CN1312296C - 一种混合式高炉热风炉优化控制方法 - Google Patents

一种混合式高炉热风炉优化控制方法 Download PDF

Info

Publication number
CN1312296C
CN1312296C CNB2004100006771A CN200410000677A CN1312296C CN 1312296 C CN1312296 C CN 1312296C CN B2004100006771 A CNB2004100006771 A CN B2004100006771A CN 200410000677 A CN200410000677 A CN 200410000677A CN 1312296 C CN1312296 C CN 1312296C
Authority
CN
China
Prior art keywords
stove
temperature
air
model
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100006771A
Other languages
English (en)
Other versions
CN1557972A (zh
Inventor
马竹梧
郭荣
高达
赵燕
刘小环
刘晓强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automation Research and Design Institute of Metallurgical Industry
Original Assignee
Automation Research and Design Institute of Metallurgical Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automation Research and Design Institute of Metallurgical Industry filed Critical Automation Research and Design Institute of Metallurgical Industry
Priority to CNB2004100006771A priority Critical patent/CN1312296C/zh
Publication of CN1557972A publication Critical patent/CN1557972A/zh
Application granted granted Critical
Publication of CN1312296C publication Critical patent/CN1312296C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)

Abstract

本发明提供了一种混合式高炉热风炉优化控制方法,采用计算机系统、开发工具,功能模块包括数据采集、物理模型、人工智能模型、混合模型、输出控制等模块,系统开发工具采用Exsys专家系统,其优化控制过程包括:数据采集、信号显示及数据处理、人工输入信息、优化控制模型运算和判别、控制量输出和模型自适应和人工智能方式判别与修正。实现对热风炉加热的输入的燃料量及空气量进行优化控制并显示热风炉的状态和有关热工参数及操作方式等。本发明的优点在于:适用于使用各种形式热风炉的高炉热风炉投入燃料优化控制,且低成本。

