CN1301598A - MeAPSO-56 molecular sieve and its synthesizing method - Google Patents
MeAPSO-56 molecular sieve and its synthesizing method Download PDFInfo
- Publication number
- CN1301598A CN1301598A CN 99127147 CN99127147A CN1301598A CN 1301598 A CN1301598 A CN 1301598A CN 99127147 CN99127147 CN 99127147 CN 99127147 A CN99127147 A CN 99127147A CN 1301598 A CN1301598 A CN 1301598A
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- meapso
- metal
- metallosilicoaluminophosphate
- mole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 64
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims description 11
- 230000002194 synthesizing effect Effects 0.000 title claims 4
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 22
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 15
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 239000008367 deionised water Substances 0.000 claims description 17
- 229910021641 deionized water Inorganic materials 0.000 claims description 17
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 claims description 10
- 238000003786 synthesis reaction Methods 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 238000002425 crystallisation Methods 0.000 claims description 9
- 230000008025 crystallization Effects 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- TXXWBTOATXBWDR-UHFFFAOYSA-N n,n,n',n'-tetramethylhexane-1,6-diamine Chemical compound CN(C)CCCCCCN(C)C TXXWBTOATXBWDR-UHFFFAOYSA-N 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 230000007935 neutral effect Effects 0.000 claims description 5
- 235000011007 phosphoric acid Nutrition 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 239000003463 adsorbent Substances 0.000 claims description 4
- 239000003570 air Substances 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000003054 catalyst Substances 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000000499 gel Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 claims description 2
- -1 alkoxy aluminum Chemical compound 0.000 claims description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 2
- 150000004645 aluminates Chemical class 0.000 claims description 2
- 238000001354 calcination Methods 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 claims description 2
- 239000012452 mother liquor Substances 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 2
- 239000010452 phosphate Substances 0.000 claims description 2
- 235000019353 potassium silicate Nutrition 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims description 2
- 239000000741 silica gel Substances 0.000 claims description 2
- 229910002027 silica gel Inorganic materials 0.000 claims description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 239000007983 Tris buffer Substances 0.000 claims 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 claims 1
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical class [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 12
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 3
- 229930195733 hydrocarbon Natural products 0.000 abstract description 3
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 3
- 238000005342 ion exchange Methods 0.000 abstract description 3
- 238000001179 sorption measurement Methods 0.000 abstract description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000000047 product Substances 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 239000011148 porous material Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 3
- 239000012265 solid product Substances 0.000 description 3
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical group [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical group [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 101100006982 Mus musculus Ppcdc gene Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229940011182 cobalt acetate Drugs 0.000 description 1
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- 238000010555 transalkylation reaction Methods 0.000 description 1
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Catalysts (AREA)
Abstract
一种金属磷酸硅铝分子筛MeAPSO-56无水状态组成可表示为:mR·nMe·(SixAlyPz)O2,其中R为存在于分子筛微孔中的模板剂,m代表每摩尔(SixAlyPz)O2对应模板剂的摩尔数,m=0.05~0.3;Me为进入分子筛骨架的金属原子,n为每摩尔(SixAlyPz)O2对应Me的摩尔数,n=0.001~0.20。x、y、z、分别表示Si、Al、P的摩尔分数,其范围分别是x=0.01~0.98,y=0.01~0.60,z=0.01~0.52,且x+y+z=1。该分子筛具有离子交换性能和吸附性能。可应用于多种碳氢化合物反应。The anhydrous state composition of a metallosilicoaluminophosphate molecular sieve MeAPSO-56 can be expressed as : mR·nMe·( SixAlyPz )O 2 , where R is the template agent present in the micropores of the molecular sieve, and m represents the mole ( Six Al y P z )O 2 corresponds to the number of moles of the template agent, m=0.05~0.3; Me is the metal atom entering the molecular sieve framework, n is the mole of Me per mole of ( Six Al y P z )O 2 Number, n=0.001~0.20. x, y, and z represent the mole fractions of Si, Al, and P respectively, and the ranges are x=0.01-0.98, y=0.01-0.60, z=0.01-0.52, and x+y+z=1. The molecular sieve has ion exchange performance and adsorption performance. Can be applied to a variety of hydrocarbon reactions.
Description
本发明提供了一种新型微孔金属磷酸硅铝分子筛MeAPSO-56及其合成方法。The invention provides a novel microporous metal silicoaluminophosphate molecular sieve MeAPSO-56 and a synthesis method thereof.
