CN1327200C - 数字激光图像测振仪 - Google Patents

数字激光图像测振仪 Download PDF

Info

Publication number
CN1327200C
CN1327200C CNB2004100092071A CN200410009207A CN1327200C CN 1327200 C CN1327200 C CN 1327200C CN B2004100092071 A CNB2004100092071 A CN B2004100092071A CN 200410009207 A CN200410009207 A CN 200410009207A CN 1327200 C CN1327200 C CN 1327200C
Authority
CN
China
Prior art keywords
cpu
data
power supply
vibration
program storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100092071A
Other languages
English (en)
Other versions
CN1584517A (zh
Inventor
郑红
姚俊
孙晓涛
李子鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Beijing University of Aeronautics and Astronautics
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CNB2004100092071A priority Critical patent/CN1327200C/zh
Publication of CN1584517A publication Critical patent/CN1584517A/zh
Application granted granted Critical
Publication of CN1327200C publication Critical patent/CN1327200C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种数字激光图像测振仪,包括CPU、激光发射器、摄像头、显示器、键盘、系统电源。其激光发射器发射的信号,通过迈克尔干涉仪原理构成的光路,使发射的激光束与被测振动面的振动波发生干涉,干涉信号通过反射光路返回到摄像头,摄像头与视频转换电路相连,将干涉光强的变化信号转换为电信号,并传输到CPU,CPU对接收的电信号通过抗干扰算法、信号重构算法、滤波算法、信号变换算法得到检测结果。CPU采用Motorola的龙珠MXL为信号处理核心的电路设计方案。本发明的测振仪不同于常规激光测振只能局限于低频(几百赫兹以下)、小幅值(微米级以下)的测振限制,实现了满足常规旋转机械故障诊断需求的高频(几千赫兹数量级)、大幅值(毫米数量级)的激光非接触测振,电路的结构简单,体积小、重量轻、低功耗、低成本,是一种高性能非接触数字化检测仪器。