Description

一种混合式高炉热风炉优化控制方法
技术领域
本发明属于高炉优化控制技术领域,特别是提供了一种混合式高炉热风炉优化控制方法,实现了对热风炉加热输入的燃料量及空气量进行优化控制的方法。
背景技术
开始最为成功和有效的高炉热风炉优化控制方法是上世纪80年代日本新日铁的纯物理模型的方法,我国宝钢也引进,但它只适合于每个热风炉分别设有高炉煤气和焦炉煤气(或转炉煤气)管道的三眼(另一眼为空气)燃烧器场合,而国内外更广泛是使用混合煤气的两眼燃烧器,此外纯物理模型由于需要测量多种煤气成分的分析器,这种仪表不仅昂贵且维护量大,此外,物理模型涉及复杂热传导问题,在某些变化情况下,也不易准确,故近年来,特别是日本纷纷开发人工智能模型和混合模型,其中有代表的是:日本”计装”杂志1992,VOL35,NO.10发表的《制铁所における燃烧制御の高度化とファジイ制御の应用》,它提出了模糊控制的概念,日本”NKK技报”杂志1998,NO.162发表的《热风炉燃烧制御システム》,它提出了仿真器+模糊规则设定煤气热值及混合煤气量的模型,并在工业应用中获得了良好效果。目前国内高炉热风炉优化控制只有宝钢引进的纯物理模型的方法,且只适合于三眼燃烧器场合,因而无法在国内大多数使用混合煤气的热风炉上应用,国外模型工艺也不同(大都二次加入焦炉煤气),因而要开发本方法。
发明内容
本发明的目的在于:提供了一种混合式高炉热风炉优化控制方法,即在保证供给高炉所需温度及流量的热风的条件下,控制烧炉所用煤气最节省并保护热风炉设备不受损坏,从而获得最大的经济效益,延长热风炉的寿命并为提高热风温度创造条件。
本发明具有“在线直接控制”和“操作指导”两种输出方式可供选择。选择“在线直接控制”时,输出将通过基础自动化系统直接控制各热风炉的的煤气和助燃空气流量控制器以及高炉煤气与转炉煤气(或焦炉煤气)比例的设定值。选择“操作指导”时,将输出各热风炉的的煤气和助燃空气流量控制器以及高炉煤气与转炉煤气(或焦炉煤气)比例的设定的建议值,操作员认可后才执行。
本发明采用计算机系统、开发工具,通过数据采集、信号显示及数据处理、人工输入信息、优化控制模型运算和人工智能模型推断及判别、控制量输出、模型自适应和人工智能方式修正。功能模块包括数据采集、物理模型、人工智能模型、混合模型、输出控制等模块,系统开发工具采用Exsys专家系统,其优化控制过程包括:
1、数据采集:通过计算机系统的模-数变换插件直接采集测量热风炉的各个参数的变送器的数据或通过网络从热风炉基础自动化系统采集有关数据(各个热风炉的拱顶温度、格子砖温度、炉篦子温度、废气温度、废气残氧量、支管煤气和空气流量、燃烧时间、换炉时刻、总管煤气、空气温度、煤气成分、热风温度、冷风温度、冷风流量、热风炉加热煤气混合比等),并进行处理与判别。
2、物理模型:物理模型是用以计算出与送风温度和送风流量相适应的优化各个时期投入燃料量所需的空气量、所需的高炉煤气及转炉煤气混合比、拱顶温度和废气温度管理期的煤气及空气量等。
物理模型的技术特征是由下面的5个子模型构成:
混合煤气混合比计算模型。它是根据允许的最高拱顶温度,并由燃烧火焰温度-拱顶温度的回归式得出火焰温度,然后计算出所需的混合煤气(高炉煤气与焦炉煤气或转炉煤气混合)混合比。
蓄热计算模型。蓄热量计算模型按实测的蓄热室平均温度和此时计算的蓄热室时系列数据来求出蓄热室平均温度-蓄热量的回归方程。其中蓄热室平均温度Xi是按拱顶温度T1~2、格子砖表面温度T5、格子砖中段温度T6和炉篦子温度T7(均为实测值)并考虑各测点所在区域的尺寸(l1、l2、l3)按下列公式计算:
蓄热室平均温度Xi,℃={[l1(T1~2,i+T5,i)/2+l2(T5,i+T6,i)/2+l3(T6,i+
