CN1318361C - 使用自由基路线和链反应,在最小废物的情况下,使甲烷和其它轻质烷烃无水转化成甲醇和其它衍生物 - Google Patents
使用自由基路线和链反应,在最小废物的情况下,使甲烷和其它轻质烷烃无水转化成甲醇和其它衍生物 Download PDFInfo
- Publication number
- CN1318361C CN1318361C CNB2003801079557A CN200380107955A CN1318361C CN 1318361 C CN1318361 C CN 1318361C CN B2003801079557 A CNB2003801079557 A CN B2003801079557A CN 200380107955 A CN200380107955 A CN 200380107955A CN 1318361 C CN1318361 C CN 1318361C
- Authority
- CN
- China
- Prior art keywords
- methane
- free radical
- reaction
- methyl
- oxide compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
具有低热力学势垒的试剂与方法可使低级烷烃如甲烷转化成甲醇或其它衍生物。一种体系使用小量可分解成两个自由基的非盐自由基引发剂如过二硫酸、二酸过氧化物。这些自由基将从甲烷中移走氢,生成甲基自由基。添加三氧化硫,和甲基自由基与之结合形成甲磺酸自由基。添加甲烷,和甲磺酸自由基将从中移走氢原子,形成稳定的甲磺酸(MSA),同时生成新的甲基自由基以维持链反应。移出的MSA可被销售或者使用,或者它可分解成甲醇(所述甲醇可就地使用或者以液体形式运输)和二氧化硫(所述二氧化硫可被氧化成三氧化硫并返回到反应器中)。这一无水体系不生成盐和生成最小的废物。可供替代的体系使用具有亲电和亲核区的双官能试剂(如溴酸酯-硫酸酯化合物),利用symphoric和邻位效果,在甲烷内产生配位的质子和电子偏移,结果生成具有低能量势垒的过渡中间体,从而允许选择形成可裂化释放甲醇的中间体。任何一种体系可改进由己烷转化成甲醇的选择率和产率。
Description
相关申请
基于35 USC 119(e),本申请要求2002年11月5日提交的临时申请60/424,091和2002年6月21日提交的临时申请60/480,183的权益。
发明领域
本发明涉及有机化学,和涉及甲烷(或其它轻质烷烃)的化学处理,以将其转化成甲醇或其它有用的衍生物。
发明背景
尽管在至少60年来许多研究小组的深入努力,但没有人以前成功地发现且清楚地确定将甲烷转化成甲醇或其它衍生物的有效且经济的化学反应流程。
甲烷(CH4)是高度挥发和爆炸性的气体,并且它在原油内的存在使得原油的处理和运输更加困难、危险和昂贵。作为例举,若原油将被泵送到管道内,高的甲烷含量将导致在管道内形成大的气泡。若允许形成这些气泡,则它们以相当于弹簧的方式开始起作用,和每一次泵送将简单地压缩气泡,而不是驱动液体向前进。因此,在原油可在管道内泵送之前,必须回收甲烷。
类似地,在原油可装载在油槽船或储罐内之前,也必须除去甲烷。否则,当甲烷从原油中选出时,因甲烷产生的高压将要求更坚固和更昂贵的储罐,以及复杂和昂贵的蒸汽处理体系,并且挥发性甲烷从油中恒定地冒出将大大地增加爆炸或起火的危险。
因此,从石油井口中冒出的原油通常必须通过分离器,以便在原油可被安全地泵送到管道、油槽船或储罐内之前,从液体组分中除去甲烷。
在美国的许多小型和中等规模的油田内,和在非洲、印度尼西亚、阿拉斯加北坡(North Slope)的许多非常大型油田和其它地方(其中包括许多海上油田和平台),附近没有可输送甲烷气体到商业市场的气体管道。结果,在这些原油装置内产生的甲烷通常称为诸如“stranded”气体或“废气”之类的术语。相对小部分的甲烷以燃料形式燃烧,以保持产油设备的运行,但通常仍残留大体积的气体,和不可能被有效地利用。也不可能将其释放到大气内,这部分是由于它可在释放位置附近产生爆炸危险,和部分由于在对温室效应和全球变暖的贡献方面,以重量为基础,它的潜力比二氧化碳大约20倍。
因此,毫不夸张地说每月价值数十亿美元的甲烷气体必须作为废气被弃置。它们中的大多数以浪费的、没有收益的火焰形式燃烧(释放大量的二氧化碳,一种加剧全球变暖问题的温室气体)。另外大部分被注射返回到地下、
“stranded”天然气的另一主要资源位于不产生大量原油的天然气产地内。许多这种天然气产地已知存在于世界各地,但该气体不可能从该产地提取,然后以经济上可行的方式运输到一定距离的商业市场处。
没有被利用的甲烷的再一资源位于煤矿,因为甲烷通常与煤炭相关。另外,在各类废物处理工厂处产生较小量的甲烷,其中包括处理有机废物的填埋场,和处理大量动物粪肥的牲畜工厂。尽管当聚焦于“stranded”气体的大型储备的人们讨论在偏远的油田和气体产地处的“stranded”气体时,通常排除这种资源,但当在全球水平上以聚集体的形式考虑时,许多较小的资源加起来成为非常大的数量。
许多人们和公司尝试创造各种粪肥使用“stranded”甲烷气体,然而,所有这些努力因非常高的的花费和操作成本严重地受到局限。作为一个实例,已建立了特别设计的油槽船,其可跨越海洋输送“液化的天然气”(LNG)。液化的天然气要求极冷(“深冷”)的温度,远远低于水的冰点(LNG典型地在约-260°F的温度下输送)。因此,LNG油槽船典型地含有3或4个巨大的球形绝缘储罐(常常成为“保温瓶”),其典型地以在这类海洋航行轮船的甲板上方一排3或4个巨大的半圆形形式被部分地看到。
特殊设计的LNG油槽船,冷冻天然气到比0度低数百度所要求的制造设备,和以安全的方式储存、处理以及泵送LNG所要求的特殊设计类型的泵和管道,极端昂贵,对于大的设备和油槽船来说,价值数十亿美元。同样重要的是,它们燃烧掉大部分原料甲烷,以驱动冷却和加热设备。为了驱动使甲烷骤冷到它将液化的温度下的冷冻体系,这种设备通常燃烧掉全部甲烷原料的约40%;因此一旦液化的甲烷被装载到油槽船上,运输到目标港口,并从油槽船中卸载时,必须燃烧另外大部分甲烷,为的是再蒸发其余的甲烷并使之升高到可通过常规的管道处理的合理操作温度。因此,LNG体系典型地必须燃烧掉几乎一半它的全部起始原料,以便输送另外一半到商业市场上。
类似的操作经济学也可用到通常称为合成气,或简单地称为“Syngas”的产品上。该气体主要是一氧化碳和氢气的混合物。可通过使用甲烷作为主要原料,通常使用镍催化剂,通过“蒸汽重整”而生成所述合成气,但该方法要求大量的能量来驱动它。因此,必须燃烧约20-30%的天然气供料,将其余转化成Syngas。因此损耗问题甚至更加严重,因为所得合成气典型地要求另一高的吸热(能耗)反应,将合成气转化成液体烃和/或烷醇(例如甲醇等)。在许多文章、专利和书籍的章节中公开了合成气的处理(参见,例如Olah,HydrocarbonChemistry,1995,第15页)。
对于“stranded”甲烷来说,产生经济上可行用途的其它努力包括将甲烷就地转化成有用的化学原料。作为一个实例,来自甲烷分子的氢原子可被化学处理,使氮气(在大气中以N2的形式存在)转化成氨(NH3)。然后可将氨转化成肥料。然而,这不是有效的用途,和甚至在急需肥料的发展中国家,它也没有被推广。
由于上述反应无一是有效的,因此许多研究者视图寻找将甲烷转化成甲醇(即,甲基醇)的方法。甲醇具有可写成CH3OH、H3COH或H3C-OH的化学式;正如所有这三个化学式所示,它具有三个氢原子,和一个(-OH)羟基,所有键合到中心的碳原子上。此处优选的化学式是H3C-OH,因为该变体有助于集中注意在某一化学键上。
由于类似的原因,此处的各种化学式以集中注意在一定的组成结构和化学键上的方式书写。例如,对于甲磺酸,此处优选的化学式是H3C-SO3H,和对于过二硫酸(Marshall’s acid),此处优选的化学式是HO3SO-OSO3H,而不是较简单的变体H2S2O8。
原则上,因两个原因,将甲烷转化成甲醇是高度具有吸引力的反应。第一,它仅仅要求添加单个氧原子到甲烷上,和氧原子可丰富地获自大气。第二,甲醇是可在常温和常压下容易和安全地处理的液体,不要求特殊和昂贵的设备达到低温或维持非常高的压力。
甲醇路线甚至更加具有吸引力,因为甲醇具有许多重要和有价值的用途。作为一个实例,它本身是良好的清洁燃烧的燃料,和可直接在被微调过的使用甲醇的内燃机内使用;确实,它是某些类型的赛车的燃料选择,其中包括需要清洁燃烧燃料的高功率的高速赛车。由于在那些汽车内的发动机通常仅仅非常短时间段地运行,因此它们需要清洁燃烧的燃料,所述燃料将不会生成逐渐累积且使发动机结垢的颗粒或残渣。因此,若可获得足量甲醇,则在清洁运行的汽车内,它可作为主要或唯一的燃料燃烧。
甲醇也可以直接类似于乙醇的方式,用作常规汽油的添加剂。当以该方式使用时,甲醇将增加汽油的体积(进而要求较少的汽油填充储罐),和它也可辅助降低来自这种汽车的空气污染。
甲醇也是一种用于各种化学制造操作的非常有用的化学原料。实际上,甲醇上的羟基充当“手柄(handle)”形式,允许甲醇容易被任何数量的其它试剂抓取和控制,其方式是采用甲烷(一种不便于处理的完全对称的分子)的情况下不可能进行的。
由于所有这些原因,甲醇的许多商业市场快速兴起和初具雏形,若大量的“stranded”甲烷气体可经济地转化成甲醇的话。在偏远的油或气产地和生成浪费或不想要的甲烷气体的其它资源处,通过有效利用有价值的能量供应和化学原料,大规模生产甲醇,将提供巨大的商业和创造就业的好处。通过减少大量二氧化碳释放到大气内,还提供主要的环境好处。
还应当意识到,即使在非常大的油田处气体的供应可证明气体管道的结构和操作合理,若可有效地实现甲醇的转化,则可避免结构和操作花费、环境的破坏,和因该管道产生的其它成本和负担(可包括保护它以防恐怖袭击的可能)。作为一个实例,美国和加拿大政府,以及各种私人公司,必须尽快决定是否建造气体管道,从阿拉斯加北坡经阿拉斯加和加拿大这两个高度敏感和脆弱的北极区域到达可将气体供料到加拿大南部和美国北部的已有管道体系的位置处,目前估计成本为至少150亿美元。然而,已有的阿拉斯加的输油管道(这些管道几乎直接向南穿行,在阿拉斯加的南部海岸到达瓦尔迪兹(Valdez)的港口)因容量问题不再运行。已辅助排放巨大的Prudhoe Bay容器将近30年,和在许多年以后,该容器接近废弃状态。
因此,通过使用其中原油和甲醇的交替批料经简单共享的管道泵送的公知方法,阿拉斯加管道可处理原油和甲醇这二者。为了防止原油与甲醇混合,这些不同液体的交替批料可通过机械活塞彼此分离,所述机械活塞可通过管道输送。在管道南部穿行的这些类型的活塞通常被称为“铸块(pigs)”,和它们广泛用于清洁和查看管道内部。
因此,若在已有的Prudhoe Bay产油设备内,甲烷可有效地转化成甲醇,则可省去对通过阿拉斯加和加拿大的北极地区建造大的新型气体管道的需要。这将节约数十亿美元的成本,将避免在高度敏感和脆弱的北极地区主要的环境破坏,和将清洁地回避和避免一长串的严重分裂、消极和毫无帮助的政治斗争和混乱。
类似地,若甲烷可有效和经济地转化成甲醇,则它可在各类燃料电池内用作能量释放燃料。一般来说,术语“燃料电池”用于指代使用控制的化学反应释放能量,同时没有达到以产生能量的爆炸性迸发的方式(如在内燃机内出现的一样)使燃料燃烧的任何类型的反应容器。
使用甲醇的燃料电池以前从未被商业化,因为已有的甲醇供应不可能将正处于研究、开发或商业化的大型投资视为合理。然而,若通过使(在偏远的油或气产地和别的地方的)“stranded”甲烷转化成甲醇的有效方法,可获得甲醇的大量供应,则目前在尝试生产机动车用氢燃料电池上的花费的研究努力将可能转向生产使用甲醇的燃料电池,这是因为甲醇相对于氢气燃料提供许多重要的优点。这些优点包括(i)与一罐氢气相比,在一罐甲醇内大得多的能量含量和密度;和(ii)大大下降的产生极高压的要求,而这是氢燃料电池所要求的。
尽管所有这些已知的潜力、动机和机会,但以前没有人能发现并创造有效和经济的化学方法将甲烷转化成甲醇,或转化成其它有用和功能的化学衍生物。尽管在重点大学和所有类型的石油公司内,毫不夸张地数以千计的研究者至少60年的集中努力,但大量的甲烷通过以没有收益的火焰形式燃烧仍被浪费,或者被泵送回到地下。
由于至少60年来,许多熟练的化学家已尝试寻找方法将甲烷转化成甲醇,因此以下提供数种这样的努力的简单综述。这不打算作为穷举或全面的历史,和对此主题感兴趣的任何人应当会参考对这种努力提供更多信息的额外文章(例如,Srivastava等,1992;Fierro,1993;Crabtree 1995;和Labinger 1995)和书籍(例如,Olah等,1995)。
另外,由在“stranded”气体问题上进行研究的科学研究者和工业经营者形成了至少一个网络组织,Gas Utilization ResearchForum,和由被称为Zeus Development Corporation的一个公司每年组织被称为“Monetizing Stranded Gas Reserves”(MSGR)的一系列年会。关于这些组织的信息可位于因特网上的www.remotegasstrategies.com(它由Zeus Development Corporation运行)处。那些年会的议程和发言者名单可用于确定许多公司、专家和在该领域内活跃的集中研究领域。
将甲烷转化成甲醇的现有技术
在美国专利2,492,983、2,493,038和2,553,576中公开了将甲烷转化成甲醇的最早的相关尝试之一。所有这三篇专利由John Snyder和Aristid Grosse发明,在1946年5月申请,并转让给Houdry ProcessCorporation。
在这三篇美国专利内的信息被合并到英国专利说明书GB632,820中,因此在一些方面中,GB632,820有时比任何一篇上述单独的美国专利更宽和更有用。然而,通过将它转化成可借助因特网定位并下载的计算机化的“Abobe PDF”格式时,许多印刷错误出现在GB632,820中;另外,以PDF版本可获得的该美国专利说明书不含任何页码或栏数。因此,以下的讨论参考US2,493,038。