Description

数字激光图像测振仪
技术领域
本发明涉及一种测量振动的测量器具,更特别的是指一种具有高频(0.01HZ~10KHZ)、大幅度(0.001~20mm)振动参数测量范围的非接触激光测振仪。本仪器采用了对接收的图像信息通过抗干扰算法、信号重构算法、滤波算法、信号变换算法得到检测结果,改变了一般非接触激光测振只能用于低频、小信号测振的局面,可以用来代替一般的常用接触式旋转机械故障诊断仪器,其测量范围完全可以达到使用需要。
背景技术
测振仪作为振动测试和分析最常用的工具广泛应用于工业领域,研制和开发非接触、强功能、成本低、体积小、重量轻的便携式非接触智能测振仪具有重要的现实意义。对于便携式非接触测振仪,从技术角度而言,考虑硬件的体积、成本、重量等物理因素,必不可少的环节是振动信号的非接触传递方式,光学效应是常见的非接触测量方法,但是,由于光学干涉信号的复杂性,以及现代光学和电子器件的局限性,使得一般的激光非接触测振范围非常有限,它们检测的振动频率在几百赫兹以下,振幅范围为微米数量级,因此,常规的振动信号检测始终难以使用激光非接触测量方法,这一领域一直各种接触式测量方法的天下。本发明提出一种具有高频、大幅值测量范围的非接触激光测量方法,通过特殊的硬件结构和软件处理算法,使得非接触激光测振范围可以达到常规测量范围,例如,频率在几千赫兹,幅值在几十毫米数量级,同时,不增加仪器的硬件成本。所以,本发明对于数字信号处理方法在非接触测振方法中的应用具有深刻的理论意义,对于常规旋转机械的非接触故障诊断的振动检测应用具有广泛的实用价值。另外,通过对光学信号进行折叠处理实现冗余采集,再利用数字滤波消除采样混叠的方法,也为直接利用光学传感信息实现抗混淆提供了基本方法。同时,电源管理的“零”功耗化,电路布局的紧凑化,使在硬件资源有限的情况下,考虑软件的性能、功能、效率,必须面对的问题是非接触振动信号的提取、高精度振动参数的实时检测、多功能仪器管理的合理组织、高效率信号处理算法的实现。
发明内容
本发明的目的之一是提供一种以MC9328MXL为核心CPU的非接触激光测振仪器。
本发明的另一目的是提供一种采用基于非接触激光测振的光路和电路结合的振动信号采集方法。利用高性能信号重构算法、高性能数字滤波器,重构振动信号,消除噪声影响,并实现硬件结构的微功耗待机,软件控制的零功耗调度的低功耗的检测结果的测振装置。
本发明的一种数字激光图像测振仪,包括CPU、激光发射器、光路、摄像头、视频接口电路、显示电路、电源电路。其激光发射器与CPU相连,发射的激光束通过迈克尔干涉仪将检测的振动光学信号反射到摄像头上,摄像头与CPU的视频转换模块相连,CPU电路分别与电源管理电路、显示器、键盘、可编程只读存储器、存储器相连接。
所述的数字激光图像测振仪,摄像头采集振动干涉图像,并将其图像信息实时采集、实时存储至CPU的存储器中;CPU控制激光发射器发射时间、强弱。
所述的数字激光图像测振仪,设有RS232接口。可以通过该接口实现同PC机或上位机的数据交换。
本发明的优点:可适用于高频(几千赫兹数量级)、大幅值(毫米数量级)的激光非接触测振,扩展了光学非接触测振的测量范围,使得的常规的旋转机械的振动故障诊断也可以使用非接触检测方法。同时,电路的结构简单,体积小、重量轻、低功耗、低成本,是一种高性能非接触数字化检测仪器。
附图说明
图1是本发明的结构框图。
图2是光路与摄像头、CPU的连接示意图。
图3是本发明的控制流程框图。
图4是本发明CPU电路原理图。
图5是本发明存储器电路原理图。
图6是本发明串口、系统电源电路图。
图7是本发明CPU接口电路图。
具体实施方式
下面将结合附图对本发明作进一步的说明。
本发明的一种数字激光图像测振仪,首先根据Michelson激光干涉原理,把入射光分为参考光和测量光,测量光从振动面反射回来与参考光干涉,并通过光阑2去燥后在摄像头上得到干涉图像,摄像头将干涉光强图像转化为电信号,输出给CPU,CPU通过摄像头的驱动程序获得激光干涉图像的数字信号,并将其存储到存储器中。当采集一段时间以后,得到一系列的干涉图像信息,CPU对采集的信息进行变换、重构、二次采样、微分得到物体振动的位移、速度、加速度等振动物理量的频率和振幅,并将其显示在LCD上。CPU还可通过串口将处理得到的数据上传至PC机中去,这些操作可以通过键盘进行设置和控制。