+T7,i)/2]/(l1+l2+l3)}·-{[l1(T1~2,S+T5,S)/2+l2(T5,S+T6,S)/2+
+l3(T6,S+T7,S)/2]/(l1+l2+l3)}
式中i——热风炉炉号;S——上次送风结束时相应温度。
而蓄热量Yi则由下式求得:
蓄热量Yi=燃烧生成物热焓-废气热焓=∑{(燃烧反应物热焓)j+(标准燃烧热)j-(废气热焓)j}
式中i——燃烧开始经过时间;j——自燃烧开始起的蓄热量开始时间。
支管混合煤气流量计算模型。按下式计算现在到燃烧结束时应存储的热量Q:
            Q=(下次送风所需的热量)-(现在蓄热量)j
现在蓄热量是首先计算现在时刻的蓄热室平均温度(拱顶、格子砖表面温度、格子砖中段和炉篦子温度并按类似于蓄热量计算模型的方法进行计算,但减去下次送风结束时蓄热室平均温度而得出),然后按上述的蓄热室平均温度-蓄热量回归曲线得出。
根据应存储的热量Q和煤气的发热值就可计算出烧炉的煤气流量,再根据所设定的空燃比和计算出烧炉的煤气流量,就可计算出助燃空气流量。
拱顶温度控制模型。包括两个子模型,子模型1是按规定的最大拱顶温度计算控制火焰温度,然后反推煤气的热值,因而决定转炉煤气与高炉煤气混合比。子模型2是计算当拱顶温度越限时,所须增加的助燃空气流量。
废气温度控制模型。本模型是在废气温度管理期(即废气温度或炉篦子温度超过管理开始温度起到燃烧结束为止的一段时间)逐步减少混合煤气支管流量使废气温度或炉篦子温度在燃烧结束时均不超过其上限温度的模型。
3、人工智能模型:人工智能模型是以有经验的操作工操作热风炉的方式,并使用Exsys专家系统开发工具,写成产生式规则,进行与送风温度和送风流量相适应的各个时期投入燃料量和所需的高炉煤气、所需的空气量、及转炉煤气混合比、拱顶温度和废气温度管理期的煤气及空气量等自动控制,并预测到达燃烧结束时与允许的最大炉篦子温度之差进行修正煤气及空气量,以达到:“双达到”(到达燃烧结束与到达允许的最大炉篦子温度)目的。
例如,操作员在所需送风温度和送风流量正常时,在初期燃烧时,热风炉加热煤气流量设定为60000Nm3/h,助燃空气流量设定为55000Nm3/h,到达拱顶温度管理期时,热风炉加热煤气流量设定为55000Nm3/h,助燃空气流量设定为50000Nm3/h。
此时产生式规则写为:
R1 If送风温度和送风流量正常
and热风炉在初期燃烧
Then热风炉加热煤气流量设定为60000Nm3/h
and助燃空气流量设定为55000Nm3/h
R2 If送风温度和送风流量正常
and到达拱顶温度管理期
Then热风炉加热煤气流量设定为55000Nm3/h
and助燃空气流量设定为50000Nm3/h
人工智能模型包括:
1)按照快速烧炉的原则,组成五段式的基本煤气、空气流量设定。
2)废气温度太高将表征热效率下降和使格子砖支承的金属会被烧损,因此废气温度达到上限就应停止加热,同时把该炉子转为送风。由于干扰或其它原因废气温度虽达到上限但未到换炉时间,为避免闷炉,需在达到上限前,预测达到上限时刻及其与规定的换炉时间是否有差别,并按一定公式(数学模型)进行修正投入燃料量,以使废气温度和换炉时间“双达到”。
剩余时间ts计算公式为:
ts=tr-tj-(350℃-T1)/烟气升温速度
应减少煤气流量QT1计算公式为:
                        QT1=KG×ts
应减少空气流量VT1计算公式为:
                        VT1=KA×ts
式中tr:燃烧终点时间;tj:已燃烧时间;KG:煤气流量减少系数;KA:空气流量减少系数。