US2,493,038和GB632,820专利公开了在选自第II-2族金属(如汞)中的催化剂存在下,使甲烷与三氧化硫反应的方法。该方法导致生成各种磺化和/或氧化衍生物,其中包括甲磺酸(MSA,具有化学式H3C-SO3H),然后可使之分解释放甲醇。其它氧化衍生物包括甲二磺酸和各种酯(如各种甲基硫酸酯,和甲基甲磺酸酯)。
遗憾的是,在二十世纪四十年代申请的那些专利的教导,和在实施例中提供的数据,没有用所认为的详细或精确程度和当今化学发明专利来说标准的方式表达。作为一个实例,实施例没有表示在任何特定反应内使用哪一类溶剂;而US2,493,038仅仅述及水和/或硫酸可能或可能不存在(例如第3栏,第66-75行)。类似地,大多数实施例仅仅称为“有机液体反应产物”作为通过反应形成的产物。尽管一些实施例述及回收甲醇,甚至该术语也需要小心看待,因为US2,493,038专利在第4栏第10-12行述及“当此处称为甲醇时,该术语应当理解为包括或者游离甲醇,或者硫酸酯形式的甲醇”。
还应当注意并考虑在这一早期工作中证明的另一主要问题,因为它提出了对任何提出的商业操作具有重要影响的一个关键性的重要问题。该问题集中在通过Snyder和Grosse披露的反应流程产生不同反应产物的混合物的事实。作为一般规则,这种混合物在潜在的商业化的待评价体系内不是所需的。相反,这一性质的最有效的反应器体系的目标是以尽可能最高的产量生产单一的所需产物。因此,任何其它副产物必须被视为高度不受欢迎的竞争者、寄生物和问题,因为它们将降低所需产物的产率。
当评价单个反应的选择率和产率,以及多步反应体系时,通过备选的反应流程产生的多种混合产物的问题变得关键。选择率通常是指在最小量的竞争和不想要的副产物的情况下,一步(或全部体系)产生单一的所需和所打算的产物的程度。产率是一个相对概念,和可用各种术语表达,例如(i)反应物转化成所打算产物的百分数,或(ii)产物重量除以时间(如kg/min,或吨/小时)。
尽管在二十世纪四十年代Snyder和Grosse所做的工作存在局限,但它形成了主要的开拓性的努力,和它将注意集中在硫化合物作为可能与甲烷反应的潜在有用的试剂上。其它人的许多努力遵照该工作,和也集中在使硫化合物与甲烷反应的路线上。
在二十世纪八十年代,许多美国专利,其中包括均转让给MobilOil Corporation的4,543,434(Chang 1985)和4,864,073(Han等,1989),公开了使用下述反应流程:使甲烷流过具有硫化物(-SH)基团的中间体,如甲硫醇(H3C-SH),产生较重质的结合烃。尽管以各种方式使用甲硫醇(如在甲磺酸的制造中),但它不用于涉及甲醇制造的任何目的。
在二十世纪九十年代早期,Roy Periana和他的合作者在Catalytica Inc.开发了通过使用浓硫酸和汞催化剂,使甲烷转化成酸式硫酸甲酯(methyl bisulfate),然后可将其水解,释放甲醇,从而生产甲醇的方法。在美国专利5,233,113(Periana等,1993),中公开了这些方法,其中使用第VIII族贵金属催化剂(如铂或钯),和强无机酸如硫酸(H2SO4)或三氟磺酸(三氟磺酸盐,F3CSO3H),和在美国专利5,306,855(Periana等,1994)中,使用在浓(“发烟”)硫酸(H2SO4)内的软金属或边界金属催化剂(如铂、钯、汞等)和三氧化硫(SO3)。在许多文章中也公开了这条研究线,其中包括Periana等,1993。
那些专利,和尤其Periana等,1993的分析,公开了Periana的强烈优先倾向避免生成甲基自由基,和采用亲电试剂和路径工作。正如Periana所述,甲基自由基活性比甲烷更大,和作为中间体形成的任何甲基自由基,将倾向于快速且以不可控的方式与体系内的其它试剂反应,在那些试剂可以以所需的方式与甲烷反应之前。用Periana的话说,“通过使用反应性非常大的物质,使甲烷反应,自由基是反应性最大的物质,和自由基化学可常规地用于与甲烷反应。可在加压的条件下或采用反应性非常大的试剂生成这些物质。然而,在这些条件下,反应的起始(和最有用)产物的反应性比甲烷大,和以高的产率使甲烷选择反应非常困难。因此,可实现与氧的反应,但要求高于700℃的温度。已报道了在这些条件下,在甲烷转化率高于10%时,对甲醇的仅仅低的选择率(<30%),从而得到3%的总产率[注脚6]。与反应性更大的物质如氯气反应可在350℃下进行,但对氯代甲烷的反应选择率仍然低且生成大量的多氯化甲烷[注脚7]。假设甲烷的低质子亲和性和酸度,则预期不到与甲烷的典型的酸或碱反应将在低于自由基工艺的温度下发生。已报道了这种不反应性。仅仅在采用反应性极大的物质的情况下,如在“超酸”介质(SbF5/HF)[在氟化氢内的氟化锑]内的质子,在较低温度下观察到与甲烷反应[注脚8]。然而,这些反应是化学计量的或使用昂贵的试剂和因此对于甲烷的大规模氧化来说是不实际的。”
被Periana援引的3%转化率的图可通过两个额外的注释正确地评述。在他的正文中,“科学和工程团体作为一般原则接受保守的准则:采用分子氧作为最终的氧化剂,将甲烷氧化成甲醇的高选择率(至少85%)、高转化率(至少30%)的方法,可提供将甲烷转化成可运输材料的经济方法的基础。”同样,在它的脚注3中,它述及,“在30%转化率下实现高选择率的挑战比在低(<5%)的甲烷转化率下挑战大得多,因为随着转化率增加,产品累积,它可变为过氧化的优选物质。”
Periana最近的研究工作包括在浓硫酸内的碘催化剂,如Periana等2002中所述。同样的方法也在美国专利6,380,444(Bjerrum等,2002,转让给Statoil Research Centre of Norway;同样参见PCT申请WO99/24383)中要求保护。
涉及可用于将甲烷转化成其它化合物的催化剂或试剂的其它信息包括:
1.美国专利6,384,271(Jacobson等,2002,转让给DuPont),它公开了引起三氧化硫与固体无机载体,如沸石或硅酸盐形成络合物的方法,为的是使三氧化硫更容易操作,和使所得产物更容易提取和纯化,当制造磺化产物如洗涤剂、燃料和油时。
2.公开号2002/103,402,2002年8月出版的Chang等的美国专利申请09/772,775(转让给ExxonMobil),公开了使用各种步骤和试剂的离子体系。该体系的主要实例使用氯气,将甲烷转化成氯代甲烷(H3CCl),然后使氯代甲烷与亲电离子,如“亚硝酰_”离子(O=N-O-SO3 -)反应,形成酸式硫酸甲酯,其中O=N-Cl作为副产物。然后通过添加水(蒸汽形式),使酸式硫酸甲酯水解,断开甲醇并释放硫酸。
或者使用或者生成大量硫酸的反应体系倾向于生成大量的腐蚀和有害的副产物和其它潜在毒性的废物(如O=N-Cl,在Chang 2002内公开的体系中)。即使可设法回收它们,但那些不想要的副产物对经济和任何这种体系的效率具有严重的阻碍,特别当与此处公开的改进的反应体系相比时。
还存在其它的努力生产含硫的甲烷衍生物,其中所述含硫的甲烷衍生物可基于通过那些反应流程产生的特定产物分成小组。最近两个这样的努力集中在两个特定的反应产物上,这两个反应产物因单一的氧原子而彼此不同。那些化合物之一,甲磺酸(简称为MSA)含有直接键合到磺酸基(-SO3H)上的甲基(H3C-),结果形成H3C-SO3H。另一化合物是相同的,所不同的是它具有置于碳原子和硫原子之间的氧原子,结果形成H3C-O-SO3H(被称为酸式硫酸甲酯)。
将甲烷转化成甲磺酸
将甲烷转化成甲磺酸(MSA)的最近许多努力值得注意,但它们在许多重要的方面不同于本发明。
在这一系列的研究中明显引人感兴趣的第一次报道是Basickes等1996,它公开了测试将甲烷转化成MSA的数种“引发剂”化合物。那些引发剂化合物包括数种金属盐,如HgSO4(硫酸汞)、Ce(SO4)2(硫酸铯)和PdSO4(硫酸铅),以及称为过二硫酸的过氧化物化合物的钾盐。过二硫酸的化学式可最简单地写成H2S2O8;然而,化学式HO3SO-OSO3H给出了其结构的更好想法,如同在中间具有过氧化物(双氧)键的对称二酸化合物一样。该钾盐的化学式可写成KO2SO-OSO2K。
在Basickes等1996中报道的这项原创工作是由Penn StateUniversity的Ayusman Sen教授为首的研究小组完成的。随后,这一系列的研究被University of California,Berkeley的Alexis Bell教授为首的不同的研究小组整理,且目前由一家意大利公司,AtofinaChemicals Inc.商业化。该研究报道了迄今为止由Bell小组出版的MSA的生产,它包括Lobree和Bell 2001和Mukhopadhyay和Bell2002(二者均使用过二硫酸,K2S2O8),以及Mukhopadhyay和Bell 2003a与2003b(在金属氯化物如氯化钙、氯化铁,和特别是氯化铑RhCl3存在下,它转移到增加数量的自由基引发剂,其中包括K2S2O8、K4P2O8、H2O2、CaO2、Br2、Cl2和I2)。
关于该项工作,应当注意三个重要的点,将它与本发明相区别。
首先,所有以上援引的文章,从Basickes等1996到Mukhopadhyay和Bell 2003b,公开了制造MSA的方法,MSA是在例如电镀、电路板制造和制造洗涤剂之类方法中使用的一种有价值的化学商品。这些无一提出了制造甲醇的任何方法,甲醇的价值小得多,这可通过比较其价格得到佐证,在2003年10月后期,甲醇的价格为约22美分/kg(来自供应商如Methanex)。相反,对于相同的重量,MSA的价格高约10倍。因此,若设计反应流程制造MSA作为产物,非常愚蠢的是,利用该产物,并通过使之断开而降解,形成价值仅仅为MSA一部分的甲醇。
然而,还必须意识到,尽管对于MSA来说,存在仅仅小且有限的市场,但对于甲醇,既作为化学试剂,又作为清洁燃烧燃料(或者本身,或者作为汽油添加剂),存在有效的无限市场。因此,下述反应流程是一种完全不同的反应体系,且具有完全不同的目的:所述反应流程通过MSA仅仅以一步在一系列中间体内进行,然后可越过MSA,作为最终产物大量地形成甲醇(同时还允许不断地回收磺酸基,同时更多的甲烷连续流过该体系并转化成甲醇)。
与本发明相比,前面(由Ayusman Sen研究小组,然后由AlexisBell研究小组)公开的MSA生产方法之间的第二个主要区别包括,它们在酸性介质中使用盐化合物作为自由基引发剂。此处申请人认为且预期若在酸性介质中使用的话,盐化合物(如过二硫酸的钾盐)不可能在此处公开的反应体系中有效地起作用。
其原因认为涉及至少三个因素,这三个因素复杂,但可简单地概述如下。第一,当在含有大量H+质子的酸性介质内,通过过二硫酸的钾盐(或其它盐)释放过二硫酸的阴离子(S2O8 2-)时,那些阴离子和质子将达到各种离子物质的平衡浓度,其中包括可能猝灭且终止本发明涉及的自由基引发反应机理的一些离子化合物。
第二个因素涉及金属离子(如钾离子)倾向于干扰本发明涉及的某些反应。
第三个因素,也是以下在不想要的副产物和废物的更广泛的讨论中强调的,是盐化合物倾向于生成较大量不想要的副产物,其中包括(在许多情况下)结晶金属沉积物层,所述结晶金属沉积物层倾向于在管道和容器内部累积且阻碍流速、传热等。
由于那些和其它因素,应当意识到使用诸如过二硫酸的钾盐之类试剂的大多数研究仅仅在小规模试验中进行,这些小规模试验在小规模的实验室科学研究中进行,而不是在商业为目的的工业研究中进行。使用K2S2O8作为自由基引发剂的工业反应潜力深入且令人信服的评论由为Shell International Exploration and Production(世界最大和最成功的石油公司之一的附属机构)工作的研究者提供。在标题为“AChemical Alternative to Natural Gas Flaring”的文章中,研究者和合作者尖锐地述及,“在任何速度下,反应仅仅在采用厌氧氧化剂的情况下具有工业兴趣。为此我们从来不检验K2S2O8会带来什么,这是工业方法中人们从来不会使用的。”(Golombok等2003)。
由于前述上述原因,申请人选择寻找使用“游离酸”过氧酸,如过一硫酸(Caro’s acid)或过二硫酸,而不是使用那些酸的盐。随后,申请人的这种直觉得到直接实验证据的强有力的支持,这些直接实验在相同条件下使用平行试验,表明过二硫酸的钾盐在引发此处披露的反应方面是无效的,而过二硫酸的游离酸形式高度有效且具有选择性。由研究本领域的熟练专业人员主动地进行那些实验室试验,因为他认为K2S2O8体系将起作用,直到他看到相反的实际试验证据。
现有技术的MSA生产方法和本发明的不同试剂与方法之间的第三个主要区别进一步表明,Sen研究小组发现和Bell研究小组改进的反应体系,被视为非常适于制造有限量的MSA,但不适于制造大量甲醇。该因素涉及所生成的非所需的废物产品,作为钾盐的副产物和Sen与Be11研究小组测试的其它自由基引发剂和试剂。对于每磅或千克由甲烷生成的MSA来说,那些反应流程产生显著大量的酸和盐作为不可避免和通常具有腐蚀性和/或结垢的废物。
相反,此处披露的反应流程高度有效且经济,大部分由于它使用链反应和循环步骤的结合,这种结合生成显著较小且容易控制量的非所需的化学副产物和废物。
以理论为基础,若链反应可无限继续,则该体系可绝对根本不产生废物。然而,由于没有链反应体系是完美的或者可永远继续,因此认为:(i)可能借助例如喷洒液滴的细雾到快速移动的流体上,将小量“补充(makeup)”自由基引发剂应当连续加入到该体系中,为的是确保尽可能高的所需反应的产率;和(ii)(最可能包括各种化学品的混合物)的废物与需要连续加入到该体系内使之保持在最佳条件下运行的小量自由基引发剂成比例地逐渐累积。
认为仅仅因链反应的局限导致的非常低含量的这类废物生成的数量级小于使用钾盐和其它自由基引发剂(如在以上援引的论文中披露的,其中包括Basickes等1996到Mukhopadhyay和Bell 2003b以反应体系的不可避免的副产物形式产生的酸和盐废物的生成。
将甲烷转化成卤化产物
最后,为了全面起见,还应当注意将甲烷转化成功能衍生物的其它努力已用于完全不同的体系,该体系不包括硫。作为实例,美国专利3,979,470(Firnhaber等1976),4,523,040(Olah 1985),4,804,797(Minet等1989)和6,452,058(Schweitzer等2002,转让给Dow Global Technologies)公开了可生成氯代甲烷、氟代甲烷、溴代甲烷或含有卤原子的其它甲烷衍生物的各种卤化方法。这些体系各自具有它们自己的价值类型,但在形成卤化化学品方面具有有限的工业实用性;然而,它们不适于生成商业化学品如甲醇,甲醇既作为试剂,又作为燃料资源和汽油添加剂,均具有无限的市场。