软件模块由三大部分组成:嵌入式LinuxOS、测振系统初始化以及三重采样法数字信号处理。嵌入式LinuxOS提供了一个简捷强大的用户操作环境、内存管理环境和复杂计算环境;初始化模块为后续的视频采集、数据传输以及LCD显示、上下位机通信做必要准备工作;三重采样法信号处理算法可以通过普通CMOS数字摄像头从带宽几兆级别的宽带调频光强信号中提取出被测振动信号的频率和幅值。
在本发明中,CPU与摄像头和激光发射器连接,所述摄像头采集经光路处理后的振动干涉图像,并将其图像信息输出至CPU的CSI模块,CSI模块对接收的振动干涉图像信息转换为电信号,并将其输出至CPU配置的存储器,CPU对接收的电信号通过抗于扰算法、信号重构算法、滤波算法、信号变换算法得到检测结果,并将其结果输出至显示器进行显示;所述激光发射器发射时间、强弱通过CPU控制,其激光发射器发射的光信号,使发射的激光束与被测振动面的振动波发生干涉,干涉信号通过反射光路返回到摄像头。参见图1、2所示。
请参见图3所示,本发明的控制流程为:系统初始化,判断测量的按键是否按下,若未按下,则继续查询,若按下,测进行测量,如驱动激光发射器发射激光,驱动摄像头,采样激光干涉图像,并对其进行实时存储,当采集图像达到设定值时,对采集的图像数据进行信号处理,包括变换、重构、二次采样、微分得到物体振动的位移、速度、加速度等振动物理量的频率和振幅,将测量结果显示到LCD上,再判断测量是否停止,如果不停止,则重复上述过程继续循环测量,如果停止,则结束测量。
CPU采用Motorola公司的MC9328MXL芯片,BGA封装,共有256个端子。在该装置中由于摄像头采集的振动干涉图像为实时采集实时存储方式,故对于该芯片配置有2块程序存储器和数据存储器。其各端子联接如下:MC9328MXL CPU U1的电源输入K8、H5、J5、K5、H6、J6、L6、J8、K10、K9、A10、A6端接+3.3V电源,电源输入H9、R15、J15、A13端接+1.8V电源,地输入A1、T1、K6、M6、H7、J7、K7、L7、J10、J9、A7、A4端接数字地,H8、T16、J16、B13接模拟地;
系统电源U3的输入电压+5V,输出3.3V和1.8V分别提供给CPU U1的3.3V和1.8V的电压输入端。
CPU U1的地址线输出T2、P1、N1、M1、M4、L2、L1、K3、K1、J2、J1、H1、H3、G1、F5、G2、F1、F4、E1端分别接程序存储器A U6的25、24、23、22、21、20、19、18、8、7、6、5、4、3、2、1、48、17、16端,CPU U1的地址线输出T2、P1、N1、M1、M4、L2、L1、K3、K1、J2、J1、H1、H3、G1、F5、G2、F1、F4、E1端分别接程序存储器BU7的25、24、23、22、21、20、19、18、8、7、6、5、4、3、2、1、48、17、16端,CPU U1的地址线输出T2、P1、N 1、M1、M4、L2、L1、K3、K1、J2、J1、H1端分别接数据存储器A U8的23、24、25、26、29、30、31、32、33、35、20、21端,CPU U1的地址线输出T2、P1、N1、M1、M4、L2、L1、K3、K1、J2、J1、H1端分别接数据存储器BU9的23、24、25、26、29、30、31、32、33、35、20、21端,CPUU1的数据线低16位R9、N8、P7、D2、N6、R6、P5、N4、R5、P2、N3、M3、M2、L3、L5、L4端分别接程序存储器A U6的29、31、33、35、38、40、42、44、30、32、34、36、39、41、43、45端,CPU U1的数据线低16位R9、N8、P7、D2、N6、R6、P5、N4、R5、P2、N3、M3、M2、L3、L5、L4端分别接数据存储器A U8的2、4、5、7、8、10、11、13、42、44、45、47、48、50、51、53端,CPU U1的数据线高16位K2、K4、J3、J4、H4、G5、H2、G4、G3、F3、E4、F2、E3、D3、D2、C2端分别接程序存储器B U7的29、31、33、35、38、40、42、44、30、32、34、36、39、41、43、45端,CPU