive to incident angle, then can improve the long-time stability and the resolution of sensor.
Summary of the invention
The objective of the invention is to design a kind of adaptive surface plasma wave gas refractivity sensor, promptly design new optical element, make the optical system refractive index still very responsive, and drift becomes very insensitive to beam direction.Like this, even beam drift in the work does not influence measuring yet, thus the stability and the resolution of raising sensor.
The adaptive surface plasma wave gas refractivity sensor of the present invention's design, comprise a triangular prism ABCEDF, it is characterized in that additional roof prism ECBFGH on the light-emitting face ECBF of triangular prism, light is from the incident of ABFD face, through sensitive face ACED reflection,, reflect through ridge face HGFE through the reflection of ridge face BCHG face, through sensitive face ACED reflection, through the outgoing of former ABFD face.
The adaptive surface plasma wave gas refractivity sensor of the present invention's design is compared with the surface plasma wave that other has been reported, not only might provide to be better than 1 * 10 -7Refractive index resolution, and insensitive to beam drift, Theoretical Calculation shows, when beam drift 1 * 10 -5When the orphan spent, the influence that refractive index is measured was less than 1 * 10 -7Refractive index unit, thereby the stability of system will be greatly improved.
Description of drawings
Fig. 1 is the sensing element structural representation of prior art.
Fig. 2 is the sensing element structural representation that the present invention designs.
Embodiment
Fig. 1 is the surface plasma wave sensing element of prior art, and it is exactly a prism.Wherein incident ray is perpendicular to plane ABFD, and emergent ray is perpendicular to BCEF, and plane of light incidence is parallel to plane ABC.Reverse side ACED is a sensitive face, and the golden film of thick 40-45nm is arranged on its face, or adds the glass sheet that is coated with thick 40-45nm gold film again after adding index-matching fluid.The characteristic of light excitation surface plasma ripple is relevant, also relevant with lambda1-wavelength with incident angle with the outer refractive index of golden film.
To the sensing element of Fig. 1, if incident beam changes Δ α because of the relative sensing element of drift in the plane of incidence, then incident angle changes Δ α, and the influence that measurement is caused is
The surface plasma wave element that the present invention of being shown in Figure 2 designs, its structure adds a roof prism BCEFHG exactly on former prism light-emitting face BCEF, and wherein angle CHE is the right angle.In the structure shown in Figure 2, light ray propagation is as follows: light is from the incident of ABFD face---reflects through sensitive face ACED and---reflects through ridge face BCHG face and---reflect---reflecting through sensitive face ACED---through ridge face HGFE through the outgoing of former ABFD face.
Roof prism BFECHG has two effects: first effect is refractive power, and emergent light and incident light are not overlapped, so that arrange optical system.Second effect is that its function is equivalent to the total reflection at plane BFEG; Like this, when incident beam drift delta α, the light for the first time incident angle on sensitive face changes Δ α, changes Δ α in the incident angle of BFEC face, then changes-Δ α at the emergent light of BFEC, and like this, the light incident angle on sensitive face for the second time then changes-Δ α.When beam drift Δ α, the influence that measurement is caused will be like this: ∂ n ∂ α ( Δα - Δα ) = 0 , That is to say that beam drift is zero to the first-order error of measuring that influences.
This optical sensor has realized that beam drift does not have the influence of first-order error to measurement under the situation that allows beam drift.Sensing element has adapted to the external environment of beam drift automatically, thereby is called adaptive surface plasma wave gas refractivity sensor.
It is worthy of note: above-mentioned sensing element is eliminated once influences error, does not eliminate the secondary effect error.Theoretical Calculation shows: when light beam changes 1 * 10 -5During radian, the error that measurement is caused is less than 1 * 10 -7Refractive index unit.When light beam changes 1 * 10 -4During radian, the error that measurement is caused is less than 1 * 10 -5Refractive index unit.Its influence degree approximately with square being directly proportional of angle change.
The present invention is applicable to polarized surface plasma wave sensor, is specially adapted to high-resolution gas refracting index sensing.