以上援引的文章和专利代表了至少60年来许多熟练的研究者的仅仅小部分这种努力,这些研究者包括在全世界的重点大学的化学和化学工程系的研究者,和为大型且资金充裕的多国石油公司工作的研究者。许多这些研究者至少过去10年来可以得到强有力的计算机,和这些研究者具有强烈的动机,因为他们知道如果可开发有效和经济的反应流程将甲烷转化成甲醇,则可获得许多津贴和奖金。
然而,尽管在大半个世纪内的所有这些努力,但没有人以前曾经公开过一种反应流程,该反应流程足以有效到广泛地被商业采纳并用于由“stranded”甲烷生成甲醇。相反,在没有使用气体管道的全世界的数以千计的油和煤产地处,产油或煤的公司继续以没有收益的火焰形式燃烧大量的甲烷(进而通过泵送大量的二氧化碳到空气内,加剧室温效应),和他们继续将大量的甲烷泵送回地下。多国石油公司计划花费数十亿美元创建液化天然气设备和船队,即使LNG技术要求将近一半的甲烷必须烧掉以驱动制冷和加热过程。另外,在美国和加拿大的公司和政治家应对着非常艰难和分歧的决定关于是否建造大型且极其昂贵的气体管道通过加拿大的脆弱的北极地区,因为他们知道没有方法将该气体转化成甲醇,而甲醇可容易地通过已经横跨阿拉斯加的已有输油管道运输。
若可获得有效且经济的方法将甲烷气体转化成甲醇,则可完全避免且容易解决这些和其它巨大且紧迫的问题。
因此,本发明的一个目的是公开一种反应体系,它能以比以前已知的任何反应体系更有效、选择性更大和不那么昂贵的方式将甲烷转化成甲醇。
本发明另一目的是公开一种反应体系,它使用比任何以前的体系曾经公开的计算热力学势垒低的反应路径,将甲烷转化成甲醇。
本发明另一目的是公开一种反应体系,它通过使用(i)导致由甲烷变为甲醇的链反应,和(ii)连续回收、循环和再利用任何无机试剂、催化剂或中间体的循环方法的结合,以生成仅仅非常小量的废物或不想要的副产物的方式有效地将甲烷转化成甲醇。
本发明另一目的是公开一种反应体系,它通过使用自由基引发剂启动产生甲基自由基的体系,然后在生成保持体系运转的额外的甲基自由基的反应阶梯(cascade)内,利用那些甲基自由基,从而最小化必须加入到该体系内的自由基引发剂用量以维持快速的动力学和高的产率,从而有效地将甲烷转化成甲醇。
本发明另一目的是公开一种反应体系,它通过使用(i)导致由甲烷变为甲醇的链反应,和(ii)连续回收、循环和再利用任何无机试剂、催化剂或中间体的循环方法的结合,以生成仅仅非常小量的废物或不想要的副产物的方式有效地将甲烷转化成甲醇。
本发明另一目的是公开一种反应体系,它以充分发挥和利用在不需要或生成水或者硫酸的体系内,通过进行这一反应流程可能实现的优点的方式,在完全无水的体系内有效地将甲烷转化成甲醇。
本发明另一目的是公开一种反应体系,它通过使用涉及具有亲电和亲核这两个区域的双官能试剂的“symphoric”或“邻位(anchimeric)”反应,通过最小化任何热力学势垒的能量路径,以烃分子能同时或几乎同时进行配位的电子和质子偏移,生成将导致高产率所需中间体或产物的过渡中间体的方式,将小的烃(如甲烷)转化成氧化的或其它官能化的中间体(如甲醇)。
本发明另一目的是提出并公开了一种化学处理体系,它通过使用不利用或生成水的无水反应,可将小的烃,其中包括,但不限于甲烷,以产生高的产率和最小废物的有效方式,转化成氧化的或者官能化的产物。
通过下述概述、说明和附图,本发明的这些和其它目的将变得更加显而易见。
发明概述
公开了具有低的热力学势垒的试剂和方法用以将小的烃如甲烷转化成氧化的或其它中间体或产物,如甲醇。该反应体系使用小量的自由基引发剂,如过二硫酸,所述自由基引发剂可就地生成,然后通过温和加热分裂成自由基。这些自由基将从甲烷上移走一个氢原子(即,既是质子,又是核子),生成甲基自由基(H3C*)和小量的硫酸。添加三氧化硫(SO3),和甲基自由基与之结合,形成甲磺酸自由基。添加额外的甲烷,和甲磺酸自由基将进攻它,在重新生成甲基自由基(H3C*)的重新供应的反应中,形成甲磺酸(MSA,H3C-SO3H)。通过连续添加更多的三氧化硫和甲烷,该反应允许该过程以链反应形式继续。可取出MSA并以产品形式销售,或可加热它,将它分裂成甲醇和二氧化硫。二氧化硫可再生成三氧化硫,三氧化硫可返回到该体系内。可冷凝甲醇,并以液体形式经管道、油槽船等去销售。由于该工艺生成仅仅非常小量的副产物(主要是来自过二硫酸的硫酸),因此,可使用该体系,将来自油或煤的生产设备和其它资源处的大量“stranded”和废甲烷气体转化成可服务于无限市场的有用产品。
公开了使用亲电和亲核区域彼此相邻位于同一分子内的双官能试剂(如溴酸硫酸化合物HO3S-O-BrO2)的方法和试剂。使用symphoric、邻位或其它“邻基”效应,这种试剂可在甲烷或其它烃内产生配位的质子和电子偏移,在降低的热力学势垒下生成过渡中间体。这可改进将甲烷或其它低级烷烃转化成甲醇或其它有价值的中间体或产品的反应体系的选择率和产率。
最后,希望且认为可以开发方法与试剂用于使甲醇与二氧化碳反应,形成乙酸,一种有价值的化学商品。若能以有效和经济的方式实现这,则证明在发电厂和各种其它大的工厂和释放二氧化碳的其它源地处,需要安装设备直接从废气中除去二氧化碳的努力和投资可能是合理的。在降低全世界的二氧化碳排放和威胁全球变暖和气候变化方面,这可能给予很大好处。然而,在所调查的领域可视为发明或发现之前,被证明的一些关键重要和不可避免的热力学势垒必须强调并加以解决。因此,此处申请人公开了(i)他正使用此处的技术内容的各方面,研究这一方案的这一方面,但(ii)他的工作没有达到证明那时充分公开的完全状态,且不视为此处披露的本发明的一部分。
附图简述
图1描述了使用过氧化氢和三氧化硫生成过二硫酸,H2S2O8,的化学反应流程,其中温和加热过二硫酸,使过氧键断裂。这释放出自由基HO3SO*,它通过夺走氢原子,活化甲烷,从而将甲烷(CH4)转化成甲基自由基(H3C*)。
图2描述了使用甲基自由基(H3C*)和三氧化硫,借助也将生成新的甲基自由基的多步过程,形成甲磺酸(MSA)的化学反应。该反应建立起链反应,和新生成的甲基自由基将与新添加的SO3反应。稳定的MSA可通过浓缩从容器中取出。它可以以产品形式销售,可用作试剂,或者裂化,以释放甲醇和可再生为三氧化硫的二氧化硫。
图3描述了可使用过二硫酸路径,用于将甲烷转化成甲醇的一套反应器容器。
图4描述了涉及自由基的两个潜在的不想要的副反应,所述副反应可能对图1所示的自由基引发剂体系产生影响。然而,计算机模拟表明这两个可能的反应中的任何一个通过再形成所需的反应物,而不是简并成不想要的副产物,从而将简单地回到所需的状态。
图5描述了使用双官能的溴酸酯-硫酸酯试剂的反应体系,该试剂通过使用配位的质子和电子偏移,可活化低级烷烃如甲烷,生成具有低热力学势垒的中间体。
图6描述了与现有技术的碘体系相比,使用溴酸酯-硫酸酯试剂,将甲烷转化成甲醇的路径的能量曲线。
详细说明
正如以上简述,公开了将小的烃(如甲烷)转化成氧化的或其它中间体或产品(如甲醇或甲磺酸)的试剂与方法。
由这些试剂和方法提供的路径提供数个重要的优点。这些将简单地列举,因此通过使用例举的体系,更详细地讨论和描述它们,其中所述例举体系使用过二硫酸作为自由基引发剂,引发使用甲基的链反应,将甲烷大量地转化成甲醇,且没有生成任何大量的废物。
由该体系提供的优点包括:
1.这些路径具有低的热力学势垒。这包括低的“活化热”能级,和低的熵(或“自由能”)损失。
2.低热力学势垒的结果是,可在相对低与温和的温度与压力的结合下进行这些反应,且将导致相对高的效率、选择率和产率,所有这些是高度有价值的。
3.通过使用小量的“自由基引发剂”化合物,以移动的方式设定链反应,然后在添加仅仅小量的“补充”自由基引发剂的同时,允许链反应维持该过程,从而这些路径可生成大量的产品,且还没有生成大量的废物。
4.这些路径允许循环再生和回收所有硫化合物,所述硫化合物是该体系使用或产生的。具体地说,三氧化硫(SO3)被泵送到反应容器内。它与甲基自由基反应,形成甲磺酸(MSA)自由基,然后MSA自由基与更多的甲烷反应,形成稳定的MSA。从反应器中除去MSA,并可被裂化,释放甲醇(主产物)和二氧化硫。二氧化硫可再生成三氧化硫,和再生的三氧化硫可被直接泵送回到反应器容器内。可反复这一循环(SO3变为MSA变为SO2,然后再次变回SO3)无数次,且没有生成任何硫酸或其它酸性或有毒废物。
5.这些路径以完全无水的方式运行,它不使用或产生水,和这些路径还避免使用任何盐。这一无水无盐的方法提供许多优点,尤其它使得体系更有效、腐蚀较少,和不那么易于因容器或管道内部矿物沉积物结垢,和它大大地降低了不想要的副产物和废物材料的形成。
通过考虑以下所述的例举的反应体系,可更好地理解这些因素和优点。
将甲烷转化成甲磺酸(MSA)
本发明的优选实施方案(此处称为“过二硫酸体系”)使用小量的被称为过二硫酸的化合物引发链反应,其中包括将甲烷转化成“活化”的甲基自由基。这部分工艺如图1所示。
如靠近图1顶部所示,通过使过氧化氢(HOOH)与三氧化硫(SO3)反应,形成被称为过氧单硫酸的化合物(其具有常用名过一硫酸),从而进行过二硫酸的制造。在美国专利2,789,954(Fell,1957)、3,900,555和3,939,072(Jourdan-Laforte,1975和1976)和5,304,360(Lane等)中公开了反应器容器和进行该反应的优选条件。
额外的SO3然后与过一硫酸反应,使之转化成过硫酸(其具有常用名过二硫酸)。如美国专利3,927,189(Jayawant 1975,转让给DuPont)中所述进行这一反应。US3,927,189专利公开了生成可储存一段时间的相对稳定形式的过二硫酸的方法,表明反应应当在温和条件下进行,其中温度不超过45℃,因为较高的温度将导致所得产物更快速的分解。
然而,制造用于此处目的的过二硫酸的目标不是生成稳定和可储存的产物,而是生成立即分裂成两半的化合物,以释放自由基,所述自由基然后与甲烷反应,从甲烷上夺取氢原子。因此,在US3,927,189专利内所述的一些注意事项在此处不重要,和应当测试并评价那些工序的各种改性(如使用较高的反应温度,这可包括简单地省去任何努力从反应容器中移走热量,因为通过过二硫酸的放热反应将释放热量),因为它们可加速和/或增加生成过二硫酸所使用的反应的效率和产率。
若在大规模的工业设备内使用过二硫酸将大量甲烷转化成甲醇或其它产物,则可开发各种方法与装置用以改进其就地制造方法,接着立即使用。特别地,应当评价高于常温和常压的结合,设计这种结合没有导致形成冷却和稳定的过一硫酸,但优选在辅助促进过二硫酸断裂释放HSO4*自由基的温度下,导致过一硫酸快速转化成过二硫酸。
与是否开发任何这种改进方法无关,过二硫酸是公知的化合物,且已经被公开用于在商业上大量地制造它(尤其美国专利3,927,189,Jayawant 1975完全集中在过二硫酸的制造方法上)。因此,可使用已知设备和方法进行过二硫酸的制造。
在生成过二硫酸之后,它将通过断裂过氧键分裂成相等且相同的两半。可通过温和的加热进行断键,或者可通过其它方式,如紫外辐射,或者通过使用来自“调谐”激光器的具有特定波长的辐射,以甚至更快速和更可控的方式实现断键(参见,例如美国专利4,469,574,Keehn等1984)。
所得过二硫酸自由基(HO3SO*)由于在其氧原子之一上存在未成对的电子导致高度不稳定,且具有高度的反应性。这使得它们非常适于在此处披露的反应中用作“自由基引发剂”。当与甲烷混合时,过二硫酸自由基将从甲烷中提取完整的氢原子(既是质子,又是电子)。氢原子的这种转移使过二硫酸自由基转化成稳定的硫酸(HSO4),和它将生成甲基自由基,H3C*。如图1所示,每1mol过二硫酸将释放2个相同的自由基,和每个自由基然后可进攻甲烷分子,生成甲基自由基。
在通过自由基引发剂生成一组甲基自由基之后,甲基自由基然后启动链反应,如图2所示,这导致形成甲磺酸(MSA)。该工艺要求多步序列。选择的氧化剂化合物,如三氧化硫(SO3)被泵送到反应器内,而甲基自由基将与之结合,形成甲磺酸自由基。当添加更多的甲烷气体时,甲磺酸自由基将进攻添加的甲烷,并从每一甲烷分子上除去单个氢原子,从而生成新的甲基自由基。
该工艺允许MSA自由基生成完整且稳定的MSA分子,然后MSA可从该体系中移走用于进一步的加工。
与此同时,氢的转移也生成再生的甲基自由基(H3C*)的供应。因此,这一系列的反应允许该工艺继续且维持作为链反应。只要更多的三氧化硫和甲烷继续加入到该体系中,它们可继续形成MSA。
应当注意,由于一些类型的电子偏移,因此已经失去1个氢原子的甲基自由基(H3C*)将不轻易或容易给出第二个氢原子。这是本发明的一个重要特征,和它与涉及甲烷的一些其它的化学反应直接相反。例如,当用卤素如氯气处理甲烷时,损失和置换第一个氢原子倾向于能够或甚至加速额外的氢原子的损失,从而导致二氯化碳、三氯化碳和四氯化碳的混合物。然而,当甲烷损失一个氢原子并变为自由基时,出现相反的情况。其实现是另一关键性重要发现,这有助于申请人以下述方式开发此处披露的反应流程:一旦反应开始,则可导致具有良好选择率的简单产物,而不是以四个不同的方向吸引。
如上所述,可通过使用常规的浓缩设备,从反应体系中移走MSA。在从反应器中移出之后,可如图2所示,对其进行任何数种操作。
一个选择是作为有价值的产品销售MSA本身。另一选择是使用MSA作为任何各种其它化学过程的原料。
然而,MSA的市场,和MSA的已知用途均有限。认为每年全世界它们加起来才仅仅数千万美元,而毫不夸张地价值数十亿美元的甲烷以火焰形式被燃烧并浪费,或者仅仅每月注射回到地下。
因此,该体系的较大价值来自于事实:MSA可被裂化,释放甲醇和二氧化硫。可通过在升高的温度下热解,正如Grosse和Snyder的US2,553,576中所述,他们使用碳酸银作为催化剂,并在300至350℃的温度下回流,从而进行这一裂化。
可视需要评价其它催化剂、温度范围和操作参数,和如果由于由“stranded”甲烷合成MSA导致全世界的MSA供应商突然以数量级的形式增加,则极可能的情况是,能够且将会开发裂化MSA成较小化合物的改进的方法和精炼方法,其中包括本身可被授予专利权的各种方法。