1984年,美国专利USP 4,440,871公开了多种具有不同结构的磷酸硅铝分子筛的合成,这些分子筛分别是SAPO-5,SAPO-11,SAPO-16,SAPO-17,SAPO-20,SAPO-31,SAPO-34,SAPO-35,SAPO-37,SAPO-40,SAPO-41,SAPO-42和SAPO-44。其中一些小孔结构的分子筛如SAPO-34等已成功应用于MTG、MTO等过程,并显示出很好的催化性能。此后,又有一些不同结构的磷酸硅铝分子筛相继被合成出来。SAPO-56是Stephen T.Wilson等人于1994年合成出一种新型结构的磷酸硅铝分子筛(USP5,370,851)。In 1984, USP 4,440,871 disclosed the synthesis of a variety of silicoaluminophosphate molecular sieves with different structures, these molecular sieves are SAPO-5, SAPO-11, SAPO-16, SAPO-17, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-37, SAPO-40, SAPO-41, SAPO-42 and SAPO-44. Some molecular sieves with small pore structure, such as SAPO-34, have been successfully used in MTG, MTO and other processes, and have shown good catalytic performance. Since then, some silicoaluminophosphate molecular sieves with different structures have been synthesized one after another. SAPO-56 is a silicoaluminophosphate molecular sieve with a new structure synthesized by Stephen T.Wilson et al. in 1994 (USP5,370,851).
金属分子筛是将金属引入到分子筛的骨架上,从而使其具有一些不同于原分子筛的特性。美国专利USP4,554,143、4,752,651、4,853,179等先后报导了几种金属磷铝酸盐的合成方法,但尚未见到对MeAPSO-56分子筛进行研究的报导。Metal molecular sieves introduce metals into the framework of molecular sieves, so that they have some characteristics different from the original molecular sieves. US Patent No. 4,554,143, No. 4,752,651, No. 4,853,179 have successively reported the synthesis methods of several metal aluminophosphates, but no report on the study of MeAPSO-56 molecular sieve has been seen.
本发明合成的金属磷酸硅铝分子筛MeAPSO-56,其特征在于所合成分子筛的无水化学组成可表示为:mR·nMe·(SixAlyPz)O2,其中R为存在于分子筛微孔中的模板剂,m代表每摩尔(SixAlyPz)O2对应模板剂的摩尔数,m=0.05~0.3;Me为进入分子筛骨架的金属原子,n为每摩尔(SixAlyPz)O2对应Me的摩尔数,n=0.001~0.20。x、y、z分别表示Si、Al、P的摩尔分数,其范围分别是x=0.01~0.98,y=0.01~0.60,z=0.01~0.52,且x+y+z=1;The metallosilicoaluminophosphate molecular sieve MeAPSO-56 synthesized by the present invention is characterized in that the anhydrous chemical composition of the synthesized molecular sieve can be expressed as: mR·nMe·(SixAlyPz)O 2 , wherein R is the template agent present in the micropores of the molecular sieve , m represents the number of moles of template agent per mole of (SixAlyPz)O 2 , m=0.05~0.3; Me is the metal atom entering the molecular sieve framework, n is the number of moles of Me corresponding to each mole of (SixAlyPz)O 2 , n=0.001 ~0.20. x, y, and z represent the mole fractions of Si, Al, and P respectively, and their ranges are x=0.01~0.98, y=0.01~0.60, z=0.01~0.52, and x+y+z=1;
在上述金属磷酸硅铝分子筛MeAPSO-56,金属原子Me为钒、铜、钼、锆、钛、钴、锰、镁、铁、镍和锌中的一种或任意几种,并至少有部分以MeO2四面体形成分子筛骨架存在于分子筛中。In the metal silicoaluminophosphate molecular sieve MeAPSO-56, the metal atom Me is one or any of vanadium, copper, molybdenum, zirconium, titanium, cobalt, manganese, magnesium, iron, nickel and zinc, and at least part of MeO 2 tetrahedra form a molecular sieve framework and exist in molecular sieves.
本发明合成的金属磷酸硅铝分子筛可用作离子交换剂和吸附剂,用其制成的催化剂可应用于多种碳氢化合物反应中,如催化裂化、重整、聚合、烷基化、脱烷基化、烷基转移、异构化、加氢环化、脱氢和氢化反应等。The metal silicoaluminophosphate molecular sieve synthesized by the present invention can be used as ion exchanger and adsorbent, and the catalyst made by it can be applied in various hydrocarbon reactions, such as catalytic cracking, reforming, polymerization, alkylation, desorption Alkylation, transalkylation, isomerization, hydrocyclization, dehydrogenation and hydrogenation reactions, etc.