U1的数据线高16位K2、K4、J3、J4、H4、G5、H2、G4、G3、F3、E4、F2、E3、D3、D2、C2端分别接数据存储器B U9的2、4、5、7、8、10、11、13、42、44、45、47、48、50、51、53端,CPU U1的T3、P4、T10、N10端分别接程序存储器A U6的28、26、11、12端,CPU U1的T3、P4、T10、N10端分别接程序存储器B U7的28、26、11、12端;程序存储器A U6和程序存储器B U7的37、47端同时与系统电源U3的17端连接,程序存储器A U6和程序存储器B U7的46、27端分别接数字地,CPU U1的M8、M5、R11、T10、L8、M9、T5、R10、N9端分别接数据存储器A U8的34、38、37、16、17、18、19、15、39端,CPU U1的M8、M5、R11、T10、L8、M9、T5、T9、P9端分别接数据存储器B U9的22、38、37、16、17、18、19、15、39端;数据存储器A U8和数据存储器B U9的1、14、27、3、9、49、43端接系统电源U3的17端,数据存储器A U8和数据存储器B U9的41、28、54、6、12、46、52端接数字地。
在本发明中,对CPU U1配置有专门的复位电路,CPU U1的复位信号由三态门U4和复位芯片U5产生,CPU U1的M10端接到三态门U4的3端,三态门U4的3端和6端通过上拉电阻R6、R7接到+3.3V电源,三态门U4的2和5端接数字地,三态门U4的1和4端都接到复位芯片U5的7端;复位芯片U5的2端接系统电源U3的17端,复位芯片U5的3和4端接数字地,复位芯片U5的1端通过按键S4接到地。
CPU U1上的LCD数据线H11、G16、H12、H16、H13、H14、J11、J12、J13、H15、K11、J14、K12、K1 3、K14、K16端分别接到LCD接口JP2的25、10、9、8、7、26、27、14、13、12、11、29、18、17、16、15端,G15接到JP2的4端,G14接到JP2的5端,F15接到JP2的6端,G13接到JP2的3端、G12接到JP2的19端,F16接到JP2的21端,F12接到JP2的22端,H10接到JP2的23端,G11接到JP2的24端,JP2的1端接U3的1端,2端接数字地。
CPU U1的摄像头(CSI)的数据线L13、L14、M12、M16、M15、N14、L15、L16接到摄像头接口JP1的3、5、7、9、11、13、15、17端,L12端接到JP1的4端,M14接到JP1的6端,R7接到JP1的8端,P14接到JP1的10端,P15接到JP1的12端,M14接到JP1的14端,T4接到JP1的16端,N13接到JP1的18端,JP1的1端接U3的17端,2端接数字地。
CPU U1的P14端接键盘U10的22端,P15端接U10的23端,P6端通过电阻R1接U10的1端实现中断。U1的4~11端接到键盘接口JP3的1~8端。U1的3、2、21通过电阻R2接系统电源U3的17端,12端接数字地,24端接系统电源U3的17端,4~7端通过排电阻RP1和C3、C4、C5、C6分别接系统电源U3的17端。
CPU U1的P12接到开关组S2的1端,R13接到S2的2端,N12接到S2的3端,P11接到S2的4端,T13接到S2的5端,M11接到S2的6端,U1的P12、R13、N12、P11、T13、M11端同时通过电阻排R10的14~9端相连并接3.3V电源,S2的7、8、9、10、11、12接数字地。
CPU U1的C9端接通讯接口U2的4端,G8端接U2的3端,A8端接U2的6端,A9端接U2的1端:通讯接口U2的7、19、8、20端分别接串口J1的2、8、7、3端,U2的13和14端之间接电容C12,15和16端接电容C11端,9端接+3.3V电源,11、12端分别通过电容C13、C14接数字地,10和15端通过S1接地,17端通过电容C15接地,U2的7、19、8、20端分别通过电容C17、C18、C19、C16接数字地。J1的5端接地。