通过裂化MSA释放的二氧化硫可在催化剂如五氧化二钒,V2O5,存在下,通过使之与氧气(O2,可从空气中以纯化的形式获得),从而再生变回SO3。在没有生成任何废物的情况下,再生的SO3可被直接泵送回到反应器容器内,保持工艺正常运行。
通过热裂化MSA释放的甲醇具有几乎无限的市场;尤其它可用作化学原料,用作清洁燃烧的热量,和用作汽油添加剂(可降低机动车的空气污染,和也可降低其汽油消耗)。作为甚至在室温和低压下仍为液体的化合物,它可通过管道泵送并装载在储罐、油罐车和海洋运输的油槽船内,用于运输到商业市场。
由于该工艺仅仅生成非常小量的副产物(主要是小量的硫酸,其来自以有限的“补充”体积加入到该体系内的小量过二硫酸),因此该体系可用于将来自油或煤的生产产地和其它源地的“stranded”和废甲烷气体转化成可服务于无限市场的有用产物。
关于过二硫酸的“补充”体积,没有链反应曾经可达到理想和理论的100%的产率,和在现实世界中,在任何反应器容器内部总是存在微小的损失。仅仅作为一个实例,若两个甲基碰巧碰撞并反应,则它们将简单地形成乙烷,C2H6,一种稳定的低级烷烃。这将终止这两个自由基,和它们不再具有反应性。
由于这些和其它损失与链终止,需要在反应过程中(和优选以连续的方式)引入来自过二硫酸或另一自由基引发剂的相对小量的自由基到该体系内。这典型地通过注射液体的细雾到反应器容器内而进行。
因此,当以充当专利权利要求的方式描述该反应时,该工艺包括将甲烷转化成氧化衍生物的方法,该方法包括下述步骤:
a.在反应器装置内,从甲烷上移走氢原子,从而生成甲基自由基中间体,其中每一甲基自由基中间体具有一个未成对的电子;
b.在引起甲基自由基与选择的氧化物化合物反应的条件下,以形成甲基化氧化物自由基的方式使该甲基自由基中间体与选择的氧化物化合物(在所示的体系内,如三氧化硫)接触,其中甲基化氧化物自由基具有足够的反应性以从新添加的甲烷中移走氢原子;和
c.在引起从甲烷上移走氢原子的条件下,使甲基化氧化物自由基与甲烷反应,从而形成稳定的甲基化氧化物分子,同时还生成新形成的甲基自由基。
以可供替代的术语描述时,该体系包括将低级烷烃转化成氧化衍生物的方法,该方法包括下述步骤:
a.从至少一种低级烷烃化合物上移走氢原子,从而生成烷烃自由基;
b.在引起烷烃自由基键合到选择的氧化物化合物的条件下,使该烷烃自由基与选择的氧化物化合物接触,从而形成烷基化氧化物自由基;
c.在引起从低级烷烃上移走氢原子的条件下,使该烷基化氧化物自由基与至少一种低级烷烃反应,从而形成稳定的烷基化氧化物分子,同时还生成新形成的烷烃自由基。
制造体系(成套设备布置)
图3提供了进行本发明反应可使用的制造体系100(在石化工业中常称为“成套设备(plant)”)的平面示意图。从靠近左上部开始,试剂供应容器110含有过氧化氢,H2O2。试剂供应容器120含有稳定的无水液体SO3,或者可转化成过一硫酸和/或过二硫酸的可供替代的磺化试剂。这两种试剂被泵送到合适的成酸容器150中,在此它们将结合并反应,引发形成过一硫酸,和优选然后在磺化反应的第二阶段形成过二硫酸,H2S2O8。成酸容器150模拟如在美国专利5304360中所示的具有环形反应区的类似容器,并用于生成过一硫酸;通过添加独立的和额外的入口对其改性,以允许额外的SO3添加到该容器内,使过一硫酸转化成过二硫酸。
过二硫酸从成酸容器150底部排出,和它将被加热,进行紫外或激光辐照,或者其它处理,使之裂化成如图1所示的自由基HSO4*。这些自由基可能以细雾、夹带的液体等形式泵送到主反应器容器200内,该容器优选应当含有内挡板、搅拌器和/或促进液/气高度接触和相互作用的其它结构。
主反应器容器200将接收来自供应罐210和220(经泵225)以及来自一个或多个循环导管250稳定供应的甲烷和SO3,其中所述循环导管250将收集从反应器200中排出的任何未反应的甲烷或SO3。在处理已从油田的原油中分离的大体积甲烷的大多数设备内,甲烷供应泵210可能接收来自储存或平衡罐的甲烷气体供应,在分离容器内气体已从原油中除去之后,所述储存或平衡罐将接收并容纳半加压的甲烷气体。
在没有移走和销售磺化产物的情况下,SO3的供应将继续循环,因此,替换小量且逐渐损失所要求的“补充”体积将不会接近与被处理的甲烷体积一样大。
然而,还应当意识到,甲磺酸(MSA,CH3SO3H)本身是一种有价值和有用的化学产品;确实,在相等重量的基础上,它的价值是甲醇的约10倍。因此,它可以以有价值的产物形式销售,或者用作有价值的化学原料。
应当注意,与甲醇相比,MSA的大得多的价值可辅助解释Sen小组和Bbell小组看到的结果,其中包括通过使用K2S2O8制造MSA的方法,显然它们没有意识到可能提供制造甲醇的经济方法的潜在路径。如上所述,甲醇的价值仅仅是MSA的约1/10。
尽管如此,现已公开了制造甲醇的这一新方法。应当意识到,它还公开了生成MSA作为产物,而不是仅仅作为中间体的有价值的新方法。因此,视需要,可简单地通过输送离开主反应器容器200的一些或全部MSA到储存罐中,将MSA(或各种其它的磺化产品或中间体,若进行额外的处理的话)直接从此处披露的新体系中移走。还应当意识到,若以产品形式从体系中移走MSA或任何其它磺化产品,则还需要必须供入到该体系内的SO3供应以相应的方式增加。
可使用常规实验,评价增加主反应器容器200内试剂之间接触和相互作用的任何已知方法或仪器,以决定它们是否适于此处披露的用途。例如,来自供应泵210和220的甲烷和SO3在它们进入反应器容器200内之前可以预混合;或者,通过引入气体甲烷带容器200的底部,以便它将鼓泡并向上升,而液体SO3被泵送到容器200的顶部,以便它因重力导致向下流,从而可以以逆流的方式引入它们。类似地,可为此处公开的用途评价挡板、塔盘、筛网、流化颗粒床反应器、旋转床反应器、SO3涂布颗粒的任何已知或之后发现的体系、类型或结合,和其它装置、方法或配方,以决定它们是否可改进此处披露的反应的产率。
特别地,可能非常适于这种用途的一组候选反应器容器包括旋压床反应器,如在美国专利4,283,255(Ramshaw等1981,转让给Imperial Chemicals),和美国专利6,048,513(Quarderer等2000,转让给Dow Chemical Company)中所述。这些装置通常使用高速旋转的相当宽且厚的圆盘,从而起到离心的作用,驱动气体和液体从中心输入点朝向床的外部。它们常使用多孔金属筛网作为介质。形成筛网的布线可由不锈钢或其它相对结实和便宜的材料制造,这些材料可借助电镀、溅射涂布或其它方式,用薄的一层更昂贵的催化剂,如氧化钒涂布。
可能非常适于这种用途的另一组候选反应器容器包括“环管”反应器,如在美国专利5,159,092(Leuteritz 1992,转让给Switzerland的BussAG)中所述。这些常被称为Buss(发音“boose”)反应器。还值得注意的子环管反应器包括“整体(monolithic)”环管反应器,如Broekhuis等2001中所述。环管反应器典型地使用(i)主反应器容器,其含有喷射混合嘴,固体催化剂床,或不可能从主容器上拆下的一些其它的装置;和(ii)独立且典型地较小的“辅助”容器的结合,所述“辅助”容器接收从主容器中排出的液体或气体,并通过一些选择的方式(如通过换热方法)处理该液体或气体,然后将其返回到主反应器容器内。按照这一方式,辅助装置(以及在两端连接到主容器上形成环管的管道和泵)可用于辅助控制和调节在主容器内部出现的情况,且没有干扰催化剂床或在主容器内部操作的其它体系或装置。
还应当意识到,为了运行此处披露的体系,能够且应当评价各类溶剂。稳定的液体三氧化硫、甲磺酸或MSA-三氧化硫混合物提供用作液体介质评价的有前景的候选物,其使得在主反应器容器200内部的一切保持平稳且有效的运行,因为这些化合物中的每一种或者作为试剂或者作为产物已经存在于反应器容器内部。或者,可能感兴趣的任何其它类型的候选溶剂或液体介质可以非常低成本地计算机模拟,和在大规模或者小规模试验性工厂内测试基于这样的计算机模拟,看起来感兴趣的那些。
(例如通过使用浓缩阱)收集在主反应器容器200内生成的MSA(CH3SO3H),并泵送到独立的加热或“裂化”容器300内,在此它被加热,引起MSA分解成甲醇(CH3OH)和二氧化硫(SO2)。视需要,可按照任何合适的方式,例如通过使用铂或其它金属催化剂,催化或促进在裂化容器300内的分解反应。将较大的分子分解成较小的部分(在没有添加水组分到任何一种较小分子内的情况下)的这类反应可称为热解、“裂化”或类似的术语。
所需的产物,甲醇若涉及大的体积的话,则通常被泵送到收集或储罐,如图3所示的储罐500内,用于随后泵送到管道、油罐车或船,附近的工厂等。取决于各种因素(其中包括被加工的甲烷流体的纯度,以及在容器200和300内部的反应参数),从加热容器300流出的甲醇流体内可夹带其它有机化合物。这种杂质可包括低级烷烃或烷烃衍生物,烯烃,链烯烃或其它不饱和化合物或衍生物,和苯或其它芳族化合物。视需要,可从甲烷流体中分离这些,并收集用于销售或本身用作有价值的产品。可例如通过反应器床510进行这类分离,所述反应器床510含有“沸石(硅铝酸盐)”化合物,如由ExxonMobilCorporation销售的“ZSM-5”。通过从混合的有机液体流体中分离不同组分,这类材料以相当于分子筛的方式起作用。这可使各种分离的产物细分在不同的收集罐512(可接收并容纳,例如已分离成主要种类的比料,如烷烃、烯烃和芳烃,如图3所示,或者可容纳基于任何其它准则分离的不同的批料)内。
气体SO2也从加热容器300中流出。它可流经合适的反应器400,所述反应器400还接收来自独立的供氧容器410的氧气(O2),使SO2氧化成较高的氧化态,SO3。反应器400优选应当含有催化剂,如五氧化二钒(V2O5),以促进SO2和O2反应形成SO3。SO3将返回到主反应器容器200内。
在实验室分析和测试或其它小规模使用这些反应的过程中,供氧容器410可使用瓶装氧气或任何其它可获得氧源。在大规模的制造操作中,供氧容器410优选应当使用可直接从大气中提取氧气的装置,如诸如IGS,Holtec之类公司销售的所谓“压力摆动吸收器(pressureswing absorber)(PSA)”体系,和熟练本领域的技术人员已知的其它制造器。
处理和利用SO3可涉及任何已知或以下发现的方法,这些方法将提高此处披露的效率,或者要么将以任何其它显著的方式改进这些操作(如通过减少废物等)。加速生成或处理的各方面的许多方法和试剂是已知的,其中包括(例如):
(i)使用各种硼、磷或硫的衍生物,稳定液体形式的SO3,如在文章Gilbert 1965中所述;和
(ii)使用固体载体(它可以呈小颗粒形式,使得能在流化或固定“床”、塔或其它装置内部泵送和处理),以生成涂布颗粒表面的相对薄的液体SO3层。
可评价任何这种方法或试剂,和这种方法或试剂的任何结合,以决定它们在此处披露的用途上的适用性。
导致本发明的进展
根据专利法,发明者和申请人没有被要求或鼓励公开完成本发明的历史和逐步进展。然而,鉴于数个因素,此处申请人公开了完成本发明的逐步进展的叙述性概述。
导致申请人决定通过这些步骤提供其进展的真实原因的因素包括下述:
1.鉴于以火焰形式燃烧和每月注射回到地下的大量“stranded”甲烷,鉴于需要清洁燃烧的燃料,和鉴于本发明可辅助导致从废气中有效除去二氧化碳并将其转化成乙酸或其它有价值化学品的方式,本发明具有潜在大而重要的商业、能量、环境、政治和社会意义,且可能辅助解决或至少减轻许多全球的重要问题。因此,若以可辅助额外熟练的研究者研究和理解不仅仅是附图中所示的反应,而且那些反应如何达到历史进步以及如何沿袭和领会由其它人开发的相关现有技术的各种设计,然后象线材或片材一样,织成新且不同的创造的方式,将这一技术告知他们,则可辅助促进不仅仅采用,而且传播这一有用且有益技术的设计。
2.即使与杂志上的文章相比,专利不包含“致谢”部分,但在现有技术中作出重要且有益进步的研究者值得公正和适当的公认和致谢,即使那些贡献没有给予那些早期先驱(他们被视为新发明的共发明者)(例如,由于他们的贡献因出版的文章、专利到期等已经进入公用领域)。
3.尽管使用强有力的计算机和复杂的化学模拟软件,充分地模拟和模仿以下披露的反应,且已在实验室试验中得到证明,但在小规模试验性工厂或按比例扩大的反应器内,它们尚未被证实是有效且经济的。因此,由于资金以及计算机模拟和实验室测试的局限性的正当理由,申请人决定采用下述最好的方法,(i)在本申请预公开的未审结期间,聘请秘密地接收这一信息的其它专家,和(ii)在该方法的设计、测试和按比例扩大期间,通过充分公开,其中包括如何实现这些反应的历史,使之最好地服务于大家。若申请人误解或误用任何事情,或者忽略了潜在地甚至更好的方法、催化剂或试剂,则将其导向本发明的进展的逐步说明可辅助其它研究者弄清楚如何克服或至少最小化任何瓶颈或障碍,和如何采用并延伸此处的各种公开内容(和此处援引的现有技术的各种其它信息)到烃化学的其它领域。
4.正如此处所述的,申请人开发了两种不同的反应体系。认为自由基引发剂体系(可例举过二硫酸体系)提供了迄今为止开发的最好体系用以将甲烷转化成MSA或甲醇。然而,若申请人没有仔细研究和分析symphoric和邻位硫酸体系(也在此处被公开),则该体系不会也不可能被开发。即使溴酸酯-硫酸酯体系不可能被合适地视为自由基引发剂体系的一部分,但可能提供有益的理解和有用的工具修改并延伸自由基引发剂体系到甲烷以外,并进入烃化学的其它领域。因此,symphoric-邻位体系被申请人视为提供高度有效的工具延伸本发明到将甲烷转化成MSA或甲醇以外,并进入利用和控制C1化学和其它烃化学分支的额外方法和试剂。因此,充分公开“实施本发明的最佳模式”的法律义务(这是几乎所有国家的专利法所要求的)被申请人解释为要求公开一组额外和辅助的选择方案和工具,这些选择方案和工具可通过symphoric-邻位试剂和方法来提供。
因此,提供下述说明,不是作为本发明的描述,而是作为可辅助阐明它如何和为何按照这一方式操作且它如何生成的附属指南。
在二十世纪八十年代,申请人在水处理工业工作。在此工作期间,申请人辅助设计、安装和维护许多石化工厂和精炼厂的水处理设备。