3)由于输入热风炉的能量,即所需的蓄热量,除了与输入煤气流量有关外,还与高炉所需的鼓风流量和温度及使用的燃烧时间有关。煤气燃烧所带入的热量还与煤气热值、预热后煤气温度和预热后空气温度有关,故所需煤气量还需按一定公式(数学模型)进行修正;
4)设有过程信息的判断,为了有效利用热风炉的蓄热量,应该使送风时从热风炉带走的热量正好等于烧炉时的蓄热量。按送风终了时炉热水准现在值(残余量)、过去几个周期到现在的变化,送风的热风炉出口的风温等进行判断。由于炉热无法直接测定,而以混风阀开度进行评价。炉热不足时将在送风结束前阀门即已开到下限值而无法再控制温度。故在送风终了前达到下限值的程度就可表示炉热水准,并把过去3个周期的混风阀开度来评价炉热水准的增减趋势。把上述信息按人工判定“高”、“适中”、“低”等,如果没有装设混风阀位置检测的炉子,可测量热风炉送风末期、换炉之前的热风炉出口的风温与高炉所需的设定的风温进行比较,在单炉送风时,若热风炉出口的风温等于或低于高炉所需的设定的风温,自然无法控制温度,就需要换炉,故其差值可作为热水准判断。在热并联送风时,先行炉出口风温将低于高炉所需的设定的风温,此时可用冷风调节阀位置或先行炉出口风温作为热水准判断;
5)经过两三个周期热水准仍超过规定的剩余数值,就发出“变更”信号,经操作员认可后将改变基础自动化的设定值,它将改变热风炉燃烧控制系统的煤气流量设定(一般不改变换炉时间)。“变更”信号的大小,可以是专家知识,即经验值或按一定公式运算(即使用隶属度函数模糊集合方法)。对于煤气流量设定,在热水准有富裕将可降低所设定的煤气量,反之,应增加所设定的煤气量。由于熟练操作工人或专家设定的各个时期的煤气和助燃空气流量都是标准情况下(规定的预热煤气和助燃空气温度等)的数值。当偏离标准情况时应予以补偿。
6)如果由于高炉操作,改变风温风量而导致未达到规定的换炉时间,热水准就已不足,此时也将报警,由高炉工长确认后将进行自动换炉;
4、混合模型:即物理模型与人工智能模型的混合方式,是人工智能模型的按混风阀位置修正部分(人工智能模型的第4和第5项)和预测达到上限时刻及其与规定的换炉时间是否有差别部分(人工智能模型的第2项)与物理模型混合的方式。本混合模型的工作是:按物理模型的公式计算计算出烧炉的煤气量及助燃空气流量,但按人工智能模型的按混风阀位置判断热水准是否合适,如果热水准合适,则计算出烧炉的煤气量及助燃空气流量不进行自适应修正,反之,如果“过高”或“过低”,则乘以修正系数,修正系数的大小按模糊逻辑方式决定。拱顶温度控制模型与物理模型相同,废气温度控制模型则加上预测达到上限时刻和有偏差时进行修正模型的系数。
5、本发明有3种可选择的操作方式,以便有广泛的适应能力。这3种可选择的操作方式是:
(1)仅使用数学模型的方式:为提高模型的精度应设置在线分析高炉煤气、焦炉煤气或转炉煤气成分用的分析器(如果没有煤气成分分析器,也能使用,但只适合于煤气成分变动较小的场合),这种方式适用于大、中型高炉的热风炉。其流程图见图2。按照数据采集得到的数据进行:
1)利用蓄热回归模型计算热风炉加热时格子砖平均温度与蓄热关系,从开始加热后约5分钟(可设定),每分钟算一次直到换炉,得出该热风炉的格子砖平均温度与蓄热量关系,回归并得出公式;
2)在该热风炉加热时,按送风所需热量计算每时刻在当时蓄热量(按实测格子砖温度计算出平均温度,再从蓄热回归公式就可得出该时刻的蓄热量)及剩余加热时间下按数学模型计算所须的煤气流量(设定值)及相应的助燃空气量;
3)到拱顶温度管理期还须按拱顶温度控制模型,在温度超限时计算所须改变的助燃空气量,使拱顶温度保持为给定值;
4)到废气温度管理期,按废气温度控制模型改变煤气量,使废气温度保持为给定值;
5)开始时按允许最大的拱顶温度,(按火焰温度)计算LDG/BFG的比例。
6)输出控制结果进行在线控制或操作指导。
(2)仅使用智能模型的方式。这种方式也适用于各种高炉的热风炉。它具有低成本的特点,适用于中、小型高炉的热风炉。其结构见图3,流程图见图4。
按照数据采集得到的数据进行:
1)按照快速烧炉的原则,组成五段式的基本煤气、空气流量设定。
2)废气温度太高将表征热效率下降和使格子砖支承的金属会被烧损,因此废气温度达到上限就应停止加热,同时把该炉子转为送风。由于干扰或其它原因废气温度虽达到上限但未到换炉时间,为避免闷炉,需在达到上限前,预测达到上限时刻及其与规定的换炉时间是否有差别,并按一定公式(数学模型)进行修正投入燃料量,以使废气温度和换炉时间“双达到”;
3)由于输入热风炉的能量,即所需的蓄热量,除了与输入煤气流量有关外,还与高炉所需的鼓风流量和温度及使用的燃烧时间有关。煤气燃烧所带入的热量还与煤气热值、预热后煤气温度和预热后空气温度有关,故所需煤气量还需按一定公式(数学模型)进行修正;
4)设有过程信息的判断。为了有效利用热风炉的蓄热量,应该使送风时从热风炉带走的热量正好等于烧炉时的蓄热量。按送风终了时炉热水准现在值(残余量)、过去几个周期到现在的变化,送风的热风炉出口的风温等进行判断。由于炉热无法直接测定,而以混风阀开度进行评价。炉热不足时将在送风结束前阀门即已开到下限值而无法再控制温度。故在送风终了前达到下限值的程度就可表示炉热水准,并把过去3个周期的混风阀开度来评价炉热水准的增减趋势。把这上述信息按人工判定“高”、“适中”、“低”等,如果没有装设混风阀位置检测的炉子,可测量热风炉送风末期、换炉之前的热风炉出口的风温与高炉所需的设定的风温进行比较,在单炉送风时,若热风炉出口的风温等于或低于高炉所需的设定的风温,自然无法控制温度,就需要换炉,故其差值可作为热水准判断。在热并联送风时,先行炉出口风温将低于高炉所需的设定的风温,此时可用冷风调节阀位置或先行炉出口风温作为热水准判断;
5)经过2~3个周期热水准仍超过规定的剩余数值,就发出“变更“信号,经操作员认可后将改变基础自动化的设定值,它将改变热风炉燃烧控制系统的煤气流量设定(一般不改变换炉时间)。“变更”信号的大小,可以是专家知识,即经验值或按一定公式运算。对于煤气流量设定,在热水准有富裕将可降低所设定的煤气量,反之,应增加所设定的煤气量。
6)如果由于高炉操作,改变风温风量而导致未达到规定的换炉时间,热水准就已不足,此时也将报警,由高炉工长确认后将进行自动换炉;
7)输出控制结果进行在线控制或操作指导。
本发明的优点在于:本发明适用于使用各种形式热风炉(内燃式、外燃式、球式等)的高炉热风炉投入燃料优化控制,能适用于有3个或4热风炉以及使用混合煤气(高炉煤气、焦炉煤气或转炉煤气)并且每个热风炉只有混合煤气的管道的场合(图1)。能够控制烧炉所用煤气最节省并保护热风炉设备不受损坏,从而获得最大的经济效益,延长热风炉的寿命并为提高热风温度创造条件。本发明还具有低成本、其硬件使用廉价的工控机(工业控制PC机,即IPC)、甚至可与热风炉基础自动化同用一台工控机的优点。
(3)使用混合模型的方式,即物理模型+智能模型(专家系统、模糊控制和神经元网络)方式。这种方式适用于各种高炉的热风炉。
附图说明
图1是本发明的高炉热风炉(热风炉可3或4个)布置图。
图2是本发明的仅使用数学模型方式时的流程(3个热风炉的情况)图。
图3是本发明的仅使用人工智能模型结构图。
图4是本发明的仅使用人工智能模型方式时的流程(3个热风炉的情况)图。
图5是本发明的5使用混合模型方式时的流程(3个热风炉的情况)图。

Claims (3)

1、一种混合式高炉热风炉优化控制方法,其特征在于:采用计算机系统、开发工具,人工输入信息、优化控制模型运算和人工智能模型推断及判别、控制量输出、模型自适应和人工智能方式修正;功能模块包括数据采集、物理模型、人工智能模型、混合模型、输出控制模块,系统开发工具采用Exsys专家系统,其优化控制过程包括:
(1)数据采集:通过计算机系统的模-数变换插件直接采集测量热风炉的各个参数的变送器的数据或通过网络从热风炉基础自动化系统采集有关数据,并进行处理与判别;
(2)、物理模型:物理模型是用以计算出与送风温度和送风流量相适应的优化各个时期投入燃料量所需的空气量、所需的高炉煤气及转炉煤气混合比、拱顶温度和废气温度管理期的煤气及空气量;物理模型由下面的5个子模型构成:
a、混合煤气混合比计算模型:它是根据允许的最高拱顶温度,并由燃烧火焰温度-拱顶温度的回归式得出火焰温度,然后计算出所需的混合煤气混合比:高炉煤气与焦炉煤气或转炉煤气混合;
b、蓄热计算模型:蓄热量计算模型按实测的蓄热室平均温度和此时计算的蓄热室时系列数据来求出蓄热室平均温度-蓄热量的回归方程,其中蓄热室平均温度Xi是按拱顶温度T1~2、格子砖表面温度T5、格子砖中段温度T6和炉篦子温度T7均为实测值,并考虑各测点所在区域的尺寸(l1、l2、l3)按下列公式计算:
蓄热室平均温度Xi,℃={[l1(T1~2,j+T5,i)/2+l2(T5,i+T6,i)/2+l3(T6,i+
+T7,i)/2]/(l1+l2+l3)}-{[l1(T1~2,s+T5,s)/2+l2(T5,s+T6,s)/2+
+l3(T6,s+T7,s)/2]/(l1+l2+l3)}
式中i——热风炉炉号;S——上次送风结束时相应温度;
而蓄热量Yi则由下式求得:
蓄热量Yi=燃烧生成物热焓-废气热焓=∑{(燃烧反应物热焓)j+(标准燃烧热)j-(废气热焓)j}
式中i——燃烧开始经过时间,j——自燃烧开始起的蓄热量开始时间,支管混合煤气流量计算模型:按下式计算现在到燃烧结束时应存储的热量Q:
Q=(下次送风所需的热量)-(现在蓄热量)j
现在蓄热量是首先计算现在时刻的蓄热室平均温度:拱顶、格子砖表面温度、格子砖中段和炉篦子温度并按类似于蓄热量计算模型的方法进行计算,但减去下次送风结束时蓄热室平均温度而得出,然后按上述的蓄热室平均温度-蓄热量回归曲线得出;
根据应存储的热量Q和煤气的发热值就可计算出烧炉的煤气流量,再根据所设定的空燃比和计算出烧炉的煤气流量,就可计算出助燃空气流量;
c、拱顶温度控制模型:包括两个子模型,子模型1是按规定的最大拱顶温度计算控制火焰温度,然后反推煤气的热值,因而决定转炉煤气与高炉煤气混合比;子模型2是计算当拱顶温度越限时,所须增加的助燃空气流量;
d、废气温度控制模型:本模型是在废气温度管理期,即废气温度或炉篦子温度超过管理开始温度起到燃烧结束为止的一段时间,逐步减少混合煤气支管流量使废气温度或炉篦子温度在燃烧结束时均不超过其上限温度的模型。
2、按照权利要求1所述的方法,其特征在于:优化控制过程包括:数据采集和人工智能模型;人工智能模型是以有经验的操作工操作热风炉的方式,并使用Exsys专家系统开发工具,写成产生式规则,进行与送风温度和送风流量相适应的各个时期投入燃料量和所需的高炉煤气、所需的空气量、及转炉煤气混合比、拱顶温度和废气温度管理期的煤气及空气量等自动控制,并预测到达燃烧结束时与允许的最大炉篦子温度之差进行修正煤气及空气量,以达到:到达燃烧结束与到达允许的最大炉篦子温度目的;人工智能模型包括:
a、按照快速烧炉的原则,组成五段式的基本煤气、空气流量设定;
b、废气温度达到上限应停止加热,同时把该炉子转为送风,由于干扰或其它原因废气温度虽达到上限但未到换炉时间,为避免闷炉,需在达到上限前,预测达到上限时刻及其与规定的换炉时间是否有差别,即是否有剩余时间,并按下式进行修正投入燃料量,以使废气温度和换炉时间“双达到”;
剩余时间ts计算公式为:
ts=tr-tj-(350℃-T1)/烟气升温速度
应减少煤气流量QT1计算公式为:
QT1=KG×ts
应减少空气流量VT1计算公式为:
VT1=KA×ts
式中tr:燃烧终点时间;tj:已燃烧时间;KG:煤气流量减少系数;KA:空气流量减少系数;
c、设有过程信息的判断,为了有效利用热风炉的蓄热量,应该使送风时从热风炉带走的热量正好等于烧炉时的蓄热量;按送风终了时炉热水准现在值残余量、过去几个周期到现在的变化,送风的热风炉出口的风温进行判断以混风阀开度进行评价,炉热不足时将在送风结束前阀门即已开到下限值而无法再控制温度;故在送风终了前达到下限值的程度就可表示炉热水准,并把过去3个周期的混风阀开度来评价炉热水准的增减趋势;上述信息按人工判定“高”、“适中”、“低”,如果没有装设混风阀位置检测的炉子,可测量热风炉送风末期、换炉之前的热风炉出口的风温与高炉所需的设定的风温进行比较,在单炉送风时,若热风炉出口的风温等于或低于高炉所需的设定的风温,无法控制温度,需要换炉,故其差值可作为热水准判断;在热并联送风时,先行炉出口风温低于高炉所需的设定风温,此时可用冷风调节阀位置或先行炉出口风温作为热水准判断;
d、经过2~3个周期,该热风炉从送风转为燃烧为该热风炉的周期,热水准仍超过规定的剩余数值,就发出“变更”信号,经操作员认可后,基础自动化的设定值将按“变更”信号改变,即改变热风炉燃烧控制系统的煤气流量设定,“变更”信号的大小,可以是专家知识,即经验值或模糊推论方法运算,即使用隶属度函数模糊集合方法;对于煤气流量设定,在热水准有富裕将可降低所设定的煤气量,反之,应增加所设定的煤气量;由于熟练操作工人或专家设定的各个时期的煤气和助燃空气流量都是标准情况下的数值,当偏离标准情况时应予以补偿;
e、如果由于高炉操作,改变风温风量而导致未达到规定的换炉时间,热水准就已不足,此时也将报警,由高炉工长确认后将进行自动换炉。
3、按照权利要求1所述的方法,其特征在于:优化控制过程包括:数据采集和混合模型;混合模型是指物理模型与人工智能模型的混合方式,是人工智能模型的按混风阀位置修正部分和预测达到上限时刻及其与规定的换炉时间是否有差别部分与物理模型混合的方式;本混合模型的工作是:按物理模型的公式计算计算出烧炉的煤气量及助燃空气流量,但按人工智能模型的按混风阀位置判断热水准是否合适,如果热水准合适,则计算出烧炉的煤气量及助燃空气流量不进行自适应修正,反之,如果“过高”或“过低”,则乘以修正系数,修正系数的大小按模糊逻辑方式决定;拱顶温度控制模型与物理模型相同,废气温度控制模型则加上预测达到上限时刻和有偏差时进行修正模型的系数。
CNB2004100006771A 2004-01-16 2004-01-16 一种混合式高炉热风炉优化控制方法 Expired - Fee Related CN1312296C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100006771A CN1312296C (zh) 2004-01-16 2004-01-16 一种混合式高炉热风炉优化控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100006771A CN1312296C (zh) 2004-01-16 2004-01-16 一种混合式高炉热风炉优化控制方法