CPU U1的N7端接程序存储器BU7的5端。U7的1端接5V电源,2端接到电源接口JP5的1端,5端通过上拉电阻R11接+3.3V电源,2端经电感L1反馈给4端,JP5的2端接地。
下面对本发明的硬件设计进行况明:
(一)摄像头的选择
按照制作工艺分,摄像头主要有CCD和CMOS两种。由于CCD摄像器件有光照灵敏度高、噪声低、像元尺寸小等优点,所以一直主宰着图像传感器市场。然而随着标准CMOS大规模集成电路技术的不断发展,过去CMOS图像摄像头制造工艺中不易解决的技术难关现在都能找到相应解决的途径,从而大大改善了CMOS图像摄像头的图像质量,图像摄像头的高度集成化减小了系统的复杂性,降低了制造成本,仅为普通CCD图像摄像器件的二十分之一,对获得的图像信息读出及处理变得简单而快捷,能设计出更灵巧的小型成像系统,它具有单一工作电压(电源电压为3.3V或5V)、功耗低(仅为普通CCD图像传感器的十分之一)、像素缺陷率低(仅为普通CCD图像摄像器的二十分之一)、可与其它的CMOS集成电路兼容,对局部像素图像的编程可随机访问等优点。由于研究人员的不懈努力以及CMOS制造工艺的长足进步,CMOS图像传感器的性能指标已可接近甚至超过CCD图像摄像头,而其结构紧凑、供电简单、成本低廉等固有的优点更可为其拓展广阔的应用空间。所以本设计采用了CMOS摄像头。鉴于本系统对图样分辨率要求不高,可以选用CSEM公司的APS64lin,分辨率为64×64。
(二)CPU芯片选择
Dragon Ball(龙珠)MXL是Motorola生产的基于ARM920T内核的微处理器,主频最高可达200MHz。ARM920T体系结构的处理器有主要以下特点:支持32位的RISC(精简指令集处理器),五级流水线操作,内存管理器单元支持Linux、WinCE、Symbian等操作系统,具有统一的数据和指令缓存,具有ETM(Embedded Trace Macrocell)接口,可以使用标准JTAG接口进行调试。关键的一点是,ARM体系在保证高性能高可靠性的同时尽可能地减少了芯片的体积和功耗。
在本发明中,采用的MC9328MXL芯片上扩充了很多集成的功能模块,比如LCD控制器、SDRAM控制器、CMOS摄像头接口(CSI)、UART串口等,使得用它来构建嵌入式应用系统非常便利,而且很适合于本激光测振系统的场合。
(三)视频采集与CPU的接口
本系统图像采集使用的是CMOS摄像头,输入一路主时钟和一路I2C的串行控制信号;输出三路视频时钟和8位数字图像信号;而MC9328MXL片内集成了CSI接口,可以通过配置该端口以及I2C端口直接驱动摄像头采集振动干涉图像,将信息数据输出到CSI内部FIFO高速缓存中,供内核直接读取,或者以DMA方式存储到外扩的RAM或者Flash中。
(四)外扩存储器
MC9328MXL芯片有128K的SRAM以及各16KB的指令和数据Cache,如果要系统得以运作的话,必须外扩存储器。MXL为外扩存储器提供了良好的接口和灵活的寻址方式。根据功能需求,本系统外扩了2个2M×16bit的Flash,以及2个4Band×1M×16bit的SDRAM。
(五)电源设计
系统电源采用TPS37HD318芯片,在系统设计时主要通过以下手段降低功耗,提高待机时间:采用低功耗,优化硬件设计,尽可能减少器件数量,并选用低功耗器件:尽量用软件实现功能,保证速度和功耗的性能优化。
在电源管理时的基本任务则可归结为避免不必要的能耗以延长电池的寿命。降低功耗主要从控制关机时和开机时的耗电量两个方面考虑。
为了降低成本、减小体积和提高可靠性,在便携式产品设计时,通——断机械开关被采用得越来越少,而且现代的仪器通常都要求有自动关机功能,所以在本设计中没有使用通断型机械开关实现电源的关断,而是使用一个瞬时接通的按钮和一个简单的逻辑电路实现手动关机和自动关机功能。
本发明的测振仪经测试其技术指标为:测量范围:位移0.001~20.0mm,速度0.010~1200cm/s,加速度0.100~1500m/s2,频率范围:位移1Hz~10kHz,速度1Hz~10kHz,加速度1Hz~10kHz,允许误差:幅值线性相对误差≤±5%±2个数,参考灵敏度不确定度≤3%,具有存储功能,可存储100个测试点,具有删除功能,对存储测试值可任意删除,可设置测量界限,对界限外测量值自动报警,公英制转换,连续工作时间48小时。