本发明合成的MeAPSO-56分子筛,其特征在于制备过程如下:The synthetic MeAPSO-56 molecular sieve of the present invention is characterized in that the preparation process is as follows:
(1)按比例将硅源物质、铝源物质、磷源物质、金属盐、模板剂和水在搅拌下混合均匀,得初始凝胶混合物;(1) Mixing silicon source material, aluminum source material, phosphorus source material, metal salt, templating agent and water in proportion under stirring to obtain an initial gel mixture;
(2)将初始凝胶混合物料移入不锈钢合成釜中密封,在100~250℃晶化不少于1小时,最佳为2~100小时;(2) Transfer the initial gel mixture material into a stainless steel synthesis kettle and seal it, and crystallize at 100-250°C for not less than 1 hour, preferably 2-100 hours;
(3)将固体结晶产物与母液分离,用脱离子水洗涤至中性、在80-130℃空气中干燥后得到金属磷酸硅铝分子筛原粉;(3) Separating the solid crystalline product from the mother liquor, washing with deionized water until neutral, and drying in the air at 80-130°C to obtain the original powder of metal silicoaluminophosphate molecular sieve;
(4)将分子筛原粉在300~700℃空气中焙烧不少于3小时,即得金属磷酸硅铝分子筛活性催化剂。(4) Calcining the raw molecular sieve powder in air at 300-700°C for not less than 3 hours to obtain the active metal silicoaluminophosphate molecular sieve catalyst.
在上述本发明MeAPSO-56分子筛的制备过程中,所用的硅源为硅溶胶、硅凝胶、水玻璃、活性二氧化硅或正硅酸酯中的一种或几种的混合物;铝源为铝盐、铝酸盐、活性氧化铝、烷氧基铝、假勃母石或拟薄水铝石中的一种或几种的混合物;磷源为正磷酸、磷酸盐、有机磷化物或磷氧化物中的一种或两种的混合物;金属为钒、铜、钼、锆、钛、钴、锰、镁、铁、镍和锌等的氧化物、无机盐类或有机盐类中的一种或任意几种的混合物;模板剂为N’,N’,N,N-四甲基-1,6-己二胺、三丙胺或正丙胺中的一种或几种的混合物。In the preparation process of the above-mentioned MeAPSO-56 molecular sieve of the present invention, the silicon source used is one or more mixtures in silica sol, silica gel, water glass, active silica or orthosilicate; Aluminum source is One or a mixture of aluminum salts, aluminates, activated alumina, aluminum alkoxides, pseudoboehmite or pseudoboehmite; phosphorus source is orthophosphoric acid, phosphate, organic phosphides or phosphorus One or a mixture of two oxides; the metal is one of the oxides, inorganic salts or organic salts of vanadium, copper, molybdenum, zirconium, titanium, cobalt, manganese, magnesium, iron, nickel and zinc, etc. one or a mixture of any several; the templating agent is one or a mixture of N', N', N, N-tetramethyl-1,6-hexanediamine, tripropylamine or n-propylamine.
各原料之间配比(按氧化物分子比)为:The ratio between the raw materials (according to the molecular ratio of oxides) is:
Me/Al2O3=0.01~0.7;Me/Al 2 O 3 =0.01~0.7;
SiO2/Al2O3=0.1~10;SiO 2 /Al 2 O 3 =0.1~10;
P2O5/Al2O3=0.5~15;P 2 O 5 /Al 2 O 3 =0.5~15;
H2O/Al2O3=10~100;H 2 O/Al 2 O 3 =10~100;
R/Al2O3=0.7~6;R为一种或几种模板剂的混合物;R/Al 2 O 3 =0.7~6; R is a mixture of one or several templating agents;
另外,在上述的制备方法中,合成的晶化压力为自生压力或充入0.01~1Mpa的氮气、空气或惰性气体等。In addition, in the above preparation method, the synthetic crystallization pressure is autogenous pressure or filled with nitrogen, air or inert gas of 0.01-1 Mpa.
下面通过实施例详述本发明。The present invention is described in detail below by way of examples.