Claims (1)

1, a kind of adaptive surface plasma wave gas refractivity sensor, comprise a triangular prism ABCEDF, it is characterized in that additional roof prism ECBFGH on the light-emitting face ECBF of triangular prism, light is from the incident of ABFD face, through sensitive face ACED reflection,, reflect through ridge face HGFE through the reflection of ridge face BCHG face, through sensitive face ACED reflection, through the outgoing of former ABFD face.
CNB01134380XA 2001-11-02 2001-11-02 Adaptive surface plasma wave gas refractivity sensor Expired - Fee Related CN1141571C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB01134380XA CN1141571C (en) 2001-11-02 2001-11-02 Adaptive surface plasma wave gas refractivity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB01134380XA CN1141571C (en) 2001-11-02 2001-11-02 Adaptive surface plasma wave gas refractivity sensor

Publications (2)

Publication Number Publication Date
CN1344926A true CN1344926A (en) 2002-04-17
CN1141571C CN1141571C (en) 2004-03-10

Family

ID=4672455

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB01134380XA Expired - Fee Related CN1141571C (en) 2001-11-02 2001-11-02 Adaptive surface plasma wave gas refractivity sensor

Country Status (1)

Country Link
CN (1) CN1141571C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368589A (en) * 2011-11-01 2012-03-07 中国科学院光电技术研究所 Method for stabilizing random drift of pulse laser beam
CN102721666A (en) * 2012-06-28 2012-10-10 北京理工大学 Surface plasma resonance refractive index sensor with angular drift adaptive structure
CN105699334A (en) * 2016-04-25 2016-06-22 岭南师范学院 Polarization insensitive type SPR sensing structure
CN109253991A (en) * 2017-07-12 2019-01-22 恩德莱斯和豪瑟尔分析仪表两合公司 optical sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368589A (en) * 2011-11-01 2012-03-07 中国科学院光电技术研究所 Method for stabilizing random drift of pulse laser beam
CN102721666A (en) * 2012-06-28 2012-10-10 北京理工大学 Surface plasma resonance refractive index sensor with angular drift adaptive structure
CN105699334A (en) * 2016-04-25 2016-06-22 岭南师范学院 Polarization insensitive type SPR sensing structure
CN105699334B (en) * 2016-04-25 2018-06-19 岭南师范学院 A kind of polarized non-sensitive type SPR sensorgram structure
CN109253991A (en) * 2017-07-12 2019-01-22 恩德莱斯和豪瑟尔分析仪表两合公司 optical sensor

Also Published As

Publication number Publication date
CN1141571C (en) 2004-03-10

Similar Documents

Publication Publication Date Title
EP1182445B1 (en) Integrated optic interferometric sensor
US4745293A (en) Method and apparatus for optically measuring fluid levels
US4711126A (en) Sensor for the measurement of the refractive index of a fluid and/or phase boundary between two fluids by means of visible or invisible light
US7541573B2 (en) Optical sensors for sensing the refractive index of fluid samples
Lukosz et al. Integrated optical interferometer as relative humidity sensor and differential refractometer
US20130120752A1 (en) Fiber-optic surface plasmon resonance sensor and sensing method using the same
CN100526821C (en) Thin film type optical fiber temperature sensor and its temperature sensing method
JPH0467906B2 (en)
CN112629744A (en) Atmospheric pressure sensor based on cascade fiber Fabry-Perot interferometer
CN105973279A (en) Single-end reflective long-period fiber grating sensor and manufacture process thereof
CN102183487B (en) Manufacturing method of metal film plated double-humped resonance liquid sensor based on SPR (Surface Plasmon Resonance)
CN1141571C (en) Adaptive surface plasma wave gas refractivity sensor
JP3032712B2 (en) Phase grating
CN105842147A (en) Reflective type long-cycle fiber grating sensor with single-end film plating and manufacturing technology and reinforcement corrosion monitoring method thereof
JPS6095322A (en) Optical measuring method measuring displacement of body and sensor thereof
CN110823834B (en) High-sensitivity SPR refractive index sensor based on plastic optical fiber periodic narrow groove structure
JPS61221629A (en) Pressure sensitive element
CN110207849A (en) A kind of temperature sensor and measurement method based on reflective long-period fiber grating
CN205664848U (en) Single -ended reflective long period fiber grating sensor
CN205665151U (en) Reflective long period fiber grating sensor of single -ended coating film
CN114018432A (en) All-fiber end face integrated minimum temperature hydraulic sensor and construction method thereof
CN210603344U (en) Reflection type large-angle inclined grating optical fiber sensor
EP4047401A1 (en) Polymer fiber optic extension for sensing applications
CN209542450U (en) A kind of high refractive index liquid measuring device based on surface plasma body resonant vibration
CN102721666A (en) Surface plasma resonance refractive index sensor with angular drift adaptive structure

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee