CN1301598A - MeAPSO-56 molecular sieve and its synthesizing method - Google Patents

MeAPSO-56 molecular sieve and its synthesizing method Download PDF

Info

Publication number
CN1301598A
CN1301598A CN 99127147 CN99127147A CN1301598A CN 1301598 A CN1301598 A CN 1301598A CN 99127147 CN99127147 CN 99127147 CN 99127147 A CN99127147 A CN 99127147A CN 1301598 A CN1301598 A CN 1301598A
Authority
CN
China
Prior art keywords
molecular sieve
meapso
metal
metallosilicoaluminophosphate
mole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 99127147
Other languages
Chinese (zh)
Other versions
CN1108870C (en
Inventor
刘中民
田鹏
许磊
黄韬
孙承林
于健强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN 99127147 priority Critical patent/CN1108870C/en
Publication of CN1301598A publication Critical patent/CN1301598A/en
Application granted granted Critical
Publication of CN1108870C publication Critical patent/CN1108870C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

一种金属磷酸硅铝分子筛MeAPSO-56无水状态组成可表示为:mR·nMe·(SixAlyPz)O2,其中R为存在于分子筛微孔中的模板剂,m代表每摩尔(SixAlyPz)O2对应模板剂的摩尔数,m=0.05~0.3;Me为进入分子筛骨架的金属原子,n为每摩尔(SixAlyPz)O2对应Me的摩尔数,n=0.001~0.20。x、y、z、分别表示Si、Al、P的摩尔分数,其范围分别是x=0.01~0.98,y=0.01~0.60,z=0.01~0.52,且x+y+z=1。该分子筛具有离子交换性能和吸附性能。可应用于多种碳氢化合物反应。The anhydrous state composition of a metallosilicoaluminophosphate molecular sieve MeAPSO-56 can be expressed as : mR·nMe·( SixAlyPz )O 2 , where R is the template agent present in the micropores of the molecular sieve, and m represents the mole ( Six Al y P z )O 2 corresponds to the number of moles of the template agent, m=0.05~0.3; Me is the metal atom entering the molecular sieve framework, n is the mole of Me per mole of ( Six Al y P z )O 2 Number, n=0.001~0.20. x, y, and z represent the mole fractions of Si, Al, and P respectively, and the ranges are x=0.01-0.98, y=0.01-0.60, z=0.01-0.52, and x+y+z=1. The molecular sieve has ion exchange performance and adsorption performance. Can be applied to a variety of hydrocarbon reactions.

Description

MeAPSO-56分子筛及其合成方法MeAPSO-56 molecular sieve and its synthesis method

本发明提供了一种新型微孔金属磷酸硅铝分子筛MeAPSO-56及其合成方法。The invention provides a novel microporous metal silicoaluminophosphate molecular sieve MeAPSO-56 and a synthesis method thereof.

1984年,美国专利USP 4,440,871公开了多种具有不同结构的磷酸硅铝分子筛的合成,这些分子筛分别是SAPO-5,SAPO-11,SAPO-16,SAPO-17,SAPO-20,SAPO-31,SAPO-34,SAPO-35,SAPO-37,SAPO-40,SAPO-41,SAPO-42和SAPO-44。其中一些小孔结构的分子筛如SAPO-34等已成功应用于MTG、MTO等过程,并显示出很好的催化性能。此后,又有一些不同结构的磷酸硅铝分子筛相继被合成出来。SAPO-56是Stephen T.Wilson等人于1994年合成出一种新型结构的磷酸硅铝分子筛(USP5,370,851)。In 1984, USP 4,440,871 disclosed the synthesis of a variety of silicoaluminophosphate molecular sieves with different structures, these molecular sieves are SAPO-5, SAPO-11, SAPO-16, SAPO-17, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-37, SAPO-40, SAPO-41, SAPO-42 and SAPO-44. Some molecular sieves with small pore structure, such as SAPO-34, have been successfully used in MTG, MTO and other processes, and have shown good catalytic performance. Since then, some silicoaluminophosphate molecular sieves with different structures have been synthesized one after another. SAPO-56 is a silicoaluminophosphate molecular sieve with a new structure synthesized by Stephen T.Wilson et al. in 1994 (USP5,370,851).

金属分子筛是将金属引入到分子筛的骨架上,从而使其具有一些不同于原分子筛的特性。美国专利USP4,554,143、4,752,651、4,853,179等先后报导了几种金属磷铝酸盐的合成方法,但尚未见到对MeAPSO-56分子筛进行研究的报导。Metal molecular sieves introduce metals into the framework of molecular sieves, so that they have some characteristics different from the original molecular sieves. US Patent No. 4,554,143, No. 4,752,651, No. 4,853,179 have successively reported the synthesis methods of several metal aluminophosphates, but no report on the study of MeAPSO-56 molecular sieve has been seen.

本发明合成的金属磷酸硅铝分子筛MeAPSO-56,其特征在于所合成分子筛的无水化学组成可表示为:mR·nMe·(SixAlyPz)O2,其中R为存在于分子筛微孔中的模板剂,m代表每摩尔(SixAlyPz)O2对应模板剂的摩尔数,m=0.05~0.3;Me为进入分子筛骨架的金属原子,n为每摩尔(SixAlyPz)O2对应Me的摩尔数,n=0.001~0.20。x、y、z分别表示Si、Al、P的摩尔分数,其范围分别是x=0.01~0.98,y=0.01~0.60,z=0.01~0.52,且x+y+z=1;The metallosilicoaluminophosphate molecular sieve MeAPSO-56 synthesized by the present invention is characterized in that the anhydrous chemical composition of the synthesized molecular sieve can be expressed as: mR·nMe·(SixAlyPz)O 2 , wherein R is the template agent present in the micropores of the molecular sieve , m represents the number of moles of template agent per mole of (SixAlyPz)O 2 , m=0.05~0.3; Me is the metal atom entering the molecular sieve framework, n is the number of moles of Me corresponding to each mole of (SixAlyPz)O 2 , n=0.001 ~0.20. x, y, and z represent the mole fractions of Si, Al, and P respectively, and their ranges are x=0.01~0.98, y=0.01~0.60, z=0.01~0.52, and x+y+z=1;

在上述金属磷酸硅铝分子筛MeAPSO-56,金属原子Me为钒、铜、钼、锆、钛、钴、锰、镁、铁、镍和锌中的一种或任意几种,并至少有部分以MeO2四面体形成分子筛骨架存在于分子筛中。In the metal silicoaluminophosphate molecular sieve MeAPSO-56, the metal atom Me is one or any of vanadium, copper, molybdenum, zirconium, titanium, cobalt, manganese, magnesium, iron, nickel and zinc, and at least part of MeO 2 tetrahedra form a molecular sieve framework and exist in molecular sieves.

本发明合成的金属磷酸硅铝分子筛可用作离子交换剂和吸附剂,用其制成的催化剂可应用于多种碳氢化合物反应中,如催化裂化、重整、聚合、烷基化、脱烷基化、烷基转移、异构化、加氢环化、脱氢和氢化反应等。The metal silicoaluminophosphate molecular sieve synthesized by the present invention can be used as ion exchanger and adsorbent, and the catalyst made by it can be applied in various hydrocarbon reactions, such as catalytic cracking, reforming, polymerization, alkylation, desorption Alkylation, transalkylation, isomerization, hydrocyclization, dehydrogenation and hydrogenation reactions, etc.

本发明合成的MeAPSO-56分子筛,其特征在于制备过程如下:The synthetic MeAPSO-56 molecular sieve of the present invention is characterized in that the preparation process is as follows:

(1)按比例将硅源物质、铝源物质、磷源物质、金属盐、模板剂和水在搅拌下混合均匀,得初始凝胶混合物;(1) Mixing silicon source material, aluminum source material, phosphorus source material, metal salt, templating agent and water in proportion under stirring to obtain an initial gel mixture;

(2)将初始凝胶混合物料移入不锈钢合成釜中密封,在100~250℃晶化不少于1小时,最佳为2~100小时;(2) Transfer the initial gel mixture material into a stainless steel synthesis kettle and seal it, and crystallize at 100-250°C for not less than 1 hour, preferably 2-100 hours;

(3)将固体结晶产物与母液分离,用脱离子水洗涤至中性、在80-130℃空气中干燥后得到金属磷酸硅铝分子筛原粉;(3) Separating the solid crystalline product from the mother liquor, washing with deionized water until neutral, and drying in the air at 80-130°C to obtain the original powder of metal silicoaluminophosphate molecular sieve;

(4)将分子筛原粉在300~700℃空气中焙烧不少于3小时,即得金属磷酸硅铝分子筛活性催化剂。(4) Calcining the raw molecular sieve powder in air at 300-700°C for not less than 3 hours to obtain the active metal silicoaluminophosphate molecular sieve catalyst.

在上述本发明MeAPSO-56分子筛的制备过程中,所用的硅源为硅溶胶、硅凝胶、水玻璃、活性二氧化硅或正硅酸酯中的一种或几种的混合物;铝源为铝盐、铝酸盐、活性氧化铝、烷氧基铝、假勃母石或拟薄水铝石中的一种或几种的混合物;磷源为正磷酸、磷酸盐、有机磷化物或磷氧化物中的一种或两种的混合物;金属为钒、铜、钼、锆、钛、钴、锰、镁、铁、镍和锌等的氧化物、无机盐类或有机盐类中的一种或任意几种的混合物;模板剂为N’,N’,N,N-四甲基-1,6-己二胺、三丙胺或正丙胺中的一种或几种的混合物。In the preparation process of the above-mentioned MeAPSO-56 molecular sieve of the present invention, the silicon source used is one or more mixtures in silica sol, silica gel, water glass, active silica or orthosilicate; Aluminum source is One or a mixture of aluminum salts, aluminates, activated alumina, aluminum alkoxides, pseudoboehmite or pseudoboehmite; phosphorus source is orthophosphoric acid, phosphate, organic phosphides or phosphorus One or a mixture of two oxides; the metal is one of the oxides, inorganic salts or organic salts of vanadium, copper, molybdenum, zirconium, titanium, cobalt, manganese, magnesium, iron, nickel and zinc, etc. one or a mixture of any several; the templating agent is one or a mixture of N', N', N, N-tetramethyl-1,6-hexanediamine, tripropylamine or n-propylamine.

各原料之间配比(按氧化物分子比)为:The ratio between the raw materials (according to the molecular ratio of oxides) is:

Me/Al2O3=0.01~0.7;Me/Al 2 O 3 =0.01~0.7;

SiO2/Al2O3=0.1~10;SiO 2 /Al 2 O 3 =0.1~10;

P2O5/Al2O3=0.5~15;P 2 O 5 /Al 2 O 3 =0.5~15;

H2O/Al2O3=10~100;H 2 O/Al 2 O 3 =10~100;

R/Al2O3=0.7~6;R为一种或几种模板剂的混合物;R/Al 2 O 3 =0.7~6; R is a mixture of one or several templating agents;

另外,在上述的制备方法中,合成的晶化压力为自生压力或充入0.01~1Mpa的氮气、空气或惰性气体等。In addition, in the above preparation method, the synthetic crystallization pressure is autogenous pressure or filled with nitrogen, air or inert gas of 0.01-1 Mpa.

下面通过实施例详述本发明。The present invention is described in detail below by way of examples.

实施例1 SAPO-56Example 1 SAPO-56

将12.75g活性氧化铝(含Al2O3 73.0wt%)溶解于75ml脱离子水中,搅拌下顺序加入10.40g硅溶胶(含SiO240wt%)和26.28g正磷酸(含H3PO4 85wt%)。最后加入40g N’,N’,N,N-四甲基-1,6-己二胺,搅拌混合均匀后,将此混合物料移入不锈钢合成釜中密封。在200℃及自生压力下晶化24小时,固体产物用脱离子水洗涤至中性,在100℃空气中干燥、550℃空气中焙烧5小时即得到SAPO-56分子筛,其XRD分析如表1所示。Dissolve 12.75g of activated alumina (containing Al 2 O 3 73.0wt%) in 75ml of deionized water, and add 10.40g of silica sol (containing SiO 2 40wt%) and 26.28g of orthophosphoric acid (containing H 3 PO 4 85wt%) in sequence under stirring %). Finally, 40 g of N',N',N,N-tetramethyl-1,6-hexanediamine was added, stirred and mixed evenly, and then the mixture was transferred into a stainless steel synthesis kettle and sealed. Crystallize at 200°C and autogenous pressure for 24 hours, wash the solid product with deionized water until neutral, dry in air at 100°C, and roast in air at 550°C for 5 hours to obtain SAPO-56 molecular sieve. The XRD analysis is shown in Table 1 shown.

                          表1   No.     2θ     d()     100×I/I0     123456789101112131415161718     7.3808.61011.53012.84015.49017.31017.72020.18021.61021.96023.44025.87027.78029.90030.32031.31033.43034.470     11.968910.26167.66866.88905.71585.11885.00124.39684.10894.04423.79213.44123.20882.98592.94552.85462.67822.5998     1858563536446578100243636672438332719 Table 1 No. d() 100×I/I 0 123456789101112131415161718 7.3808.61011.53012.84015.49017.31017.72020.18021.61021.96023.44025.87027.78029.90030.32031.31033.43034.470 11.968910.26167.66866.88905.71585.11885.00124.39684.10894.04423.79213.44123.20882.98592.94552.85462.67822.5998 1858563536446578100243636672438332719

实施例2 TiAPSO-56Example 2 TiAPSO-56

将12.10g活性氧化铝(含Al2O3 73.0wt%)溶解于70ml脱离子水中,搅拌下顺序加入10.40g硅溶胶(含SiO240wt%)和26.28g正磷酸(含H3PO485wt%),制得溶液A。将2.85g硫酸钛(96%)与5ml脱离子水混合均匀,得溶液B。强烈搅拌下将溶液B加入到A中,搅拌不少于30分钟。最后加入40g N’,N’,N,N-四甲基-1,6-己二胺,搅拌混合均匀后,将此混合物料移入不锈钢合成釜中密封。在200℃及自生压力下晶化24小时,固体产物用脱离子水洗涤至中性,在100℃空气中干燥、550℃空气中焙烧5小时即得到TiAPSO-56分子筛,其XRD分析如表2所示。将表2、1相对比,可看到表2中各衍射峰的相对强度发生变化,说明钛原子进入分子筛骨架使孔径、晶面间距等发生变化。Dissolve 12.10g of activated alumina (containing Al 2 O 3 73.0wt%) in 70ml of deionized water, and add 10.40g of silica sol (containing SiO 2 40wt%) and 26.28g of orthophosphoric acid (containing H 3 PO 4 85wt%) in sequence under stirring %) to prepare solution A. Mix 2.85g of titanium sulfate (96%) and 5ml of deionized water uniformly to obtain solution B. Add solution B to A with vigorous stirring and stir for not less than 30 minutes. Finally, 40 g of N',N',N,N-tetramethyl-1,6-hexanediamine was added, stirred and mixed evenly, and then the mixture was transferred into a stainless steel synthesis kettle and sealed. Crystallize at 200°C and autogenous pressure for 24 hours, wash the solid product with deionized water until neutral, dry in air at 100°C, and roast in air at 550°C for 5 hours to obtain TiAPSO-56 molecular sieve. The XRD analysis is shown in Table 2 shown. Comparing Table 2 and Table 1, it can be seen that the relative intensity of each diffraction peak in Table 2 changes, indicating that titanium atoms enter the molecular sieve framework to change the pore size and interplanar spacing.

                            表2   No.     2θ     d()   100×I/I0   1234567891011121314151617     7.3408.55911.48012.79015.44017.26017.68019.65020.14021.57023.41025.84027.76030.28031.27033.41034.440     12.034110.32157.70186.91585.73425.13355.01254.51414.40544.11653.79693.44513.21102.94932.85812.67982.6020     20646135354247187910032366036302615 Table 2 No. d() 100×I/I 0 1234567891011121314151617 7.3408.55911.48012.79015.44017.26017.68019.65020.14021.57023.41025.84027.76030.28031.27033.41034.440 12.034110.32157.70186.91585.73425.13355.01254.51414.40544.11653.79693.44513.21102.94932.85812.67982.6020 20646135354247187910032366036302615

对比例1Comparative example 1

将实施例2中的N,N,N’,N’-四甲基-1,6-己二胺用量变为10g。此时,反应混合物料中模板剂与Al2O3的比为0.62。其余各组分用量、加入顺序和晶化条件不变,产物为TiAPSO-11分子筛,其XRD分析如表3所示。The amount of N,N,N',N'-tetramethyl-1,6-hexanediamine in Example 2 was changed to 10 g. At this time, the ratio of template agent to Al 2 O 3 in the reaction mixture material was 0.62. The dosage, addition order and crystallization conditions of the remaining components were kept unchanged, and the product was TiAPSO-11 molecular sieve, and its XRD analysis is shown in Table 3.

                          表3   No.     2θ     d()   100×I/I0   123456789101112     8.0709.45013.20015.70020.51021.05022.76023.24024.78026.70028.74033.020     10.94709.35136.70195.63994.32684.21703.90393.82433.59003.33603.10372.7105     2056244777939110029303325 table 3 No. d() 100×I/I 0 123456789101112 8.0709.45013.20015.70020.51021.05022.76023.24024.78026.70028.74033.020 10.94709.35136.70195.63994.32684.21703.90393.82433.59003.33603.10372.7105 2056244777939110029303325

实施例3 FAPSO-56Example 3 FAPSO-56

将15.90g活性氧化铝(含Al2O3 73.0wt%)溶解于70ml脱离子水中,搅拌下顺序加入12.80g硅溶胶(含SiO240wt%)和19.50g正磷酸(含H3PO485wt%),制得溶液A。同时将3.27g硫酸铁(96%)与5ml脱离子水混合均匀,得溶液B。强烈搅拌下将溶液B加入到A中,搅拌不少于30分钟。最后加入40g N’,N’,N,N-四甲基-1,6-己二胺,搅拌混合均匀后,将此混合物料移入不锈钢合成釜中密封。在200℃及自生压力下晶化24小时,固体产物用脱离子水洗涤至中性,在100℃空气中干燥、550℃空气中焙烧5小时即得到FAPSO-56分子筛,其XRD分析如表4所示。将表4、1相对比,可看到表4中各衍射峰的相对强度发生变化,说明铁原子进入分子筛骨架使孔径、晶面间距等发生变化。Dissolve 15.90g of activated alumina (containing Al 2 O 3 73.0wt%) in 70ml of deionized water, and add 12.80g of silica sol (containing SiO 2 40wt%) and 19.50g of orthophosphoric acid (containing H 3 PO 4 85wt%) in sequence under stirring %) to prepare solution A. At the same time, 3.27g of iron sulfate (96%) and 5ml of deionized water were uniformly mixed to obtain solution B. Add solution B to A with vigorous stirring and stir for not less than 30 minutes. Finally, 40 g of N',N',N,N-tetramethyl-1,6-hexanediamine was added, stirred and mixed evenly, and then the mixture was transferred into a stainless steel synthesis kettle and sealed. Crystallize at 200°C and autogenous pressure for 24 hours, wash the solid product with deionized water until neutral, dry in air at 100°C, and roast in air at 550°C for 5 hours to obtain FAPSO-56 molecular sieve. The XRD analysis is shown in Table 4 shown. Comparing Table 4 and Table 1, it can be seen that the relative intensity of each diffraction peak in Table 4 changes, indicating that iron atoms enter the molecular sieve framework to change the pore size and interplanar spacing.

                          表4   No.     2θ     d()     100×I/I0     123456789101112131415161718     7.3608.55911.48012.81015.45017.27017.70019.66020.15021.58023.42025.84027.77029.87030.28031.28033.42034.460     12.004110.32157.70186.90505.73065.13055.00684.51194.40324.11463.79533.44513.20992.98882.94932.85722.67902.6005     1449602828401001565764535982131262717 Table 4 No. d() 100×I/I 0 123456789101112131415161718 7.3608.55911.48012.81015.45017.27017.70019.66020.15021.58023.42025.84027.77029.87030.28031.28033.42034.460 12.004110.32157.70186.90505.73065.13055.00684.51194.40324.11463.79533.44513.20992.98882.94932.85722.67902.6005 1449602828401001565764535982131262717

实施例4 (ZrAPSO-56)Embodiment 4 (ZrAPSO-56)

将实施例2中的溶液B变为3.71g氧氯化锆(ZrOCl2·8H2O 99%)与5ml脱离子水混合,模板剂采用36g三丙胺代替N’,N’,N,N-四甲基-1,6-己二胺,其余各组分用量、加入顺序和晶化条件不变,产物为ZrAPSO-56分子筛,其XRD分析如表5所示。将表5、1相对比,可看到表5中各衍射峰的相对强度发生变化,说明锆原子进入分子筛骨架使孔径、晶面间距等发生变化。Solution B in Example 2 was changed to 3.71g zirconium oxychloride (ZrOCl 2 8H 2 O 99%) mixed with 5ml deionized water, and 36g tripropylamine was used as template agent instead of N',N',N,N- Tetramethyl-1,6-hexamethylenediamine, the dosage, addition sequence and crystallization conditions of the other components were unchanged, and the product was ZrAPSO-56 molecular sieve, and its XRD analysis is shown in Table 5. Comparing Table 5 and Table 1, it can be seen that the relative intensity of each diffraction peak in Table 5 changes, indicating that zirconium atoms enter the molecular sieve framework to change the pore size and interplanar spacing.

                          表5   No.     2θ     d()   100×I/I0     1234567891011121314151617     7.3608.58011.51012.82015.48017.28017.70020.18021.61023.43025.89027.75030.33031.34033.42034.50050.650     11.985110.28557.68556.89975.72695.12465.01254.39684.10893.79373.43863.21222.94452.85192.67902.59761.8008     21616340354667771003944783736292218 table 5 No. d() 100×I/I 0 1234567891011121314151617 7.3608.58011.51012.82015.48017.28017.70020.18021.61023.43025.89027.75030.33031.34033.42034.50050.650 11.985110.28557.68556.89975.72695.12465.01254.39684.10893.79373.43863.21222.94452.85192.67902.59761.8008 21616340354667771003944783736292218

实施例5 MnAPSO-56Example 5 MnAPSO-56

将实施例2中的溶液B变为2.82g醋酸锰(MnAc2·4H2O 99%)与5ml脱离子水混合,模板剂采用10gN’,N’,N,N-四甲基-1,6-己胺和25g正丙胺的混合和,其余各组分用量、加入顺序和晶化条件不变,产物为MnAPSO-56分子筛,其XRD分析如表6所示。将表6、1相对比,可看到表6中各衍射峰的相对强度发生变化,说明锰原子进入分子筛骨架使孔径、晶面间距等发生变化。Solution B in Example 2 is changed to 2.82g manganese acetate (MnAc2 4H2O 99%) is mixed with 5ml deionized water, template agent adopts 10gN ', N ', N, N-tetramethyl-1,6-hexyl The mixing of amine and 25g n-propylamine, the amount of all other components, the order of addition and the crystallization conditions are unchanged, the product is MnAPSO-56 molecular sieve, and its XRD analysis is shown in Table 6. Comparing Table 6 and Table 1, it can be seen that the relative intensity of each diffraction peak in Table 6 changes, indicating that manganese atoms enter the molecular sieve framework to change the pore size and interplanar spacing.

                          表6     No.     2θ     d()   100×I/I0     1234567891011121314151617181920     7.3808.60011.52012.83014.81015.49017.29017.71019.66020.17021.60021.94023.45025.86027.79029.90030.28031.30033.44034.470     11.968910.27357.67526.89435.97675.71585.12465.00404.51194.39894.11084.04793.79053.44253.20762.98592.94932.85542.67742.5998     19565838123744681981100223737712539332920 Table 6 No. d() 100×I/I 0 1234567891011121314151617181920 7.3808.60011.52012.83014.81015.49017.29017.71019.66020.17021.60021.94023.45025.86027.79029.90030.28031.30033.44034.470 11.968910.27357.67526.89435.97675.71585.12465.00404.51194.39894.11084.04793.79053.44253.20762.98592.94932.85542.67742.5998 19565838123744681981100223737712539332920

实施例6  CoAPSO-56Example 6 CoAPSO-56

将实施例2中的溶液B变为2.05g醋酸钴(CoAc2·4H2O 99.5%)与5ml脱离子水混合。其余各组分用量、加入顺序和晶化条件不变,产物为CoAPSO-56分子筛。Solution B among the embodiment 2 becomes 2.05g cobalt acetate (CoAc 4H O 99.5%) mixes with 5ml deionized water. The dosage, addition order and crystallization conditions of the other components remain unchanged, and the product is CoAPSO-56 molecular sieve.

实施例7 NiAPSO-56Example 7 NiAPSO-56

将实施例2中的溶液B变为2.45g硝酸镍(Ni(NO3)2·6H2O 98%)与5ml脱离子水混合。其余各组分用量、加入顺序和晶化条件不变,产物为NiAPSO-56分子筛。Solution B among the embodiment 2 becomes 2.45g nickel nitrate (Ni(NO3) 6H2O 98%) mixes with 5ml deionized water. The dosage, addition order and crystallization conditions of the other components remain unchanged, and the product is NiAPSO-56 molecular sieve.

对比例2Comparative example 2

将实施例7中的2.45g硝酸镍(Ni(NO3)2·6H2O 98%)变为19.6g与15ml脱离子水混合。此时,金属与Al2O3的摩尔数之比为0.75。其余各组分用量、加入顺序和晶化条件不变,产物为未知的晶体,其XRD分析如表7所示。2.45g of nickel nitrate (Ni(NO3) 2.6H2O 98%) in Example 7 was changed to 19.6g and mixed with 15ml of deionized water. At this time, the molar ratio of metal to Al 2 O 3 was 0.75. The dosage, addition sequence and crystallization conditions of the remaining components were unchanged, and the product was an unknown crystal, and its XRD analysis is shown in Table 7.

                          表7   No.     2θ     d()     100×I/I0     123456789101112   13.84019.67022.00024.16027.99031.39034.45040.02042.58047.36051.74055.980     6.39344.50964.03703.68073.18562.84752.60122.25112.12151.91751.76541.6413     43436100151418786114 Table 7 No. d() 100×I/I 0 123456789101112 13.84019.67022.00024.16027.99031.39034.45040.02042.58047.36051.74055.980 6.39344.50964.03703.68073.18562.84752.60122.25112.12151.91751.76541.6413 43436100151418786114

实施例8  CuAPSO-56Example 8 CuAPSO-56

将实施例2中的溶液B变为3.05g硫酸铜(Cu(SO4)2·6H2O 98%)与5ml脱离子水混合。其余各组分用量、加入顺序和晶化条件不变,产物为CuAPSO-56分子筛。Solution B among the embodiment 2 becomes 3.05g copper sulfate (Cu(SO4) 6H2O 98%) mixes with 5ml deionized water. The dosage, addition order and crystallization conditions of the other components remain unchanged, and the product is CuAPSO-56 molecular sieve.

实施例9Example 9

将实施例2中所得的样品于550℃下通入空气中焙烧4小时。称取2g焙烧后的样品,加入到100毫升1M的氯化铜溶液中。在50℃下交换12小时,反复交换4次,所得到的样品经过滤、脱离子水洗涤并于100℃下干燥,即得铜离子交换后的样品Cu-TiAPSO-56。The sample obtained in Example 2 was calcined in air at 550°C for 4 hours. Weigh 2 g of the calcined sample and add it into 100 ml of 1M copper chloride solution. Exchange at 50°C for 12 hours, and repeat the exchange 4 times. The obtained sample was filtered, washed with deionized water and dried at 100°C to obtain the sample Cu-TiAPSO-56 after copper ion exchange.

实施例10Example 10

将实施例2中所得到的样品取出一部分放到小坩埚中,于550℃下通入空气焙烧4小时。准确称量样品的质量后置于装有饱和食盐水的干燥器中。室温下放置12小时。通过称取样品前后质量的变化,得到样品的吸水数值。实验表明TiAPSO-56分子筛具有吸附性,其室温下对水的吸附值为29.6%。A part of the sample obtained in Example 2 was taken out and put into a small crucible, and was baked at 550° C. for 4 hours by feeding air. After accurately weighing the mass of the sample, place it in a desiccator filled with saturated saline. Leave at room temperature for 12 hours. The water absorption value of the sample is obtained by weighing the change in mass before and after the sample. Experiments show that TiAPSO-56 molecular sieve has adsorption property, and its adsorption value for water at room temperature is 29.6%.

实施例11Example 11

将实施例1中所得到的样品于550℃下通入空气焙烧4小时。然后压片、破碎至20~40目。称取1.28g样品装入固定床反应器,进行甲醇转化制低碳烯烃(MTO)反应评价。甲醇由氮气携带,其重量空速WHSV为2.0h-1,反应温度为450℃,反应产物由在线气相色谱进行分析。结果表明甲醇的转化率为100%,对C2 =和C3 =的选择性达到70%以上,其对C2 =和C3 =的初始选择性为60%以上。说明TiAPSO-56分子筛对于MTO反应具有很高的活性。The sample obtained in Example 1 was calcined at 550° C. for 4 hours in air. Then press into tablets and crush to 20-40 mesh. A 1.28g sample was weighed and loaded into a fixed-bed reactor to evaluate the methanol conversion to light olefins (MTO) reaction. Methanol is carried by nitrogen, its weight space velocity WHSV is 2.0h -1 , the reaction temperature is 450°C, and the reaction products are analyzed by online gas chromatography. The results show that the conversion rate of methanol is 100%, the selectivity to C 2 = and C 3 = is over 70%, and the initial selectivity to C 2 = and C 3 = is over 60%. It shows that TiAPSO-56 molecular sieve has high activity for MTO reaction.

由上述实施例的结果可以看到,本发明采用N’,N’,N,N-四甲基-1,6-己二胺、三丙胺或正丙胺为模板剂并控制模板剂的配合量,利用不同金属盐可以合成MeAPSO-56分子筛。该合成过程简便,反应条件易控制,适于工业化采用。另外,本发明所合成MeAPSO-56分子筛经焙烧后可以作为离子交离剂和吸附剂,并可作为多种碳氢化合反应的催化剂,特别是用于甲醇转化制低碳烯烃反应,具有很高的催化活性和对产物的选择性,为该反应过程的工业化创造了条件。From the results of the above examples, it can be seen that the present invention uses N', N', N, N-tetramethyl-1,6-hexanediamine, tripropylamine or n-propylamine as the template and controls the amount of the template , MeAPSO-56 molecular sieves can be synthesized by using different metal salts. The synthesis process is simple, the reaction conditions are easy to control, and the method is suitable for industrial application. In addition, the MeAPSO-56 molecular sieve synthesized by the present invention can be used as an ion exchange agent and adsorbent after roasting, and can be used as a catalyst for various hydrocarbon reactions, especially for the reaction of methanol conversion to light olefins, which has a high The high catalytic activity and selectivity to products create conditions for the industrialization of this reaction process.

Claims (12)

1.一种金属磷酸硅铝分子筛MeAPSO-56,其特征在于无水状态化学组成表示为mR·nMe·(SixAlyPz)O2;其中R为存在于分子筛微孔中的模板剂,m代表每摩尔(SixAlyPz)O2中模板剂的摩尔数,m=0.05~0.3;Me为进入分子筛骨架的金属原子,n为每摩尔(SixAlyPz)O2中Me的摩尔数,n=0.001~0.20。x、y、z分别表示Si、Al、P的摩尔分数,其范围分别是x=0.01~0.98,y=0.01~0.60,z=0.01~0.52,且x+y+z=1。1. A metal silicoaluminophosphate molecular sieve MeAPSO-56 is characterized in that the chemical composition in anhydrous state is expressed as mR nMe (SixAlyPz)O 2 ; wherein R is the template agent present in the micropores of the molecular sieve, and m represents per mole (SixAlyPz)O 2 ; )O 2 in the number of moles of template agent, m=0.05~0.3; Me is the metal atom entering the molecular sieve framework, n is the mole number of Me in each mole of (SixAlyPz)O 2 , n=0.001~0.20. x, y, and z represent mole fractions of Si, Al, and P respectively, and the ranges are x=0.01-0.98, y=0.01-0.60, z=0.01-0.52, and x+y+z=1. 2.按照权利要求1所述的金属磷酸硅铝分子筛MeAPSO-56,其特征在于金属原子Me为钒、铜、钼、锆、钛、钴、锰、镁、铁、镍和锌中的一种或任意几种,并至少有部分以MeO2四面体形成分子筛骨架存在于分子筛中。2. The metallosilicoaluminophosphate molecular sieve MeAPSO-56 according to claim 1 is characterized in that the metal atom Me is one or any of vanadium, copper, molybdenum, zirconium, titanium, cobalt, manganese, magnesium, iron, nickel and zinc Several kinds, and at least part of them exist in molecular sieves with MeO 2 tetrahedrons forming the molecular sieve framework. 3.一种合成金属磷酸硅铝分子筛MeAPSO-56的方法,其特征是按下述步骤进行:3. A method for synthesizing metal silicoaluminophosphate molecular sieve MeAPSO-56 is characterized in that it is carried out according to the following steps: (1)按比例将硅源物质、铝源物质、磷源物质、金属盐、模板剂和水在搅拌下混合均匀,得初始凝胶混合物;(1) Mixing silicon source material, aluminum source material, phosphorus source material, metal salt, templating agent and water in proportion under stirring to obtain an initial gel mixture; (2)将初始凝胶混合物料移入不锈钢合成釜中密封,在100~250℃晶化不少于1小时;(2) Transfer the initial gel mixture material into a stainless steel synthesis kettle, seal it, and crystallize it at 100-250°C for no less than 1 hour; (3)将固体结晶产物与母液分离,用脱离子水洗涤至中性、在80-130℃空气中干燥后得到金属磷酸硅铝分子筛原粉;(3) Separating the solid crystalline product from the mother liquor, washing with deionized water until neutral, and drying in the air at 80-130°C to obtain the original powder of metal silicoaluminophosphate molecular sieve; (4)将分子筛原粉在300~700℃空气中焙烧不少于3小时,即得金属磷酸硅铝分子筛活性催化剂。(4) Calcining the raw molecular sieve powder in air at 300-700°C for not less than 3 hours to obtain the active metal silicoaluminophosphate molecular sieve catalyst. 4.按照权利要求3所述的合成金属磷酸硅铝分子筛MeAPSO-56,其特征在于所用的各原料配比(按氧化物分子比)为:4. According to the synthetic metal silicoaluminophosphate molecular sieve MeAPSO-56 described in claim 3, it is characterized in that each raw material proportioning (by oxide molecular ratio) used is: Me/Al2O3=0.01~0.7;Me/Al 2 O 3 =0.01~0.7; SiO2/Al2O3=0.1~10;SiO 2 /Al 2 O 3 =0.1~10; P2O5/Al2O3=0.5~15;P 2 O 5 /Al 2 O 3 =0.5~15; H2O/Al2O3=10~100;H 2 O/Al 2 O 3 =10~100; R/Al2O3=0.7~6;R为一种或几种模板剂的混合物;R/Al 2 O 3 =0.7~6; R is a mixture of one or several templating agents; 5.按照权利要求3所述合成的金属磷酸硅铝分子筛MeAPSO-56的方法,其特征在于所用的硅源为硅溶胶、硅凝胶、水玻璃、活性二氧化硅或正硅酸酯中的一种或几种的混合物。5. According to the method for the metallosilicoaluminophosphate molecular sieve MeAPSO-56 of synthesis described in claim 3, it is characterized in that used silicon source is a kind of in silica sol, silica gel, water glass, activated silica or orthosilicate or a mixture of several. 6.按照权利要求3所述合成的金属磷酸硅铝分子筛MeAPSO-56的方法,其特征在于所用的铝源为铝盐、铝酸盐、活性氧化铝、烷氧基铝、假勃母石或拟薄水铝石中的一种或几种的混合物。6. According to the method for the metallosilicoaluminophosphate molecular sieve MeAPSO-56 of synthesis described in claim 3, it is characterized in that the aluminum source used is aluminum salt, aluminate, activated alumina, alkoxy aluminum, pseudoboehmite or pseudothin One or more mixtures of diaspores. 7.按照权利要求3所述合成的金属磷酸硅铝分子筛MeAPSO-56的方法,其特征在于所用的磷源为正磷酸、磷酸盐、有机磷化物或磷氧化物中的一种或几种的混合物。7. According to the method for the metallosilicoaluminophosphate molecular sieve MeAPSO-56 synthesized according to claim 3, it is characterized in that the phosphorus source used is one or more mixtures of orthophosphoric acid, phosphate, organic phosphides or phosphorus oxides. 8.按照权利要求3所述合成的金属磷酸硅铝分子筛MeAPSO-56的方法,其特征在于所用的模板剂为N’,N’,N,N-四甲基-1,6-己二胺、三丙胺或正丙胺中的一种或几种的混合物。8. According to the method for the metal silicoaluminophosphate molecular sieve MeAPSO-56 synthesized according to claim 3, it is characterized in that the template used is N', N', N,N-tetramethyl-1,6-hexanediamine, tris One or more mixtures of propylamine or n-propylamine. 9.按照权利要求3所述的合成金属磷酸硅铝分子筛MeAPSO-56的方法,其特征在于所使用金属的来源为钒、铜、钼、锆、钛、钴、锰、镁、铁、镍和锌等的氧化物、无机盐类或有机盐类中的一种或任意几种的混合物。9. According to the method for synthesizing metallosilicoaluminophosphate molecular sieve MeAPSO-56 according to claim 3, it is characterized in that the source of metal used is vanadium, copper, molybdenum, zirconium, titanium, cobalt, manganese, magnesium, iron, nickel and zinc etc. One or any mixture of oxides, inorganic salts or organic salts. 10.按照权利要求3所述的合成金属磷酸硅铝分子筛MeAPSO-56的方法,其特征在于合成的晶化压力为自生压力或充入0.01~1Mpa的氮气、空气或惰性气体等。10. According to the method for synthesizing metallosilicoaluminophosphate molecular sieve MeAPSO-56 according to claim 3, it is characterized in that the crystallization pressure of synthesis is autogenous pressure or filled with nitrogen, air or inert gas of 0.01~1Mpa. 11.一种按照权利要求1所述的金属磷酸硅铝分子筛MeAPSO-56,用作离子交换剂和吸附剂。11. A metal silicoaluminophosphate molecular sieve MeAPSO-56 according to claim 1, used as ion exchanger and adsorbent. 12.按照权利要求1所述的金属磷酸硅铝分子筛MeAPSO-56,用作吸附剂。12. The metal silicoaluminophosphate molecular sieve MeAPSO-56 according to claim 1 is used as an adsorbent.
CN 99127147 1999-12-29 1999-12-29 MeAPSO-56 molecular sieve and its synthesizing method Expired - Lifetime CN1108870C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 99127147 CN1108870C (en) 1999-12-29 1999-12-29 MeAPSO-56 molecular sieve and its synthesizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 99127147 CN1108870C (en) 1999-12-29 1999-12-29 MeAPSO-56 molecular sieve and its synthesizing method

Publications (2)

Publication Number Publication Date
CN1301598A true CN1301598A (en) 2001-07-04
CN1108870C CN1108870C (en) 2003-05-21

Family

ID=5284746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 99127147 Expired - Lifetime CN1108870C (en) 1999-12-29 1999-12-29 MeAPSO-56 molecular sieve and its synthesizing method

Country Status (1)

Country Link
CN (1) CN1108870C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835363B1 (en) 2003-08-06 2004-12-28 Exxonmobil Chemical Patents Inc. Synthesis of molecular sieves of CHA framework type
US6927187B2 (en) 2003-07-11 2005-08-09 Exxonmobil Chemical Patents Inc. Synthesis of silicoaluminophosphates
WO2013181833A1 (en) * 2012-06-08 2013-12-12 中国科学院大连化学物理研究所 Metal silicoaluminophosphate molecular sieve having rho skeleton structure and preparation process therefor
CN111099605A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 Phosphate molecular sieve with AFX structure and preparation method thereof
CN112441595A (en) * 2019-08-30 2021-03-05 大连海事大学 Multi-metal doped silicon-phosphorus-aluminum molecular sieve and preparation method and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927187B2 (en) 2003-07-11 2005-08-09 Exxonmobil Chemical Patents Inc. Synthesis of silicoaluminophosphates
US6835363B1 (en) 2003-08-06 2004-12-28 Exxonmobil Chemical Patents Inc. Synthesis of molecular sieves of CHA framework type
WO2013181833A1 (en) * 2012-06-08 2013-12-12 中国科学院大连化学物理研究所 Metal silicoaluminophosphate molecular sieve having rho skeleton structure and preparation process therefor
AU2012381962B2 (en) * 2012-06-08 2015-08-27 Dalian Institute Of Chemical Physics,Chinese Academy Of Sciences Metal silicoaluminophosphate molecular sieve having RHO skeleton structure and preparation process therefor
JP2015525194A (en) * 2012-06-08 2015-09-03 ダーリエン インスティテュート オブ ケミカル フィジクス チャイニーズ アカデミー オブ サイエンシーズDalian Instituteof Chemical Physics, Chinese Academy Of Sciences Metal silicoaluminophosphate molecular sieve having RHO skeleton structure and method for producing the same
US9499409B2 (en) 2012-06-08 2016-11-22 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Metal silicoaluminophosphate molecular sieve with RHO framework structure, and method for preparing the same
EA028185B1 (en) * 2012-06-08 2017-10-31 Чайниз Академи Оф Сайэнсиз Metal silicoaluminophosphate molecular sieve with rho framework structure and method for preparing the same
CN111099605A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 Phosphate molecular sieve with AFX structure and preparation method thereof
CN111099605B (en) * 2018-10-25 2022-05-24 中国石油化工股份有限公司 Phosphate molecular sieve with AFX structure and preparation method thereof
CN112441595A (en) * 2019-08-30 2021-03-05 大连海事大学 Multi-metal doped silicon-phosphorus-aluminum molecular sieve and preparation method and application thereof
CN112441595B (en) * 2019-08-30 2022-07-19 大连海事大学 Multi-metal doped silicon-phosphorus-aluminum molecular sieve and preparation method and application thereof

Also Published As

Publication number Publication date
CN1108870C (en) 2003-05-21

Similar Documents

Publication Publication Date Title
EP0103117B1 (en) Crystalline silicoaluminophosphates
US9499409B2 (en) Metal silicoaluminophosphate molecular sieve with RHO framework structure, and method for preparing the same
CN103482646B (en) There is metal silicon aluminum phosphate molecular sieve of RHO skeleton structure and preparation method thereof
CN101481121B (en) Silicoaluminophosphate molecular sieve composition and synthesizing method thereof
CN101195492B (en) Method for synthesizing SAPO-11 and SAPO-34 molecular sieves with diethylamine as template
CN101993093A (en) SAPO (silicoaluminophosphate) molecular sieve with RHO skeleton structure and preparation method thereof
CN1260823A (en) Conversion of synthesis gas to lower carbon olefins using modified molecular sieves
JPH09501646A (en) Microporous crystalline silico-alumino-phosphate and process for its production
WO2020082944A1 (en) Scm-18 aluminophosphate molecular sieve, preparation method therefor and use thereof
CN103030158B (en) Synthetic method of SAPO-44 molecular sieve modified by rare earth metals
CN101417811B (en) Method for synthesizing SAPO-35 molecular sieve by using bi-template
CN112079363A (en) AFN structure silicon phosphorus aluminum molecular sieve and its synthesis method and application
CN103706394B (en) Submicron SAPO-5/SAPO-18 composite molecular sieve and preparation method thereof
CN1301598A (en) MeAPSO-56 molecular sieve and its synthesizing method
CN101935049B (en) Silicoaluminophosphate molecular sieve
WO2018152829A1 (en) Cu-sapo molecular sieve, synthesis method therefor and catalytic use thereof
CN106799257B (en) Alkane isomerization catalyst and preparation method thereof
CN111056562B (en) SAPO-34 molecular sieve, synthesis method and application thereof, and method for producing olefin from methanol
CN107774297B (en) SCM-12 molecular sieve catalyst, preparation method and application thereof
CN1108868C (en) MeAPSO-18 molecular sieve and its synthesizing method
CN112236395B (en) Crystalline metal phosphates, method for the production and use thereof
CN1108869C (en) MeAPSO-35 molecular sieve and its synthesizing method
CN100488629C (en) Aluminophosphate molecular sieve, its synthesis and use
CN109701621B (en) SSZ-13/SSZ-39 composite structure molecular sieve catalyst, preparation method and application thereof
CN101935047B (en) MAPSO (Modified Adaptive Particle Swarm Optimization) molecular sieve and synthetic method thereof

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20030521