实施例1 SAPO-56Example 1 SAPO-56
将12.75g活性氧化铝(含Al2O3 73.0wt%)溶解于75ml脱离子水中,搅拌下顺序加入10.40g硅溶胶(含SiO240wt%)和26.28g正磷酸(含H3PO4 85wt%)。最后加入40g N’,N’,N,N-四甲基-1,6-己二胺,搅拌混合均匀后,将此混合物料移入不锈钢合成釜中密封。在200℃及自生压力下晶化24小时,固体产物用脱离子水洗涤至中性,在100℃空气中干燥、550℃空气中焙烧5小时即得到SAPO-56分子筛,其XRD分析如表1所示。Dissolve 12.75g of activated alumina (containing Al 2 O 3 73.0wt%) in 75ml of deionized water, and add 10.40g of silica sol (containing SiO 2 40wt%) and 26.28g of orthophosphoric acid (containing H 3 PO 4 85wt%) in sequence under stirring %). Finally, 40 g of N',N',N,N-tetramethyl-1,6-hexanediamine was added, stirred and mixed evenly, and then the mixture was transferred into a stainless steel synthesis kettle and sealed. Crystallize at 200°C and autogenous pressure for 24 hours, wash the solid product with deionized water until neutral, dry in air at 100°C, and roast in air at 550°C for 5 hours to obtain SAPO-56 molecular sieve. The XRD analysis is shown in Table 1 shown.
表1
实施例2 TiAPSO-56Example 2 TiAPSO-56
将12.10g活性氧化铝(含Al2O3 73.0wt%)溶解于70ml脱离子水中,搅拌下顺序加入10.40g硅溶胶(含SiO240wt%)和26.28g正磷酸(含H3PO485wt%),制得溶液A。将2.85g硫酸钛(96%)与5ml脱离子水混合均匀,得溶液B。强烈搅拌下将溶液B加入到A中,搅拌不少于30分钟。最后加入40g N’,N’,N,N-四甲基-1,6-己二胺,搅拌混合均匀后,将此混合物料移入不锈钢合成釜中密封。在200℃及自生压力下晶化24小时,固体产物用脱离子水洗涤至中性,在100℃空气中干燥、550℃空气中焙烧5小时即得到TiAPSO-56分子筛,其XRD分析如表2所示。将表2、1相对比,可看到表2中各衍射峰的相对强度发生变化,说明钛原子进入分子筛骨架使孔径、晶面间距等发生变化。Dissolve 12.10g of activated alumina (containing Al 2 O 3 73.0wt%) in 70ml of deionized water, and add 10.40g of silica sol (containing SiO 2 40wt%) and 26.28g of orthophosphoric acid (containing H 3 PO 4 85wt%) in sequence under stirring %) to prepare solution A. Mix 2.85g of titanium sulfate (96%) and 5ml of deionized water uniformly to obtain solution B. Add solution B to A with vigorous stirring and stir for not less than 30 minutes. Finally, 40 g of N',N',N,N-tetramethyl-1,6-hexanediamine was added, stirred and mixed evenly, and then the mixture was transferred into a stainless steel synthesis kettle and sealed. Crystallize at 200°C and autogenous pressure for 24 hours, wash the solid product with deionized water until neutral, dry in air at 100°C, and roast in air at 550°C for 5 hours to obtain TiAPSO-56 molecular sieve. The XRD analysis is shown in Table 2 shown. Comparing Table 2 and Table 1, it can be seen that the relative intensity of each diffraction peak in Table 2 changes, indicating that titanium atoms enter the molecular sieve framework to change the pore size and interplanar spacing.
表2
对比例1Comparative example 1
将实施例2中的N,N,N’,N’-四甲基-1,6-己二胺用量变为10g。此时,反应混合物料中模板剂与Al2O3的比为0.62。其余各组分用量、加入顺序和晶化条件不变,产物为TiAPSO-11分子筛,其XRD分析如表3所示。The amount of N,N,N',N'-tetramethyl-1,6-hexanediamine in Example 2 was changed to 10 g. At this time, the ratio of template agent to Al 2 O 3 in the reaction mixture material was 0.62. The dosage, addition order and crystallization conditions of the remaining components were kept unchanged, and the product was TiAPSO-11 molecular sieve, and its XRD analysis is shown in Table 3.
表3
实施例3 FAPSO-56Example 3 FAPSO-56
将15.90g活性氧化铝(含Al2O3 73.0wt%)溶解于70ml脱离子水中,搅拌下顺序加入12.80g硅溶胶(含SiO240wt%)和19.50g正磷酸(含H3PO485wt%),制得溶液A。同时将3.27g硫酸铁(96%)与5ml脱离子水混合均匀,得溶液B。强烈搅拌下将溶液B加入到A中,搅拌不少于30分钟。最后加入40g N’,N’,N,N-四甲基-1,6-己二胺,搅拌混合均匀后,将此混合物料移入不锈钢合成釜中密封。在200℃及自生压力下晶化24小时,固体产物用脱离子水洗涤至中性,在100℃空气中干燥、550℃空气中焙烧5小时即得到FAPSO-56分子筛,其XRD分析如表4所示。将表4、1相对比,可看到表4中各衍射峰的相对强度发生变化,说明铁原子进入分子筛骨架使孔径、晶面间距等发生变化。Dissolve 15.90g of activated alumina (containing Al 2 O 3 73.0wt%) in 70ml of deionized water, and add 12.80g of silica sol (containing SiO 2 40wt%) and 19.50g of orthophosphoric acid (containing H 3 PO 4 85wt%) in sequence under stirring %) to prepare solution A. At the same time, 3.27g of iron sulfate (96%) and 5ml of deionized water were uniformly mixed to obtain solution B. Add solution B to A with vigorous stirring and stir for not less than 30 minutes. Finally, 40 g of N',N',N,N-tetramethyl-1,6-hexanediamine was added, stirred and mixed evenly, and then the mixture was transferred into a stainless steel synthesis kettle and sealed. Crystallize at 200°C and autogenous pressure for 24 hours, wash the solid product with deionized water until neutral, dry in air at 100°C, and roast in air at 550°C for 5 hours to obtain FAPSO-56 molecular sieve. The XRD analysis is shown in Table 4 shown. Comparing Table 4 and Table 1, it can be seen that the relative intensity of each diffraction peak in Table 4 changes, indicating that iron atoms enter the molecular sieve framework to change the pore size and interplanar spacing.
表4
实施例4 (ZrAPSO-56)Embodiment 4 (ZrAPSO-56)
将实施例2中的溶液B变为3.71g氧氯化锆(ZrOCl2·8H2O 99%)与5ml脱离子水混合,模板剂采用36g三丙胺代替N’,N’,N,N-四甲基-1,6-己二胺,其余各组分用量、加入顺序和晶化条件不变,产物为ZrAPSO-56分子筛,其XRD分析如表5所示。将表5、1相对比,可看到表5中各衍射峰的相对强度发生变化,说明锆原子进入分子筛骨架使孔径、晶面间距等发生变化。Solution B in Example 2 was changed to 3.71g zirconium oxychloride (ZrOCl 2 8H 2 O 99%) mixed with 5ml deionized water, and 36g tripropylamine was used as template agent instead of N',N',N,N- Tetramethyl-1,6-hexamethylenediamine, the dosage, addition sequence and crystallization conditions of the other components were unchanged, and the product was ZrAPSO-56 molecular sieve, and its XRD analysis is shown in Table 5. Comparing Table 5 and Table 1, it can be seen that the relative intensity of each diffraction peak in Table 5 changes, indicating that zirconium atoms enter the molecular sieve framework to change the pore size and interplanar spacing.
表5
实施例5 MnAPSO-56Example 5 MnAPSO-56
将实施例2中的溶液B变为2.82g醋酸锰(MnAc2·4H2O 99%)与5ml脱离子水混合,模板剂采用10gN’,N’,N,N-四甲基-1,6-己胺和25g正丙胺的混合和,其余各组分用量、加入顺序和晶化条件不变,产物为MnAPSO-56分子筛,其XRD分析如表6所示。将表6、1相对比,可看到表6中各衍射峰的相对强度发生变化,说明锰原子进入分子筛骨架使孔径、晶面间距等发生变化。Solution B in Example 2 is changed to 2.82g manganese acetate (MnAc2 4H2O 99%) is mixed with 5ml deionized water, template agent adopts 10gN ', N ', N, N-tetramethyl-1,6-hexyl The mixing of amine and 25g n-propylamine, the amount of all other components, the order of addition and the crystallization conditions are unchanged, the product is MnAPSO-56 molecular sieve, and its XRD analysis is shown in Table 6. Comparing Table 6 and Table 1, it can be seen that the relative intensity of each diffraction peak in Table 6 changes, indicating that manganese atoms enter the molecular sieve framework to change the pore size and interplanar spacing.
表6
实施例6 CoAPSO-56Example 6 CoAPSO-56
将实施例2中的溶液B变为2.05g醋酸钴(CoAc2·4H2O 99.5%)与5ml脱离子水混合。其余各组分用量、加入顺序和晶化条件不变,产物为CoAPSO-56分子筛。Solution B among the embodiment 2 becomes 2.05g cobalt acetate (CoAc 4H O 99.5%) mixes with 5ml deionized water. The dosage, addition order and crystallization conditions of the other components remain unchanged, and the product is CoAPSO-56 molecular sieve.
实施例7 NiAPSO-56Example 7 NiAPSO-56
将实施例2中的溶液B变为2.45g硝酸镍(Ni(NO3)2·6H2O 98%)与5ml脱离子水混合。其余各组分用量、加入顺序和晶化条件不变,产物为NiAPSO-56分子筛。Solution B among the embodiment 2 becomes 2.45g nickel nitrate (Ni(NO3) 6H2O 98%) mixes with 5ml deionized water. The dosage, addition order and crystallization conditions of the other components remain unchanged, and the product is NiAPSO-56 molecular sieve.
对比例2Comparative example 2
将实施例7中的2.45g硝酸镍(Ni(NO3)2·6H2O 98%)变为19.6g与15ml脱离子水混合。此时,金属与Al2O3的摩尔数之比为0.75。其余各组分用量、加入顺序和晶化条件不变,产物为未知的晶体,其XRD分析如表7所示。2.45g of nickel nitrate (Ni(NO3) 2.6H2O 98%) in Example 7 was changed to 19.6g and mixed with 15ml of deionized water. At this time, the molar ratio of metal to Al 2 O 3 was 0.75. The dosage, addition sequence and crystallization conditions of the remaining components were unchanged, and the product was an unknown crystal, and its XRD analysis is shown in Table 7.
表7
实施例8 CuAPSO-56Example 8 CuAPSO-56
将实施例2中的溶液B变为3.05g硫酸铜(Cu(SO4)2·6H2O 98%)与5ml脱离子水混合。其余各组分用量、加入顺序和晶化条件不变,产物为CuAPSO-56分子筛。Solution B among the embodiment 2 becomes 3.05g copper sulfate (Cu(SO4) 6H2O 98%) mixes with 5ml deionized water. The dosage, addition order and crystallization conditions of the other components remain unchanged, and the product is CuAPSO-56 molecular sieve.
实施例9Example 9
将实施例2中所得的样品于550℃下通入空气中焙烧4小时。称取2g焙烧后的样品,加入到100毫升1M的氯化铜溶液中。在50℃下交换12小时,反复交换4次,所得到的样品经过滤、脱离子水洗涤并于100℃下干燥,即得铜离子交换后的样品Cu-TiAPSO-56。The sample obtained in Example 2 was calcined in air at 550°C for 4 hours. Weigh 2 g of the calcined sample and add it into 100 ml of 1M copper chloride solution. Exchange at 50°C for 12 hours, and repeat the exchange 4 times. The obtained sample was filtered, washed with deionized water and dried at 100°C to obtain the sample Cu-TiAPSO-56 after copper ion exchange.
实施例10Example 10
将实施例2中所得到的样品取出一部分放到小坩埚中,于550℃下通入空气焙烧4小时。准确称量样品的质量后置于装有饱和食盐水的干燥器中。室温下放置12小时。通过称取样品前后质量的变化,得到样品的吸水数值。实验表明TiAPSO-56分子筛具有吸附性,其室温下对水的吸附值为29.6%。A part of the sample obtained in Example 2 was taken out and put into a small crucible, and was baked at 550° C. for 4 hours by feeding air. After accurately weighing the mass of the sample, place it in a desiccator filled with saturated saline. Leave at room temperature for 12 hours. The water absorption value of the sample is obtained by weighing the change in mass before and after the sample. Experiments show that TiAPSO-56 molecular sieve has adsorption property, and its adsorption value for water at room temperature is 29.6%.
实施例11Example 11
将实施例1中所得到的样品于550℃下通入空气焙烧4小时。然后压片、破碎至20~40目。称取1.28g样品装入固定床反应器,进行甲醇转化制低碳烯烃(MTO)反应评价。甲醇由氮气携带,其重量空速WHSV为2.0h-1,反应温度为450℃,反应产物由在线气相色谱进行分析。结果表明甲醇的转化率为100%,对C2 =和C3 =的选择性达到70%以上,其对C2 =和C3 =的初始选择性为60%以上。说明TiAPSO-56分子筛对于MTO反应具有很高的活性。The sample obtained in Example 1 was calcined at 550° C. for 4 hours in air. Then press into tablets and crush to 20-40 mesh. A 1.28g sample was weighed and loaded into a fixed-bed reactor to evaluate the methanol conversion to light olefins (MTO) reaction. Methanol is carried by nitrogen, its weight space velocity WHSV is 2.0h -1 , the reaction temperature is 450°C, and the reaction products are analyzed by online gas chromatography. The results show that the conversion rate of methanol is 100%, the selectivity to C 2 = and C 3 = is over 70%, and the initial selectivity to C 2 = and C 3 = is over 60%. It shows that TiAPSO-56 molecular sieve has high activity for MTO reaction.
由上述实施例的结果可以看到,本发明采用N’,N’,N,N-四甲基-1,6-己二胺、三丙胺或正丙胺为模板剂并控制模板剂的配合量,利用不同金属盐可以合成MeAPSO-56分子筛。该合成过程简便,反应条件易控制,适于工业化采用。另外,本发明所合成MeAPSO-56分子筛经焙烧后可以作为离子交离剂和吸附剂,并可作为多种碳氢化合反应的催化剂,特别是用于甲醇转化制低碳烯烃反应,具有很高的催化活性和对产物的选择性,为该反应过程的工业化创造了条件。From the results of the above examples, it can be seen that the present invention uses N', N', N, N-tetramethyl-1,6-hexanediamine, tripropylamine or n-propylamine as the template and controls the amount of the template , MeAPSO-56 molecular sieves can be synthesized by using different metal salts. The synthesis process is simple, the reaction conditions are easy to control, and the method is suitable for industrial application. In addition, the MeAPSO-56 molecular sieve synthesized by the present invention can be used as an ion exchange agent and adsorbent after roasting, and can be used as a catalyst for various hydrocarbon reactions, especially for the reaction of methanol conversion to light olefins, which has a high The high catalytic activity and selectivity to products create conditions for the industrialization of this reaction process.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 99127147 CN1108870C (en) | 1999-12-29 | 1999-12-29 | MeAPSO-56 molecular sieve and its synthesizing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 99127147 CN1108870C (en) | 1999-12-29 | 1999-12-29 | MeAPSO-56 molecular sieve and its synthesizing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1301598A true CN1301598A (en) | 2001-07-04 |
CN1108870C CN1108870C (en) | 2003-05-21 |
Family
ID=5284746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 99127147 Expired - Lifetime CN1108870C (en) | 1999-12-29 | 1999-12-29 | MeAPSO-56 molecular sieve and its synthesizing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1108870C (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6835363B1 (en) | 2003-08-06 | 2004-12-28 | Exxonmobil Chemical Patents Inc. | Synthesis of molecular sieves of CHA framework type |
US6927187B2 (en) | 2003-07-11 | 2005-08-09 | Exxonmobil Chemical Patents Inc. | Synthesis of silicoaluminophosphates |
WO2013181833A1 (en) * | 2012-06-08 | 2013-12-12 | 中国科学院大连化学物理研究所 | Metal silicoaluminophosphate molecular sieve having rho skeleton structure and preparation process therefor |
CN111099605A (en) * | 2018-10-25 | 2020-05-05 | 中国石油化工股份有限公司 | Phosphate molecular sieve with AFX structure and preparation method thereof |
CN112441595A (en) * | 2019-08-30 | 2021-03-05 | 大连海事大学 | Multi-metal doped silicon-phosphorus-aluminum molecular sieve and preparation method and application thereof |
-
1999
- 1999-12-29 CN CN 99127147 patent/CN1108870C/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6927187B2 (en) | 2003-07-11 | 2005-08-09 | Exxonmobil Chemical Patents Inc. | Synthesis of silicoaluminophosphates |
US6835363B1 (en) | 2003-08-06 | 2004-12-28 | Exxonmobil Chemical Patents Inc. | Synthesis of molecular sieves of CHA framework type |
WO2013181833A1 (en) * | 2012-06-08 | 2013-12-12 | 中国科学院大连化学物理研究所 | Metal silicoaluminophosphate molecular sieve having rho skeleton structure and preparation process therefor |
AU2012381962B2 (en) * | 2012-06-08 | 2015-08-27 | Dalian Institute Of Chemical Physics,Chinese Academy Of Sciences | Metal silicoaluminophosphate molecular sieve having RHO skeleton structure and preparation process therefor |
JP2015525194A (en) * | 2012-06-08 | 2015-09-03 | ダーリエン インスティテュート オブ ケミカル フィジクス チャイニーズ アカデミー オブ サイエンシーズDalian Instituteof Chemical Physics, Chinese Academy Of Sciences | Metal silicoaluminophosphate molecular sieve having RHO skeleton structure and method for producing the same |
US9499409B2 (en) | 2012-06-08 | 2016-11-22 | Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences | Metal silicoaluminophosphate molecular sieve with RHO framework structure, and method for preparing the same |
EA028185B1 (en) * | 2012-06-08 | 2017-10-31 | Чайниз Академи Оф Сайэнсиз | Metal silicoaluminophosphate molecular sieve with rho framework structure and method for preparing the same |
CN111099605A (en) * | 2018-10-25 | 2020-05-05 | 中国石油化工股份有限公司 | Phosphate molecular sieve with AFX structure and preparation method thereof |
CN111099605B (en) * | 2018-10-25 | 2022-05-24 | 中国石油化工股份有限公司 | Phosphate molecular sieve with AFX structure and preparation method thereof |
CN112441595A (en) * | 2019-08-30 | 2021-03-05 | 大连海事大学 | Multi-metal doped silicon-phosphorus-aluminum molecular sieve and preparation method and application thereof |
CN112441595B (en) * | 2019-08-30 | 2022-07-19 | 大连海事大学 | Multi-metal doped silicon-phosphorus-aluminum molecular sieve and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN1108870C (en) | 2003-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0103117B1 (en) | Crystalline silicoaluminophosphates | |
US9499409B2 (en) | Metal silicoaluminophosphate molecular sieve with RHO framework structure, and method for preparing the same | |
CN103482646B (en) | There is metal silicon aluminum phosphate molecular sieve of RHO skeleton structure and preparation method thereof | |
CN101481121B (en) | Silicoaluminophosphate molecular sieve composition and synthesizing method thereof | |
CN101195492B (en) | Method for synthesizing SAPO-11 and SAPO-34 molecular sieves with diethylamine as template | |
CN101993093A (en) | SAPO (silicoaluminophosphate) molecular sieve with RHO skeleton structure and preparation method thereof | |
CN1260823A (en) | Conversion of synthesis gas to lower carbon olefins using modified molecular sieves | |
JPH09501646A (en) | Microporous crystalline silico-alumino-phosphate and process for its production | |
WO2020082944A1 (en) | Scm-18 aluminophosphate molecular sieve, preparation method therefor and use thereof | |
CN103030158B (en) | Synthetic method of SAPO-44 molecular sieve modified by rare earth metals | |
CN101417811B (en) | Method for synthesizing SAPO-35 molecular sieve by using bi-template | |
CN112079363A (en) | AFN structure silicon phosphorus aluminum molecular sieve and its synthesis method and application | |
CN103706394B (en) | Submicron SAPO-5/SAPO-18 composite molecular sieve and preparation method thereof | |
CN1301598A (en) | MeAPSO-56 molecular sieve and its synthesizing method | |
CN101935049B (en) | Silicoaluminophosphate molecular sieve | |
WO2018152829A1 (en) | Cu-sapo molecular sieve, synthesis method therefor and catalytic use thereof | |
CN106799257B (en) | Alkane isomerization catalyst and preparation method thereof | |
CN111056562B (en) | SAPO-34 molecular sieve, synthesis method and application thereof, and method for producing olefin from methanol | |
CN107774297B (en) | SCM-12 molecular sieve catalyst, preparation method and application thereof | |
CN1108868C (en) | MeAPSO-18 molecular sieve and its synthesizing method | |
CN112236395B (en) | Crystalline metal phosphates, method for the production and use thereof | |
CN1108869C (en) | MeAPSO-35 molecular sieve and its synthesizing method | |
CN100488629C (en) | Aluminophosphate molecular sieve, its synthesis and use | |
CN109701621B (en) | SSZ-13/SSZ-39 composite structure molecular sieve catalyst, preparation method and application thereof | |
CN101935047B (en) | MAPSO (Modified Adaptive Particle Swarm Optimization) molecular sieve and synthetic method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20030521 |