Publications (2)

Publication Number Publication Date
CN1557972A CN1557972A (zh) 2004-12-29
CN1312296C true CN1312296C (zh) 2007-04-25

Family

ID=34350455

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100006771A Expired - Fee Related CN1312296C (zh) 2004-01-16 2004-01-16 一种混合式高炉热风炉优化控制方法

Country Status (1)

Country Link
CN (1) CN1312296C (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871654A (zh) * 2009-12-28 2010-10-27 中冶南方工程技术有限公司 热风炉自动寻优燃烧智能控制系统
CN103088177A (zh) * 2013-01-27 2013-05-08 河北钢铁股份有限公司承德分公司 一种热风炉充压控制装置及方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371462C (zh) * 2005-05-26 2008-02-27 河北理工大学 一种基于实例推理的高炉热风炉燃烧自动控制方法
CN1888085B (zh) * 2005-06-27 2010-04-28 天津天铁冶金集团有限公司 一种热风炉无波动换炉方法
CN100349081C (zh) * 2005-12-09 2007-11-14 河北理工大学 一种高炉热风炉系统协调控制方法
CN101881955B (zh) * 2009-05-06 2014-05-07 鞍钢股份有限公司 高炉炉况评价方法
CN101655245B (zh) * 2009-09-04 2011-03-16 江苏焱鑫科技股份有限公司 工业炉燃烧器多参数自动控制的方法
CN102221820B (zh) * 2011-03-28 2014-05-28 首钢总公司 一种优化控制高炉顶燃式热风炉燃烧换向周期的模型
CN103514338A (zh) * 2012-06-15 2014-01-15 上海宝信软件股份有限公司 热风炉高炉煤气使用流量预测方法
CN102830628B (zh) * 2012-08-28 2015-04-01 中国科学院自动化研究所 变换炉的控制方法
CN102912055B (zh) * 2012-08-29 2014-07-09 北京和隆优化科技股份有限公司 一种高炉热风炉智能优化控制系统
CN102888480A (zh) * 2012-10-29 2013-01-23 河南省豫兴热风炉工程技术有限公司 一种热风炉系统及利用该系统提高热风温度的方法
CN102952912A (zh) * 2012-12-10 2013-03-06 武汉钢铁(集团)公司 基于专家系统和知识库的高炉冶炼方法和系统
CN103293955B (zh) * 2013-05-17 2015-12-02 浙江大学 高炉热风炉混杂系统建模与协调优化控制的方法
CN103243190B (zh) * 2013-05-29 2015-06-03 北京建龙重工集团有限公司 一种预测热风炉煤气消耗量的方法
CN103305647B (zh) * 2013-06-26 2014-12-31 北京建龙重工集团有限公司 一种热风炉系统高温、低能耗运行状态评估及优化方法
CN106011353B (zh) * 2016-07-26 2019-01-22 北京和隆软件有限公司 一种高炉热风炉空燃比自寻优方法
CN108224772A (zh) * 2018-02-06 2018-06-29 湖南三创富泰环保材料股份有限公司 一种新型气煤两用沸腾式热风炉及控制方法
CN109489261A (zh) * 2018-12-05 2019-03-19 江苏恒创软件有限公司 一种能够实时监控的热风炉智能化控制装置
CN111027227B (zh) * 2019-12-25 2023-09-26 北京金恒博远科技股份有限公司 热风炉动态仿真系统、方法及电子设备
CN111414024B (zh) * 2020-03-06 2021-08-03 北京和隆优化科技股份有限公司 一种高炉热风炉煤气管网协调换炉方法
CN111304393B (zh) * 2020-04-02 2021-11-16 广东韶钢松山股份有限公司 一种板式换热器主要工艺参数的校核方法
CN112593032B (zh) * 2020-12-11 2024-03-26 安徽工业大学 一种高炉换热风炉时的关键参数处理方法
CN114292975A (zh) * 2021-12-31 2022-04-08 四川德胜集团钒钛有限公司 一种高炉热风炉燃烧控制方法
CN114661075B (zh) * 2022-03-21 2023-03-14 湖南华菱涟源钢铁有限公司 一种高炉热风炉的废气温度模糊控制的方法
CN114737003B (zh) * 2022-04-22 2023-08-15 山东省冶金设计院股份有限公司 一种基于蓄热模型的高炉热风炉燃烧自动控制方法及系统
TWI817819B (zh) * 2022-11-09 2023-10-01 中國鋼鐵股份有限公司 熱風爐的控制方法及其電腦程式產品

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1170858A (zh) * 1996-05-27 1998-01-21 宝山钢铁(集团)公司 热风炉操作离线控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1170858A (zh) * 1996-05-27 1998-01-21 宝山钢铁(集团)公司 热风炉操作离线控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
宝钢3#高炉热风炉自动控制 许静华,冶金自动化,第4期 1995 *
宝钢3#高炉热风炉自动控制 许静华,冶金自动化,第4期 1995;高炉热风炉全自动控制专家系统 马竹梧等,控制工程,第9卷第4期 2002;热风炉燃烧系统研究现状 张雷,天津冶金,第5期 2002 *
热风炉燃烧系统研究现状 张雷,天津冶金,第5期 2002 *
高炉热风炉全自动控制专家系统 马竹梧等,控制工程,第9卷第4期 2002 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871654A (zh) * 2009-12-28 2010-10-27 中冶南方工程技术有限公司 热风炉自动寻优燃烧智能控制系统
CN101871654B (zh) * 2009-12-28 2012-08-01 中冶南方工程技术有限公司 热风炉自动寻优燃烧智能控制系统
CN103088177A (zh) * 2013-01-27 2013-05-08 河北钢铁股份有限公司承德分公司 一种热风炉充压控制装置及方法
CN103088177B (zh) * 2013-01-27 2014-07-02 河北钢铁股份有限公司承德分公司 一种热风炉充压控制装置及方法

Also Published As

Publication number Publication date
CN1557972A (zh) 2004-12-29

Similar Documents

Publication Publication Date Title
CN1312296C (zh) 一种混合式高炉热风炉优化控制方法
CN101892338B (zh) 热风炉定风温控制系统
CN201737965U (zh) 热风炉自动寻优燃烧智能控制系统
CN103019097B (zh) 一种轧钢加热炉优化控制系统
CN112795716B (zh) 一种高效实用型热风炉烧炉操控方法
CN101736111A (zh) 热风炉自动寻优燃烧智能控制方法
CN101561224A (zh) 一种控制大型步进梁式板坯加热炉燃烧气氛的方法
CN109385285B (zh) 一种焦炉自动加热优化系统
CN102221820B (zh) 一种优化控制高炉顶燃式热风炉燃烧换向周期的模型
CN103243190B (zh) 一种预测热风炉煤气消耗量的方法
CN111306572B (zh) 一种锅炉智能优化燃烧节能控制系统
CN102517043A (zh) 焦炉加热温控方法
CN105423334A (zh) 热风炉燃烧过程智能控制系统及方法
CN108050528A (zh) 一种垃圾焚烧炉控制方法、装置与系统
CN107022359A (zh) 一种焦炉燃烧室控温控硝方法及系统
CN101398258B (zh) 气煤混喷自动控制系统及其方法
CN114737003B (zh) 一种基于蓄热模型的高炉热风炉燃烧自动控制方法及系统
CN110699502A (zh) 一种高精度预测高炉热风炉煤气消耗量的方法
CN101749731A (zh) 热风炉自动寻优燃烧智能控制系统
CN101576739B (zh) 燃煤工业锅炉节能运行智能化自动控制方法
CN109710976B (zh) 一种轧钢加热炉煤气消耗量预测方法
CN114610093A (zh) 一种基于热风炉可变周期预测的烧炉送风控制方法
CN110566962A (zh) 一种空燃比可调的蓄热式单烧嘴熔铝炉燃烧控制方法
CN106011353B (zh) 一种高炉热风炉空燃比自寻优方法
CN203656971U (zh) 一种热风炉残氧分析燃烧控制装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070425

Termination date: 20140116