Claims (7)

1、一种数字激光图像测振仪,包括有CPU、显示器、键盘、系统电源,以及通过迈克尔干涉仪原理构成的光路,其特征在于:还包括激光发射器、摄像头,CPU与摄像头和激光发射器连接,所述摄像头采集经光路处理后的振动干涉图像,并将其图像信息输出至CPU的CSI模块,CSI模块对接收的振动干涉图像信息转换为电信号,并将其输出至CPU配置的存储器,CPU对接收的电信号通过抗干扰算法、信号重构算法、滤波算法、信号变换算法得到检测结果,并将其结果输出至显示器进行显示;所述激光发射器发射时间、强弱通过CPU控制,其激光发射器发射的光信号,使发射的激光束与被测振动面的振动波发生干涉,干涉信号通过反射光路返回到摄像头。
2、根据权利要求1所述的数字激光图像测振仪,其特征在于:硬件电路采用数字电路,CPU采用MC9328MXL芯片,系统电源采用TPS73HD318芯片,存储器采用2块程序存储器AM29LV320MT芯片,2块数据存储器HY57V641620芯片。
3、根据权利要求1所述的数字激光图像测振仪,其特征在于:
CPU U1的电源输入K8、H5、J5、K5、H6、J6、L6、J8、K10、K9、A10、A6端接+3.3V电源,电源输入H9、R15、J15、A13端接+1.8V电源,地输入A1、T1、K6、M6、H7、J17、K7、L7、J10、J9、A7、A4端接数字地,H8、T16、J16、B13接模拟地,
CPU U1的地址线输出T2、P1、N1、M1、M4、L2、L1、K3、K1、J2、J1、H1、H3、G1、F5、G2、F1、F4、E1端分别接程序存储器AU6的25、24、23、22、21、20、19、18、8、7、6、5、4、3、2、1、48、17、16端,
CPU U1的地址线输出T2、P1、N1、M1、M4、L2、L1、K3、K1、J2、J1、H1、H3、G1、F5、G2、F1、F4、E1端分别接程序存储器BU7的25、24、23、22、21、20、19、18、8、7、6、5、4、3、2、1、48、17、16端,
CPU U1的地址线输出T2、P1、N1、M1、M4、L2、L1、K3、K1、J2、J1、H1端分别接数据存储器AU8的23、24、25、26、29、30、31、32、33、35、20、21端,
CPU U1的地址线输出T2、P1、N1、M1、M4、L2、L1、K3、K1、J2、J1、H1端分别接数据存储器B U9的23、24、25、26、29、30、31、32、33、35、20、21端,
CPU U1的数据线低16位R9、N8、P7、D2、N6、R6、P5、N4、R5、P2、N3、M3、M2、L3、L5、L4端分别接程序存储器AU6的29、31、33、35、38、40、42、44、30、32、34、36、39、41、43、45端,
CPU U1的数据线低16位R9、N8、P7、D2、N6、R6、P5、N4、R5、P2、N3、M3、M2、L3、L5、L4端分别接数据存储器AU8的2、4、5、7、8、10、11、13、42、44、45、47、48、50、51、53 端连接,
CPU U1的数据线高16位K2、K4、J3、J4、H4、G5、H2、G4、G3、F3、E4、F2、E3、D3、D2、C2端分别接程序存储器B U7的29、31、33、35、38、40、42、44、30、32、34、36、39、41、43、45端,
CPU U1的数据线高16位K2、K4、J3、J4、H4、G5、H2、G4、G3、F3、E4、F2、E3、D3、D2、C2端分别接数据存储器BU9的2、4、5、7、8、10、11、13、42、44、45、47、48、50、51、53 端连接,
CPU U1的T3、P4、T10、N10端分别接程序存储器AU6的28、26、11、12端,
CPU U1的T3、P4、T10、N10端分别接程序存储器BU7的28、26、11、12端,;
程序存储器AU6和程序存储器BU7的37、47端同时与系统电源U3的17端连接,程序存储器AU6和程序存储器BU7的46、27端分别接数字地;
CPU U1的M8、M5、R11、T10、L8、M9、T5、R10、N9端分别接数据存储器AU8的34、38、37、16、17、18、19、15、39端,
CPU U1的M8、M5、R11、T10、L8、M9、T5、T9、P9端分别接数据存储器BU9的22、38、37、16、17、18、19、15、39端;
数据存储器AU8和数据存储器BU9的1、14、27、3、9、49、43端接系统电源U3的17端,数据存储器AU8和数据存储器BU9的41、28、54、6、12、46、52端接数字地。
4、根据权利要求1所述的数字激光图像测振仪,其特征在于:对CPU U1配置有复位电路,CPU U1的复位信号由三态门U4和复位芯片U5产生,CPU U1的M10端接到三态门U4的3端,三态门U4的3端和6端通过上拉电阻R6、R7接到+3.3V电源,三态门U4的2和5端接数字地,三态门U4的1和4端都接到复位芯片U5的7端;复位芯片U5的2端接系统电源U3的17端,复位芯片U5的3和4端接数字地,复位芯片U5的1端通过按键S4接到地。
5、根据权利要求1所述的数字激光图像测振仪,其特征在于:摄像头对振动干涉图像采用实时采集、实时下传方式提供给CPU。
6、根据权利要求1所述的数字激光图像测振仪,其特征在于:CPU采用变采样间隔的方式进行信号重构,获得信号的振动参数,增加测量的范围,频带增宽。
7、根据权利要求1所述的数字激光图像测振仪,其特征在于:测量范围:位移0.001~20.0mm,速度0.010~1200cm/s,加速度0.100~1500m/s2,频率范围:位移1Hz~10kHz,速度1Hz~10kHz,加速度1Hz~10kHz。
CNB2004100092071A 2004-06-15 2004-06-15 数字激光图像测振仪 Expired - Fee Related CN1327200C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100092071A CN1327200C (zh) 2004-06-15 2004-06-15 数字激光图像测振仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100092071A CN1327200C (zh) 2004-06-15 2004-06-15 数字激光图像测振仪

Publications (2)

Publication Number Publication Date
CN1584517A CN1584517A (zh) 2005-02-23
CN1327200C true CN1327200C (zh) 2007-07-18

Family

ID=34600247

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100092071A Expired - Fee Related CN1327200C (zh) 2004-06-15 2004-06-15 数字激光图像测振仪

Country Status (1)

Country Link
CN (1) CN1327200C (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158655B (zh) * 2007-11-19 2010-12-15 北京航空航天大学 用于单晶取向测试仪的激光瞄准图象监视装置
CN105675115B (zh) * 2016-01-18 2019-03-12 佛山科学技术学院 一种激光多普勒在线测振系统及方法
CN107560814A (zh) * 2017-09-29 2018-01-09 浙江省计量科学研究院 激光测振仪的可靠性试验系统
CN110031779B (zh) * 2019-03-18 2020-09-25 郑州工程技术学院 一种电动汽车锂电池电源故障检测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010032514A1 (en) * 2000-03-13 2001-10-25 Suzuki Motor Corporation Vibration measuring apparatus and method
CN1477379A (zh) * 2003-07-11 2004-02-25 天津大学 激光振动检测方法及其实施装置
JP2004138590A (ja) * 2002-10-21 2004-05-13 Graphtec Corp レーザドップラ振動計

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010032514A1 (en) * 2000-03-13 2001-10-25 Suzuki Motor Corporation Vibration measuring apparatus and method
JP2004138590A (ja) * 2002-10-21 2004-05-13 Graphtec Corp レーザドップラ振動計
CN1477379A (zh) * 2003-07-11 2004-02-25 天津大学 激光振动检测方法及其实施装置

Also Published As

Publication number Publication date
CN1584517A (zh) 2005-02-23

Similar Documents

Publication Publication Date Title
CN102183726A (zh) 一种基于fpga的集成电路芯片测试系统与方法
CN201408167Y (zh) 一种尿液分析仪的颜色采集装置
CN102538682A (zh) 发动机气门升程及配气相位自动测试装置
CN1327200C (zh) 数字激光图像测振仪
CN101873349B (zh) 无线传感器网络的多节点在环境中实时能量消耗监测系统
CN204965085U (zh) 一种海洋资料浮标数据采集控制系统
CN106525038A (zh) 一种用于航姿测量的小型光纤imu采集系统及其采集方法
CN102435219A (zh) 一种航天相机调焦编码器调试测控系统
CN206670793U (zh) 一种无线振动检测仪
CN104154992A (zh) 一种基于FPGA和Qsys的高精度照度测量系统及方法
CN100386642C (zh) 发电机实时功角监测装置
CN102944778B (zh) 一种便携式电力系统低频振荡检测装置
CN209707590U (zh) 一种三相动态谐波电能表装置
CN104007320A (zh) 一种数字rlc测试仪
CN201096622Y (zh) 柴油机燃烧压力动态采集系统
CN105954012A (zh) 基于arm9嵌入式平台的激光器线宽测量仪
CN202305789U (zh) 一种进行双轨制误差计算的电能表检定装置的取样系统
CN202329560U (zh) 一种基于pci接口的光栅尺数据采集卡
CN108132636A (zh) 基于单片机控制的多通道数据采集处理系统
CN100437404C (zh) 自动化测量控制器
CN110174523A (zh) 一种基于光电传感器的转速测量装置
CN1294412C (zh) 一种长输管道阴极保护信号巡检监测系统及监测方法
CN2767984Y (zh) 一种具有无线交互功能的智能探头
CN206787618U (zh) 一种便携手持式农业环境监测仪
CN108119317A (zh) 一种风机叶片振动检测装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070718

Termination date: 20100615