在食品加工厂工作期间,申请人发现过氧化氢可如何有效地氧化和清除因细菌引起的主要结垢问题。数年后,申请人碰巧阅读到了Colin Ramshaw(旋转式圆盘填充床的发明者之一,如在美国专利4,283,255中所述)在Financial Times(London)中的一篇文章。在这篇文章中,Ramshaw讨论了化学技术可能变得更小、更好和更便宜的各种方法。
那些评论使申请人感觉良好,并开始认真地考虑它们。根据申请人在各种石化工厂和精炼厂的工作,申请人意识到在所有有机化学中单个最大的没有解决的问题包括如何使甲烷(它难以以可控的方式处理和控制)转化成可更容易地处理的其它产品。
由于甲烷利用(其中包括转化成甲醇)的最有前景的路线包括各类氧化反应,申请人于是开始采用过氧化物试验。当过氧化物不起作用时,申请人尝试臭氧,且也不起作用。因此,申请人开始阅读大量化学论文、专利和教科书以寻找更好的方式。
经过数多年努力之后,且在注意到对symphoric和邻位反应的各种零星评论之后,申请人开始研究可能可以在质子和电子二者上同时发挥作用的双官能试剂,申请人认为这是控制甲烷上的单个氢原子的关键。这项工作达到的结果是,以上援引的2002年11月提交且在此处将进一步描述和阐述的美国临时申请60/424,091中公开的溴酸酯-硫酸酯体系。
在达到该平台之后,申请人开始研究可能可以比溴酸酯-硫酸酯方法作用甚至更好的可供替代的催化剂或试剂。
在这一努力期间,申请人开始考察磺化剂方面的文献,其中包括E.E.Gailbert的标题为Sulfonation and Related Reactions(Interscience Publishiers,New York,1965)的教科书。Gilbert所作的各种评论,特别是在第1章中,暗示在既不含水,也不含硫酸(H2SO4)的无水条件下,相反使用稳定的无水液体SO3,可能可以进行改进类型的磺化反应。
申请人不久意识到如果它可能实现的话,则无水路径可能能够避免或最小化各种问题。例如,若使用硫酸体系,则将产生腐蚀、空气污染和工人安全的严重问题,和消耗的酸需要丢弃,从而导致毒性和有害的废物弃置的严重问题。若按比例扩大到如果甲烷可有效和潜在地在全世界范围的基础上转化成甲醇所涉及的体积和吨数的话,则这些问题可能变得极其严重。
相反,若可开发无水和循环体系,其中硫反应物简单地在SO2和SO3之间来回循环,则将避免伴随硫酸体系的所有问题,和该体系将变得安全得多和更可操作和实际。
另外,一些化学因素也继续驱动申请人选择无水溶液作为最好、潜在地最有效和最完美的溶液。若液体无水SO3可以作为氧供体以直接方式使用,所述SO3当释放其氧原子,将被还原成SO2时(从而能使SO2直接再生回SO3),则该体系可更明确,因此可比更复杂和间接的路线,如通过溴酸酯-硫酸酯体系提供的路线更简单和更有效。在溴酸酯-硫酸酯体系中,进行多步历程变为甲醇的每一氧原子必须首先从SO3转移到溴酸化合物上,然后转移到溴酸酯-硫酸酯化合物上,然后转移到溴酸酯-硫酸酯-甲基中间体上,然后转移到甲基-溴酸中间体上,然后转移到酸式硫酸甲酯中间体上,然后必须使酸式硫酸甲酯中间体断开,以释放甲醇。
由于所有这些原因,申请人在2002年11月提交临时申请60/424,091的时刻起就已意识到,可显著改进该体系,若可开发可供替代且完全无水的体系,该体系不要求、涉及或生成水或硫酸的话。
数月之后,在2003年2月,申请人发现,德国专利申请DE10132526A1(Jess等,转让给德国的Rurhgas AG)的引证文献涉及形成烷烃的衍生物。申请人在计算机检索引用Roy Periana工作的信息期间发现了在2003年1月末公开的这一专利申请。由于RoyPeriana(曾经在Catalytica Company工作,现在为University ofSouthern California的教授)、Ayusman Sen(Penn State University的教授)和Alexis Bell(University of California,Berkeley的教授)全部是烷烃化学和衍生物领域内卓有成就和高度受人尊敬的研究者,因此申请人周期性地检索他们最近出版或申请专利的一切情况,和申请人获得并考察了他们撰写的看起来与甲烷化学有关的一切。
同样重要的是,申请人还周期性地检索引用Periana、Sen或Bell的任何文章或专利的别的任何人的任何其它专利或文章。引用其它已有工作的这类文章可通过使用称为“SciFinder”的计算机体系确定,“SciFinder”是美国化学会的成员可获得使用的。
在那些计算机检索中的一次期间,注意到德国专利申请DE10132526A1,因为它引用了Periana的研究工作。由于德国申请仅在德国可获得,因此申请人得到了翻译件,并注意到它引用了二十世纪四十年代的英国专利GB632,820。
该英国专利的参考文献引起了申请人的兴趣,和申请人获得了复制件并研究了它。这一英国专利仅仅以受让人的公司(Houdry ProcessCorporation)命名,和它没有公开发明者的名字。因此,申请人开始检索转让给Houdry并在二十世纪四十年代末期授权的专利的数据库和脚注,和申请人确定了三篇相应的美国专利号2,493,038、2,492,983和2,553,576,所有撰写由John Snyder和Aristid Grosse共同发明。
当申请人研究所有这三篇Snyder和Grosse的专利时,注意到他们在数处讨论了在碳和硫原子之间生成化学键的明显无水的体系(如同在MSA(它是H3C-SO3H)中一样)。这些完全不同于在其中硫原子被氧原子隔开的酸式硫酸甲酯(H3C-O-SO3H)中出现的间接化学键类型。
在Snyder和Grosse的专利中直接碳硫键的讨论激发了申请人的兴趣,这部分是由于申请人已经正在寻找无水体系,和部分是由于形成MSA和具有直接C-S键的其它试剂表明涉及一个或多个电子和质子重排机理,这可能完全不同于申请人在溴酸酯-硫酸酯体系中研究的各种机理。
在图书馆检索期间和之后不久,申请人也组织并获得可供替代的反应路径的计算机模拟。由一位权威的候选人进行这些模拟,这位权威的候选人作为给付报酬的顾问工作,和他具有正当的途径接触大学强有力的计算机。这一模拟使用Scientific Computation andModelling(www.scm.com)的Amsterdam Density Functional程序,第2.3.3版。该软件复杂且尖端,和在Journal of ComputationalChemistry(te Velde等2001)出版的全面的综述文章中被公开。
在那段时期模拟的反应流程包括:
(1)硫酸汞体系,该体系最初在Snyder和Grosse的专利,随后在Periana等1993和美国专利5,306,855(Periana等1994)中被公开;和
(2)碘体系,该体系在Periana等2002和在美国专利6,380,444(Bjerrum等2002)中被公开。
在那时申请人分析的反应路径包括使用汞或碘化合物,但不是Snyder、Periana或Bjerrum提出的相同方式。相反,使用申请人开发的方法,使用双官能团symphoric/邻位体系,模拟那些试剂,申请人开发了溴酸酯-硫酸酯催化剂。此外,既在使用液体SO3作为磺化剂的无水体系,也在含有硫酸以及水的含水体系中模拟那些体系。还应当注意,含有酸和水二者的体系常常被称为“质子”体系,因为酸当溶剂在水中时,将释放氢质子(H+)到含水溶剂内。
这些模拟结果表明,汞和碘化合物在一些条件下对于使用各种反应流程,由甲烷生成稳定的甲基中间体来说可能有用。然而,这些反应流程存在数个明显的缺点和问题,其中包括:(i)它们中的至少一些涉及将难以达到的过渡态的事实,因为它们将要求非常高的“自由能”(DG)态;和(ii)使用汞或碘的任何体系在商业上不切实际的担心,因为具有潜在有毒的废物、对工人的危害等问题。
因此,申请人的工作没有长时间详细研究汞或碘体系。使用以上所述的“SciFinder”检索体系,申请人进行了额外的文献检索,并确定了Basickes等1996,因为它引用了以上所述的Snyder的美国专利2,493,038。1996年的这篇文章公开了Ayusman Sen教授在Penn StateUniversity的实验室内的工作。
Basickes等1996含有标记为“流程1:形成甲磺酸的自由基机理”的图表,该图表列出了在两个标题下的四个反应。这一“流程”没有被其作者断言是已证事实;相反,这篇文章述及,“在流程1中概述了借助发烟硫酸,K2S2O8引发甲烷转化成CH3SO3H的可能机理,…鉴于我们的观察,在催化体系内操作自由基路径的可能性[Periana等1993的脚注]必须认真考虑…”。
基于在Basickes等1996中列出的“流程1”,两个“引发”反应如下所述:
K2S2O8→2KSO4*
KSO4*+CH4→KSO4H+*CH3
两个“增长”反应如下所述:
*CH3+SO3→CH3SO3*
CH3SO3*+CH4→CH3SO3H+*CH3
一旦看到这一流程,引起了申请人的兴趣,和不仅申请人从额外的文献检索中获悉由K2S2O8制造MSA(CH3SO3H)的Basickes/Sen路径也受到其它研究者的跟踪研究,如在Lobree和Bell 2001,以及在Mukhopadhyay和Bell 2002与2003a中所述。
然而,如果可能的话,申请人想要避免使用K2S2O8,它是过二硫酸的钾盐。尽管K2S2O8可能非常适于非大量地制造MSA,但使用非再生金属盐的任何反应流程用于诸如油田中使甲烷大规模地转化成甲醇的工艺将使得在任何反应器和管道内部遭遇严重的金属累积和结垢问题。另外,使用K2S2O8还可能生成大量的氧气分子,当氧原子有时断裂离开其硫键时,所述氧气分子逐渐累积。这可能导致依赖自由基的反应流程的重大问题,因为氧气分子充当“自由基捕获者”,且将吸收并中和任何自由基,从而严重干扰利用且依赖自由基的任何反应。
因此,申请人开始仔细考虑可能引发并驱动自由基路径的酸(而不是盐)化合物,该自由基路径类似于但不同于在Basickes等1996中所述的路径。最初申请人考虑了称为过一硫酸或过氧单硫酸的化合物。该化合物与硫酸相当,但它具有位于硫原子和羟基之一之间的额外的氧原子,因此其化学式可撰写为HO3SOOH,其中在形成过氧键的一行(row)中具有两个氧。
因此,申请人开始寻找可能使得以经济上合理的方式形成过一硫酸的方法。申请人确定美国专利5,304,360(Lane等),该专利公开了制造过一硫酸的装置和反应流程,和该专利还引用了数篇早期的专利,这些专利也公开了制造过一硫酸的其它方法,其中包括US2,789,954(Fell,1957)和3,900,555和3,939,072(Jourdan-Laforte,1975和1976)。
这些研究使申请人得到了过二硫酸,它是一种过硫酸。简式为H2S2O8。更能揭示其结构的化学式是HO3SO-OSO3H,这清楚地表明过二硫酸是一种在分子中间内具有过氧键的对称的二酸。
若过二硫酸断开,它可生成彼此相同的两个“强”的自由基,而不是象过一硫酸和大多数其它自由基引发剂一样仅仅一个。关于“强”的自由基,包括具有高度电负性无机原子的自由基,如HS3SO*;它不包括象过氧化氢(和过一硫酸)一样释放的简单的羟基(HO*)自由基,因为简单的羟基自由基没有强到快速且有效地从甲烷中除去氢原子的程度。
因此,申请人意识到过二硫酸可能是一种良好的试剂,若它可以以经济上合理的方式就地生成,然后迅速使用的话。因此,申请人开始寻找可用于合成过二硫酸的方法,并确定了美国专利3,927,189(Jayawant 1975,转让给DuPont)。该方法包括使过氧化氢与三氧化硫反应,首先生成过一硫酸,然后添加更多的三氧化硫,以驱动至少一部分过一硫酸变为过二硫酸。US3,927,189专利表明,该反应应当在温和的条件下进行,其中温度不超过45℃,同时仔细控制一定的摩尔比和确保液体(和气体,如果有的话)保持合适地分散。该专利证明,在过一硫酸中间体(它不稳定)有时间分解之前,任何这种反应应当快速进行。
因此,证明已经公开了制造过二硫酸的实际方式。它产生最终的困惑,申请人于是要求这位正在为他做计算机模拟的权威候选人做一些过二硫酸体系的模拟。
该计算机模拟的结果使人们相信了该体系确实可行且实用。申请人于是将该结果秘密地披露给各种人,其中包括美国能源部的数个官员,和Penn State University的Ayusman Sen教授,其研究小组立即开始进行实验室试验,如以下的实施例中所述。这些试验结果证明该体系确实以所预期的方式起作用。
计算DH和DG值
采用计算机模拟化学反应的任何人公知,在计算机模拟过程中存在一些可计算的数值,以提供所提出的路径如何优良和如何有效的指示。那两个数值之一通常用DH表示。在化学术语中,“H”是指可视为热量;然而,必须理解,这类热量是指以化学键形式储存的热势(heatpotential),而不是一些特定化合物或材料目前的温度。为了区分这一参数与温度,通常被化学家称为焓。希腊符号DDD(用英语,称为“Δ”)表示,对于DH来说,数值表示两个能量状态之差,而不是绝对值。
对于许多组化学反应来说,必须计算两个不同的DH(焓)值,且二者是至关重要的。称为“活化热”(此处简称DHACT)的一个数值,表示必须输入到材料或混合物内的能量多少,以便得到沿着一定路径引发的反应。按照简单的类比,“活化热”相当于说,在一张纸或片材开始燃烧之前,必须以某种方式通过首先输入能量到该体系内启动燃烧反应。这可通过用火柴或一些其它的火焰或热量源点燃一张纸或木材而进行。
可通过在与图3所示的曲线相当的能量曲线上画出各种计算的数值,在图表上示出化学反应的活化热(DHACT)。当在这类图表上作图时,起始材料(或试剂的结合)的能量状态从任意设定为0的基线值或起点为起始。起始基线值为0简化了算法,并使得更容易地快速解释随后的任何数值。
对于未反应的试剂,以零点为起始,起始材料或混合物的能量必须首先攀升到某一类顶点或峰值,这要求将活化能引入到体系内,以启动反应。这一起始的顶点或峰值,表示能量增加,和这一顶点或峰值的高度说明了活化能(DHACT)。为了使用一样的类比,焓的这一起始增加是当燃烧的火柴引燃一张纸或片材时所发生的现象;来自火柴的火焰提供氧气纸张或木材开始燃烧的活化能。
当被加热的材料或混合物达到“过渡态”(在图表中简称为TS)时,它将以释放更多热量的方式自己开始燃烧(或者要么化学反应),这些热量是启动燃烧过程或者其它反应所要求的。这是一旦一张纸或木材开始燃烧,能使它保持燃烧并开始释放热量的原因。这一反应通过能量曲线的右侧上大的斜率来描述,其中可通过沿着反应路径在每一主要点处计算能量状态画出所述能量曲线。
若使反应从头到尾进行完全,则可测量(或通过计算机软件计算)总反应所释放的热量。这种“总的热量释放”量通常表达为“反应热”,此处简写为DHRXN。通过对流测量并表达反应热,不是比较表示最高能量过渡态的峰值与活化热,而是比较应用到起始、未加热和未反应的材料或混合物上的基线零值。因此,反应热表示“净”的能量输出。
在分析反应中,化学反应的总(净)反应热(DHRXN)是至关重要的,因为它表示与未反应的起始材料相比,反应产物更“稳定”多少。它提供一些材料或混合物可转化成一组所需反应产物如何轻易和容易的数字化表征。另外,在也能识别竞争性路径(以及竞争性中间体和可能比所需中间体与产品更稳定的产物)的尖端的计算机模拟中,这类模拟也可提供产率如何有效的有用指示,和通过该工艺可能生成的不想要的副产物或未反应的试剂的含量。
在如何复杂的化学反应中,这两个数值(活化热DHACT和反应热DHRXN)是关键的,和必须通过模拟复杂化学反应所使用的计算机程序来计算这两个数值。
然而,化学家公知的是,当化学反应在计算机上模拟时,这两个DH数值仅仅告诉一半的情况。其它关键的计算涉及DG,DG是指因一些化学反应产生的熵变。按照Layman的术语,熵是表示没用或浪费的能量的数值,当一些化学反应发生时,它以可认为是废热、“随意”或 “自由能”的形式损失给周围环境(自由,不是很准确的意义,但可以以下述方式使用牲畜所有者作为类比:被仔细集中且划定在畜栏内的他的牛或马破坏篱笆和现自由奔跑)。这类“自由”或无用能常被化学家称为“杂费(overhead)”,因为它在一些方面类似于税收、养老金成本、必须从其它工作中转移以使政府文件完全的时间,和因偷窃导致的存货减少。这些是使企业运行的一些“杂费”成本,和若它们保持越来越高地蠕变,直到它们总共累积到不可接受或不可容忍的水平时,它们可使得企业没有利润和最终使之破产。
由于计算的DG值表示“杂费”或“没有收益的成本”,对于一些反应来说,小或负的DG值表示反应有前景,和可能容易且良好产率地进行。相反,高DG值比较差,且表示反应受到不活泼、低产率和其它问题的困扰。
作为DG值可以如何表示反应路径是否有效地进行的实例,本申请的图6提供了对于申请人开发的溴酸酯-硫酸酯体系中和在现有技术中公开的碘体系中出现的一些中间态的数个渐变的DG值的图表。对于这两条路径来说,代表过渡态(TS)的升高的“顶点”表示必须向该体系内输入能量使反应启动,如上所述。负的最后值表示若反应可越过过渡态的“顶点”,则反应可进行。通过如图6所示比较溴酸酯-硫酸酯体系的自由能态和碘体系的自由能态,显然计算表示溴酸酯-硫酸酯体系提供更有前景的体系,该体系可能比碘体系可产生更好的产率,因为溴酸酯-硫酸酯体系的过渡态不如碘体系内出现的过渡态高(因此,不那么难以达到和越过,且不那么可能驱动任何试剂或中间体朝向可采用较少能量的可供替代的路径)。
基于迄今为止所做的计算机模拟,对于此处披露的许多反应路径来说,计算的DHACT、DHRXN和DG值证明特别或甚至非同寻常地具有前景。这些计算的数字没有附在本专利申请内,部分是由于一旦结论、路径和机理已经公开,具体和详细的数值对于实际实施本发明来说不是必须的,和部分是由于申请人尚未具有(由毕业的学生得到的)这些计算的数字可以如何高度和强烈依赖的有力和可靠感觉。尽管如此,但那些数字已作为附件的形式提交给了美国专利商标局,该附件包括在临时申请xxx内。在公开这一目前的实用新型申请之后,包含临时申请(所述临时申请包括含DH和DG能量计算的理论论文的附件)的申请文件将对公众公开以供检查和复制。欢迎任何人检查那些数据,并与申请人直接接触,如果他们希望获得本申请公开之前的那些数据的话。然而,必须强调和理解的是:(i)这些计算机模拟不是完美的,相反完全基于使用高度复杂的软件的计算机模拟;(ii)在复杂体系的任何特定的计算机模拟可以运行之前,任何这种计算机模拟必须依赖于必须选择的各种简化和其它假设作为程序的一部分;(iii)模拟路径的唯一真实的证据必须来自于在小规模实验室水平和在较大规模按比例放大的设备内的反应体系的实际性能;和(iv)本发明不依靠或依赖任何那些计算机模拟的数值,相反依靠新的有价值的化学路径的公开,所述化学路径可被熟练本领域的技术人员唯一基于本申请的公开内容,理解、按照和使用,由本领域熟练水平的在烃化学具有专长的那些专家补充。
潜在的竞争反应
申请人已证明可数个潜在的竞争性反应,若它们大规模地发生的话,则可能干扰由甲烷转化成MSA或甲醇的所需路径。
迄今为止进行的计算机模拟表明,这些潜在的竞争性反应通常不应当产生严重阻碍此处披露的反应流程的主要问题,理由如下所述。尽管如此,测试此处披露的任何反应流程的任何人,或者在小规模的实验室水平下或者在按比例放大的测试中,应当意识到这些潜在的竞争性路径,以便采用合适的措施监控它们,并视需要通过合适的方式(例如通过添加一种或多种添加剂或抑制剂,通过调节一个或多个反应参数,使热力学动力或者平衡偏移远离不想要的化合物,通过使流化的流体流经捕获不想要化合物的固定床等)避免或最小化它们。
图4(包括图4A和图4B)示出了两个潜在的竞争性路径。
在上方的路径中,甲磺酸自由基(H3CSO3*)可与MSA的完整分子,H3C-SO3H反应,其方式使得来自完整的甲磺酸上的甲基中的氢原子之一有效地转移到甲磺酸自由基的氧原子上(作为两步方法的净结果)。这将使来自氧原子上的高度反应性的未成对的电子有效地转移甲基上,如图4A所示。然而,迄今为止进行的计算机模拟表明,若这发生的话,将导致HO-SO2-CH2*自由基或者:(i)本身自发重排,或者(ii)与另一MSA分子反应,其方式使得未成对的电子转移回到氧原子上,而不是离开它达到甲基上。任何一种重排将再生成启动该工艺的相同类型的MSA自由基,其中未成对的电子在氧原子上,而不是在甲基上。
在其它潜在的竞争性路径中,如图4B所示,MSA的完整分子,H3C-SO3H不是快速从该体系中除去,以便它可分解成甲醇和SO2,相反可能与甲基自由基(*CH3)反应,其方式使得MSA自由基(CH3SO3*)再生成,同时还由甲基自由基再生成甲烷(CH4)。然而,迄今为止进行的计算机模拟表明,若这一不想要的反应发生,则新生成的MSA自由基将快速进攻完整的甲烷分子(因为新鲜量的甲烷可能在所有时刻被大量地供应到体系中),和MSA自由基将从甲烷上除去一个氢原子,生成完整的MSA与新的甲基自由基(*CH3)。在恒定供应新鲜(即再生和循环)SO3到该体系中同时还从该体系中恒定移走MSA浓缩物的合适地优化和合适地运行的体系中,新的甲基自由基进攻刚刚进入体系的SO3分子的可能性比进攻最新变完整准备流出体系的MSA分子的可能性大得多。
symphoric和邻位体系;溴酸酯-硫酸酯体系
图5描述了申请人开发的symphoric和邻位反应体系,一种具有亲电(即带正电和吸电子)区和亲核(即带负电和吸质子)区的双官能试剂。为了证明作为symphoric和/或邻位,那两个区域必须(i)包含在同一分子内,和(ii)通过一段距离将彼此隔开,其中所述距离使该试剂在特定类型的靶向烃分子内引起质子和电子偏移,其方式将产生具有降低的热力学势垒的过渡中间体。这些类型的配位质子和电子偏移可改进反应体系的选择率和产率,用以将要么稳定和/或对称的烃(如甲烷或其它低级烷烃)转化成反应性更大且更容易处理和操作的其它中间体或产物。
申请人选择具有化学式HO3S-O-BrO2的特定溴酸酯-硫酸酯试剂,因为它格外特别适于在甲烷上发挥symphoric和邻位效果。它可驱动甲烷进行可生成酸式硫酸甲酯(H3COSO3H)的反应路径,如图5所示。酸式硫酸甲酯可水解释放甲醇,而甲醇可被使用或销售,和这种水解还释放硫酸,在没有形成废物的情况下,硫酸在该体系内可被循环,以再生溴酸酯-硫酸酯试剂。
因此,作为例举体系讨论溴酸酯-硫酸酯试剂和图5所示的体系,用以将甲烷转化成其它产物,如甲醇。尽管申请人随后开发的自由基引发剂体系(使用过二硫酸)被认为提供更好的路径将甲烷转化成甲醇,但在申请人的发现之前,溴酸酯-硫酸酯体系被认为提供比曾经已知的任何其它体系更好的路径。因此,如上所述,对甲烷或其它低级烃感兴趣的任何有机化学家应当仔细研究,因为它可提供强有力的一组工具和选择,能够以与自由基引发剂体系互补的方式实现各种有用的结果,和可应用到其中自由基引发剂体系不起作用的各种情况(如,尤其当处理其中高度反应性的自由基将与太多不同化合物反应的试剂的混合物,进而提供低和不令人满意的选择率和产率时)。
也可计算机模拟并在实验室测试溴酸酯-硫酸酯试剂(或具有彼此隔开控制距离的亲电和亲核区二者的任何其它类似的symphoric和/或邻位试剂),以评价其控制乙烷、丙烷或任何其它低级烷烃分子(正如此处所使用的,术语如“低级烷烃”或“低级烃”包括具有最多4个碳原子的化合物)的能力。也可用含碳与氢原子的任何其它类型的化合物(术语“烃”在此处广义地使用,包括含有氢和碳原子二者的任何化合物,与这种化合物还含有氧、硫、氮或任何其它元素无关)模拟和/或测试这种symphoric和邻位试剂。候选的化合物包括(i)取代烷烃;(ii)迄今为止包括的环烷烃,和/或具有非碳、非氢原子,或者作为环的一部分或者连接到环上的取代环烷烃;(iii)芳烃;和(iv)不饱和烃。
过二硫酸、溴酸酯-硫酸酯和甲烷的变体
熟练有机化学的技术人员应当意识到,以上公开的反应流程(以过二硫酸体系为例举的自由基引发剂体系,和以溴酸酯-硫酸酯体系为例举的symphoric和邻位体系)仅仅是例举,和能使这些体系既以低热力学势垒和高选择率地运行,同时又最小化和避免生成废物或不想要的副产物的因素和原理,可以以各种方式用到其它类型的烃反应上。作为实例,这些体系(单独或结合)可以以各种方式被改造并用于将其它小的烃,其中包括低级烷烃如乙烷和丙烷,和可能地环烷烃、芳烃或其它组烃转化成有用的各种“官能化”的中间体和产物。也可改造这些体系用于不饱和试剂如乙烯、丙烯等。
实施例
实施例1:设备与试剂
以下所述的所有试验在Pennsylvania State University化学系Ayusman Sen教授的实验室中进行。在或者手套箱或者手套袋中,在惰性气体(氮气,N2)下进行所有实验。
除了以下所述的以外,反应在被设计成耐高压的(这些装置在化学实验室内常常被称为“高压容器(bomb)”)密封容器内进行,该容器含有玻璃衬里(该衬里可容易地除去以供彻底清洗和灭菌,当在高压容器内达到高压时,该衬里不破裂,这是因为压力在衬里的玻璃壁的两侧上相等)。所使用的高压容器具有3/8英寸的不锈钢壁和1.5英寸的内部腔室直径和4.5英寸的高度。玻璃衬里的内径为1.24英寸、高度为4英寸和壁厚1/16英寸。在一些实验中使用1英寸长和圆形截面直径约3/16英寸的搅拌棒。
在许多实验中,将小瓶放置在衬里内部,以确保第一液体和第二液体没有直接混合,其中所述第一液体装载在玻璃衬里的底部,而第二液体装载小瓶内。所使用的小瓶的外径为1英寸、壁厚为1/16英寸和高度为2.25英寸。顶部的开口直径(具有与螺帽相适应的外部螺纹)为5/8英寸。程度为1/2英寸和直径为1/8英寸的小搅拌棒有时放置在小瓶内部。
实施例2:制备过二硫酸
为了制备过二硫酸(过硫酸),在13-15℃下,将在惰性氮气(N2)内的SO3的气体混合物装载在含有70%过氧化氢水溶液的容器内。在搅拌下继续反应,直到基本上所有液体试剂被消耗,这通过存在始终粘稠的溶液和存在一些固体晶体,但没有不均匀的液体来证明。
在#1试验中,在水(17.7mmol)内的1.1g 70% H2O2(22.7mmol)中吸收6.9g(86.3mmol)SO3 5.5小时。在将一些SO3转化成H2SO4之后,SO3对H2O2的摩尔比为3∶1。认为所有H2O2转化成了过二硫酸(H2S2O8),和所有水转化成了H2SO4。这些计算和假设表明,该溶液含有22.7mmol过二硫酸(总溶液重量的56.2%),和17.7mmol硫酸(21.3%),其中存在23.2mmol未反应的SO3(22.5%)。
在#2试验中,在水(19.4mmol)内的1.2g 70% H2O2(25mmol)中吸收5.2g(65mmol)SO3 5.5小时。由于SO3(在减去形成H2SO4的SO3的mmol数之后)对H2O2的摩尔比为1.8∶1,假设第一当量的SO3与H2O2反应形成过一硫酸(H2SO5),和其余0.8当量SO3与过一硫酸反应形成过二硫酸。这些假设表明是含有20.6mmol过二硫酸(62.5%),19.4mmol硫酸(29.7%)和4.4mmol过一硫酸(7.8%)的溶液。
在#3试验中,在水(30.0mmol)内的1.8g 70% H2O2(37.0mmol)中吸收8.3g(103.8mmol)SO37小时。在减去形成H2SO4的SO3的mmol数之后,SO3对H2O2的摩尔比为2∶1这表明是含有37.0mmol过二硫酸(71.3%)和30mmol硫酸(28.7%)的溶液。
在#4试验中,在水(35.0mmol)内的2.1g 70%H2O2(43.2mmol)中吸收8.3g(103.8mmol)SO37小时。由于SO3(在加上形成H2SO4的SO3之后)对H2O2的摩尔比为1.6∶1。这表明是含有25.6mmol过二硫酸(47.7%),35mmol硫酸(33%)和17.6mmol过一硫酸(19.2%)的溶液。
实施例3:测试MSA形成的工序
以上所述的试验使用MSA/SO3混合物作为液体介质。气体SO3可以以最多约10∶1的比例有效地吸收在甲磺酸(MSA)内,因此,如上所述,将吸收在液体MSA内的SO3溶液放置在比例小瓶内。将1-2g过二硫酸溶液(如实施例2所述制备)放置在同一小瓶内。
将该小瓶放置在高压容器内的稍微较大的玻璃衬里(也如上所述)内,并在该衬里内装载3-5g稳定的液体SO3。
采用该方法(将SO3分在两个独立的区域内)防止过二硫酸过载SO3,因为高浓度的SO3可引发过二硫酸降解,从而引起它释放氧气并破坏其过氧键。
密封高压容器并用800-1400psi的甲烷加压。加热它到48-52℃,和当它下降时,监控压力。继续加热,直到压力不再继续下降,并达到asymptotic水平。
然后在两小时内使高压容器逐渐冷却到室温。缓慢释放压力,打开高压容器,和在小瓶内的溶液用5-10ml水稀释。然后借助1H核磁共振(NMR)分析该液体。
在大多数情况下,MSA是在也内向发现的唯一产物。与在毛细管内的二甲亚砜的标准峰相比,使用峰强度的积分定量化它,以证明除了已经存在于起始装载在小瓶内中的液体内的MSA之外,确实还形成额外的MSA。
还通过气相色谱分析存在于冷却的高压容器内的气体混合物。在任何一个测试试验中,在气相内没有检测到二氧化碳。
实施例4:第一次试验:甲烷产率40.4%,SO3产率:96.0%
在如上所述运行的第一反应试验中,使用1.0g如(以上)试验#1中所述制备的过二硫酸(其中56.2%的过二硫酸,21.3%的硫酸和22.5%的SO3)。将其加入到含50mmol MSA和63mmol SO3的小瓶内。将2.8g(35mmol)稳定的液体SO3加入到小瓶外部的衬里中。用纯甲烷使高压容器加压到800psi,并在48-52℃下加热。
在2小时内观察到70psi的压降,和向该容器再引入额外50psi的甲烷。在接下来的2小时内总的压降升高到120psi(即在总计4小时之后),和向该容器再引入额外50psi的甲烷。在14小时内总的压降为250psi。
测量注入到高压容器内的总甲烷并计算为240mmol,和在液体介质内SO3(即溶解在MSA内并放置在小瓶内部)的总量为101mmol。
测量新形成的MSA的产率并计算为97mmol(总计147mmol减去已经存在于MSA/SO3液体介质内部的50mmol)。
这表明甲烷的转化产率为40.4%,和SO3的转化产率为96.0%。
实施例5:第二次试验:甲烷产率40.6%,SO3产率:99.1%
在如上所述运行的第二反应试验中,将1.0g来自(以上)试验#2中的过二硫酸装载到含48mmol MSA和71mmol SO3的小瓶内。将3.0g(38mmol)稳定的液体SO3加入到小瓶外部的衬里中。用1000psi的甲烷使高压容器加压,并在48-52℃下加热。
在2小时后观察到100psi的压降,在4小时后观察到150psi的压降,和在12小时后观察到280psi的压降。
测量在该高压容器内的总甲烷并计算为266mmol。在液体介质内的SO3计算为109mmol。测量MSA的产率并计算为108mmol(156mmol减去48mmol)。
这表明甲烷的转化产率为40.6%,和SO3的转化产率为99.1%。
实施例6:第三次试验:甲烷产率43.3%,SO3产率:92.6%
在如上所述运行的第三反应试验中,将1.5g来自(以上)试验#3中的过二硫酸装载到含43mmol MSA和99mmol SO3的小瓶内。将4.0g(50mmol)稳定的液体SO3加入到小瓶外部的衬里中。用1200psi的甲烷使高压容器加压,并在48-52℃下加热。
在2小时后观察到150psi的压降,在4小时后观察到250psi的压降,和在10小时后观察到300psi的压降。
测量在该高压容器内的总甲烷并计算为319mmol。在液体介质内的SO3计算为149mmol。测量MSA的产率并计算为138mmol(181mmol减去43mmol)。
这表明甲烷的转化产率为43.3%,和SO3的转化产率为92.6%。
实施例7:第四次试验:甲烷产率33.6%,SO3产率:92.6%
在如上所述运行的第四反应试验中,将2.4g来自(以上)试验#4中的过二硫酸装载到含43mmol MSA和77mmol SO3的小瓶内。将4.6g(58mmol)稳定的液体SO3加入到小瓶外部的衬里中。用1400psi的甲烷使高压容器加压,并在48-52℃下加热。
在1小时后观察到100psi的压降,在2小时后观察到180psi的压降,在3小时后观察到240psi的压降,和在6小时后观察到300psi的压降。
测量在该高压容器内的总甲烷并计算为372mmol。在液体介质内的SO3计算为135mmol。测量MSA的产率并计算为125mmol(168mmol减去43mmol)。
这表明甲烷的转化产率为33.6%,和SO3的转化产率为92.6%。
一旦检验并比较这些数据,认为在高压容器内的甲烷浓度是决速因子,因为增加甲烷压力会增加反应速度。根据我们以前的计算,在50℃下CH4(1200psi)在水中的摩尔浓度为0.078M,在MSA/SO3混合物内CH4的溶解度可更高,但与SO3在也内向的含量相比,仍然相当低。以内增加反应速度次关键步骤是增加CH4在液相内的溶解度。
另外,各种计算(其中包括,在50℃下,过二硫酸在SO3内的均解的计算速度常数为3.0×10-5/秒)表明,甲烷转化成MSA的转化速度比过二硫酸的均解速度快约20倍。这辅助解释了在10小时的跨度内为何压力继续下降(在所使用的实验室试验条件下)和SO3转化率为何在非常高的范围内,最多99%。当按比例扩大到工业水平时,在使用设计成高产量的连续流动装置(如环管反应器和/或旋转床反应器)而不是小体积的批料反应器的情况下,预期可在数分钟,或者甚至数秒内,而不是在数小时的跨度内可实现有效和经济的反应程度。
实施例8:借助过二硫酸的钾盐没有转化
作为比较实验,使用如上所述的与测试过二硫酸的游离酸形式相同的工序,将270mg过二硫酸的钾盐(K2S2O8,1.0mmol)装载在小瓶内,和将13.5g稳定的SO3装载衬里内。用800psi的甲烷给高压容器加压。然后经额外16小时升高温度到75-80℃,但仍没有观察到压降。
不存在任何压降表明过二硫酸的钾盐不能引发甲烷和SO3之间的任何反应。
因此,证明并公开了一种新且有用的方法由甲烷生产甲醇,和由甲烷与其它低级烷烃分子生产其它有用和有价值的低级烷烃衍生物、中间体和产物。尽管为了阐述和说明目的,通过参考一些具体的实施方案,例举本发明,但对于熟练本领域的技术人员来说,显而易见的是,所示实施例的各种改性、替换和等价物是可能的。直接得自于此处的教导且没有脱离本发明的精神与范围的任何这种变化认为被本发明所覆盖。
参考文献
Basickes,N.,et al,“Radical-initiated funcionalizationof methane and ethane in fuming sulfuric acid”,J.Am.Chem.Soc.,118:13111-13112(1996)
Broekhuis,R.R.,et al,“The ejector-driven monolith loopreactor-experiments and modeling”,Catalysts Today,69:887-893(2001)
Gilbert,T.M.,et al,“Comparison between oxidative additionand o-bond methasis as possible mechanisms for the Catalyticamethane activation process by platinum(II) complexes:A densityfunctional theory study”,Organometallics,20:1183-1189(2001)
Gilbert,G.E.,Sulfonation and Related Reactions(Interscience Publishers,1965)
Golombok,M.,et al,“A chemical alternative to naturalgas flaring”,Ind.Eng.Chem.Res.,42:5003-5006(2003)
Lin,M.,et al,“Oxidation and oxidative carbonylation ofmethane and ethane by hexaono-u-peroxodisulfate(2-)ion inaqueous medium:A model for alkane oxidation through thehydrogen-atom abstraction pathway”,J.Chem.Soc.Chem.Comm.,1992:892-893(1992)
Lin,M.& Sen,A.,Nature,368:613(1994)
Lin,M.et al,J.Am.Chem.Soc.,118:4574(1996)
Lobree,L.J.,et al,“K2S2O2-initiated sulfonation of methaneto methanesulfonic acid”,Ind.Eng.Chem.Res.,40:736-742(2001)
Mukhopadhyay,S,et al,“Effects of solvent acidity onthe free-radical-initiated synthesis of methanesulfonic acidfrom CH4 and SO3”,American Chemical Society,2002:A-E(2002)
Mukhopadhyay,S.,et al,“A novel method for the directsulfonation of CH4 with SO3 in the presence of KO2 and a promoter”,Organic Process Research & Development,2003:A-D(2003)
Mukhopadhyay,S.,et al,“A high-yield approach to thesulfonation of methane to methanesulfonic acid initiated by H2O2and a metal chloride” ,Angew.Chem.Int.Ed.,42:2990-2993(2003)
Mukhopadhyay,S.,et al,“Effects of solvent acidity onthe free-radical-initiated synthesis of methanesulfonic acidfrom CH4 and SO3”,Amer.Chem.Soc.,2002:A-E(2002)
Nizona,G.V.,et al,“Carboxylation of methane with COor CO2 in aqueous solution catalysed by vanadium complexes”,Chem.Commun.,1998:1885-1886(1998)
Periana,R.A.,et al,“A mercury-catalyzed,high-yieldsystem for the oxidation of methane to methanol”,Science,259:340(1993)
Periana,R.A.,et al,“High yield conversion of methaneto methyl bisulfate catalized by iodine cations”,Chem.Commun.,2002:2376-2377(2002)
Periana,R.A.,et al.,“Platinum catalysts for thehigh-yield oxidation of methane to a methanol derivative”,Science Magazine,280:560-564(1998)
Reis,P.M.,et al,“Single-pot conversion of methane intoacetic acid in the absence of CO and with vanadium catalystssuch as amavadine”,Angew.Chem.Int.Ed.,42:821-823(2003)
ZerellaM.,et al,“Synthesis of mixed acid anhydrides frommethane and carbon dioxide in acid solvents”,Amer.Chem.Society,5:3193-3196(2003)
Ziegler,T.,“Approximate density functional theory as apractical tool in molecular energetics and dynamics”,Chem.Reviews,91:651-67(1991)
Claims (42)
1.一种将甲烷转化成氧化衍生物的方法,该方法包括下述步骤:
a.从甲烷上移走氢原子,从而生成甲基自由基,其中每一甲基自由基具有一个未成对的电子;
b.使该甲基自由基与选择的氧化物化合物接触,从而形成甲基化氧化物自由基;和
c.使甲基化氧化物自由基与甲烷反应,从而形成稳定的甲基化氧化物分子,同时还生成新形成的甲基自由基,
其中使用不生成盐化合物的试剂进行所述步骤。
2.权利要求1的方法,其中通过自由基引发剂化合物引发所述步骤,然后,通过添加适量甲烷和选择的氧化物化合物到反应器装置中,在稳态基础上维持。
3.权利要求1的方法,其中使用无水试剂进行反应步骤。
4.权利要求1的方法,其中选择的氧化物包括三氧化硫。
5.权利要求1的方法,其中甲基化氧化物自由基包括甲磺酸自由基。
6.权利要求1的方法,其中稳定的甲基化氧化物分子包括甲磺酸。
7.权利要求6的方法,其中以引起甲磺酸释放甲醇和二氧化硫的方式处理至少一部分甲磺酸。
8.权利要求7的方法,其中:
a.氧化至少一部分二氧化硫以将其转化成三氧化硫;和
b.使至少一部分三氧化硫循环到含有甲基自由基的反应器容器内。
9.权利要求1的方法,其中一系列反应步骤一起生成的副产物的总量小于通过该方法形成的稳定的甲基化氧化物分子重量的10%。
10.权利要求2的方法,其中自由基引发剂化合物包括具有过氧键的对称的无机二酸化合物,其中过氧键断开时,所述对称的无机二酸化合物生成两个相同的氧自由基。
11.一种将甲烷转化成氧化衍生物的方法,该方法包括下述步骤:
a.从甲烷上移走氢原子,从而生成甲基自由基,其中每一甲基自由基具有一个未成对的电子;
b.使该甲基自由基与选择的氧化物化合物接触,从而形成甲基化氧化物自由基;和
c.使甲基化氧化物自由基与甲烷反应,从而形成稳定的甲基化氧化物分子,同时还生成新形成的甲基自由基,
其中使用无水试剂进行所述步骤。
12.权利要求11的方法,其中通过自由基引发剂化合物引发所述步骤,然后,通过添加适量甲烷和选择的氧化物化合物到反应器装置中,在稳态基础上维持。
13.权利要求11的方法,其中选择的氧化物包括三氧化硫。
14.权利要求11的方法,其中甲基化氧化物自由基包括甲磺酸自由基。
15.权利要求11的方法,其中稳定的甲基化氧化物分子包括甲磺酸。
16.权利要求15的方法,其中以引起甲磺酸释放甲醇和二氧化硫的方式处理至少一部分甲磺酸。
17.权利要求16的方法,其中:
a.氧化至少一部分二氧化硫以将其转化成三氧化硫;和
b.使至少一部分三氧化硫循环到含有甲基自由基的反应器容器内。
18.权利要求11的方法,其中一系列反应步骤一起生成的副产物的总量小于通过该方法形成的稳定的甲基化氧化物分子重量的10%。
19.权利要求12的方法,其中自由基引发剂化合物包括具有过氧键的对称的无机二酸化合物,其中过氧键断开时,所述对称的无机二酸化合物生成两个相同的氧自由基。
20.一种将甲烷转化成氧化衍生物的方法,该方法包括:在反应器装置内生成甲烷、甲基自由基、选择的氧化物化合物、甲基化氧化物自由基,和稳定的甲基化氧化物化合物的连续流动的混合物,其中:
(i)甲基与氧化物化合物反应,从而生成额外的甲基化氧化物自由基,和
(ii)甲基化氧化物自由基与甲烷反应,从而生成额外的甲基自由基和额外的稳定的甲基化氧化物化合物,
其中所述方法连续添加甲烷和选择的氧化物化合物到所述结合物中,和从反应器装置中连续移走稳定的甲基化氧化物化合物。
21.权利要求20的方法,其中使用无水试剂进行所有反应。
22.权利要求20的方法,其中使用不形成盐化合物的试剂进行所有反应。
23.权利要求20的方法,其中选择的氧化物化合物包括三氧化硫。
24.权利要求20的方法,其中甲基化氧化物自由基包括甲磺酸自由基。
25.权利要求20的方法,其中稳定的甲基化氧化物化合物包括甲磺酸。
26.权利要求25的方法,其中以引起甲磺酸释放甲醇和二氧化硫的方式处理至少一部分甲磺酸。
27.权利要求20的方法,其中反应一起生成的副产物的总量小于通过该方法形成的稳定的甲基化氧化物分子重量的10%。
28.一种将低级烷烃转化成烷烃衍生物的方法,该方法包括下述步骤:
a.生成烷烃自由基;
b.使烷烃自由基与氧化物化合物接触,从而形成烷基化自由基;
c.添加额外量的低级烷烃到烷基化自由基中,从而形成稳定的烷基化分子,同时还生成新形成的烷烃自由基,
其中使用不生成盐化合物的试剂进行所述步骤。
29.权利要求28的方法,其中在连续的基础上进行该方法,所述方法生成的副产物的总量小于通过该方法形成的稳定的烷基化分子重量的10%。
30.一种将甲烷转化成甲基衍生物的方法,该方法包括下述步骤:在无水和不形成任何盐化合物的条件下,通过使甲烷与至少一种自由基引发剂化合物反应,形成作为中间体的甲基自由基。
31.权利要求30的方法,所述方法能以商业用量且没有大量的任何非所需副产物的情况下,连续移走甲基衍生物。
32.权利要求30的方法,其中通过包括下述的步骤,将甲烷转化成甲基衍生物:
a.使甲烷转化成甲基自由基,和,
b.使甲基自由基与选择的无机氧化物接触,从而生成甲基化氧化物自由基。
33.一种反应混合物,当选择的烷烃试剂和选择的氧化物试剂被连续加入到该反应混合物中时,该反应混合物连续生产氧化烷烃,所述反应混合物包括至少一种选择的烷烃试剂,烷烃自由基,至少一种选择的氧化物试剂,烷基化氧化物自由基,和由该反应混合物连续生产的至少一种氧化烷烃化合物。
34.权利要求33的反应混合物,其中选择的烷烃试剂包括甲烷。
35.权利要求33的反应混合物,其中选择的氧化物试剂包括三氧化硫。
36.权利要求33的反应混合物,其中烷基化氧化物自由基包括甲磺酸自由基。
37.权利要求33的反应混合物,其中氧化烷烃包括甲磺酸。
38.权利要求33的反应混合物,其中反应混合物中的所有组分是无水的。
39.权利要求33的反应混合物,其中反应混合物能连续生产氧化烷烃,同时生成的副产物的总量小于由该反应混合物生产的氧化烷烃重量的10%。
40.一种将低级烷烃转化成氧化烷基衍生物的化学处理体系,该体系包括至少一种连续流动的反应器容器,在该反应器容器中处理低级烷烃,烷烃自由基,选择的氧化物化合物,和烷基化氧化物自由基的混合物,其中:
(i)烷烃自由基与选择的氧化物化合物反应,从而形成烷基化氧化物自由基;
(ii)烷基化氧化物自由基与至少一种低级烷烃反应,从而形成稳定的烷基化氧化物分子,同时还生成新形成的烷烃自由基;和
(iii)从反应器容器中连续移走稳定的烷基化氧化物分子。
41.权利要求40的化学处理体系,其中在该体系中,甲烷、甲基自由基、三氧化硫和甲磺酸自由基的混合物反应,从而连续生成甲磺酸和甲磺酸连续从至少一个反应器容器中移走。
42.权利要求41的化学处理体系,其中反应器组件断开自由基引发剂化合物,将自由基引入到连续流动的反应器容器内,其中所述自由基在连续流动的反应器容器内部与低级烷烃反应,从而生成烷基自由基。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42409102P | 2002-11-05 | 2002-11-05 | |
US60/424,091 | 2002-11-05 | ||
US60/480,183 | 2003-06-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1732141A CN1732141A (zh) | 2006-02-08 |
CN1318361C true CN1318361C (zh) | 2007-05-30 |
Family
ID=35964223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2003801079557A Expired - Fee Related CN1318361C (zh) | 2002-11-05 | 2003-11-05 | 使用自由基路线和链反应,在最小废物的情况下,使甲烷和其它轻质烷烃无水转化成甲醇和其它衍生物 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1318361C (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY179376A (en) | 2013-11-18 | 2020-11-05 | Basf Se | Novel initiator for preparing alkanesulfonic acids from alkane and oleum |
ES2965853T3 (es) | 2016-11-28 | 2024-04-17 | Basf Se | Sulfonación de alcanos sin disolventes |
WO2018219728A1 (en) * | 2017-05-30 | 2018-12-06 | Basf Se | Process for the manufacturing of methane sulfonic acid |
FR3077817B1 (fr) * | 2018-02-14 | 2020-02-28 | Arkema France | Procede de synthese industrielle en continu d'acide alcane-sulfonique |
TWI714964B (zh) * | 2018-02-16 | 2021-01-01 | 巴斯夫歐洲公司 | 用於烷磺酸之合成的催化劑 |
EP3956302B1 (en) * | 2019-04-18 | 2023-05-03 | Basf Se | Process for the production of anhydrous methanesulfonic acid from methane and so3 |
-
2003
- 2003-11-05 CN CNB2003801079557A patent/CN1318361C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1732141A (zh) | 2006-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1558353B1 (en) | Anhydrous conversion of methane and other light alkanes into methanol and other derivatives, using radical pathways and chain reactions with minimal waste products | |
US7282603B2 (en) | Anhydrous processing of methane into methane-sulfonic acid, methanol, and other compounds | |
National Research Council et al. | Catalysis looks to the future | |
Chenier | Survey of industrial chemistry | |
Viswanathan | Energy sources: fundamentals of chemical conversion processes and applications | |
US20080161591A1 (en) | Anhydrous processing of methane into methane-sulfonic acid, methanol, and other compounds | |
US20070282151A1 (en) | Manufacture of higher hydrocarbons from methane, via methanesulfonic acid, sulfene, and other pathways | |
Sie | Process development and scale up: IV. Case history of the development of a Fischer-Tropsch synthesis process | |
Rosenberg | Technological change in chemicals: the role of university–industry relations | |
Murzin | Chemical reaction technology | |
AU2005237458B2 (en) | Process for converting gaseous alkanes to liquid hydrocarbons | |
CN1318361C (zh) | 使用自由基路线和链反应,在最小废物的情况下,使甲烷和其它轻质烷烃无水转化成甲醇和其它衍生物 | |
Nyári | Techno-economic feasibility study of a methanol plant using carbon dioxide and hydrogen | |
Platt et al. | New olefin production routes—A review of defossilised supply chain technologies with regards to surfactant production | |
RU2670433C1 (ru) | Газохимическое производство этилена и пропилена | |
Bajus | Petrochemistry: Petrochemical Processing, Hydrocarbon Technology and Green Engineering | |
CA3153432A1 (en) | Compounds, processes, and machinery for converting methane gas into methane-sulfonic acid | |
US20050287057A1 (en) | Converting sulfur dioxide to sulfur trioxide in high-concentration manufacturing, using activated carbon with dopants and stripping solvent | |
Tyrell | Fundamentals of industrial chemistry: pharmaceuticals, polymers, and business | |
Gong et al. | Economic and environmental impact analyses of solid acid catalyzed isoparaffin/olefin alkylation in supercritical carbon dioxide | |
Reinhardt et al. | Oxygen enrichment for intensification of air oxidation reactions. | |
Subramaniam | Green Catalysis and Reaction Engineering: An Integrated Approach with Industrial Case Studies | |
Gattis et al. | The ÉCLAIRS process for converting natural gas to hydrocarbon liquids | |
Donahue | Natural Gas Chemistry | |
OA13283A (en) | Manufacture of higher hydrocarbons from methane, via methanesulfonic acid, sulfene, and other pathways. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070530 Termination date: 20111105 |