CN1299370C - Method for coating and mixing metal M alpha-Co(OH)2 on ball shape nickel hydroxide surface - Google Patents
Method for coating and mixing metal M alpha-Co(OH)2 on ball shape nickel hydroxide surface Download PDFInfo
- Publication number
- CN1299370C CN1299370C CNB2004100779498A CN200410077949A CN1299370C CN 1299370 C CN1299370 C CN 1299370C CN B2004100779498 A CNB2004100779498 A CN B2004100779498A CN 200410077949 A CN200410077949 A CN 200410077949A CN 1299370 C CN1299370 C CN 1299370C
- Authority
- CN
- China
- Prior art keywords
- nickel hydroxide
- mol
- metal
- solution
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 title claims abstract description 44
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 39
- 239000002184 metal Substances 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000002156 mixing Methods 0.000 title claims description 5
- 238000000576 coating method Methods 0.000 title abstract description 27
- 239000011248 coating agent Substances 0.000 title abstract description 26
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 title description 2
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 20
- 239000010941 cobalt Substances 0.000 claims abstract description 20
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052738 indium Inorganic materials 0.000 claims abstract description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 75
- 239000007864 aqueous solution Substances 0.000 claims description 64
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 54
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 44
- 239000000243 solution Substances 0.000 claims description 43
- 235000006408 oxalic acid Nutrition 0.000 claims description 25
- 238000006243 chemical reaction Methods 0.000 claims description 24
- 239000008139 complexing agent Substances 0.000 claims description 22
- 239000003513 alkali Substances 0.000 claims description 17
- 150000001868 cobalt Chemical class 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000000047 product Substances 0.000 claims description 10
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 239000012265 solid product Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- 229910002651 NO3 Inorganic materials 0.000 claims description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 3
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 3
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical group [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims 6
- 150000002739 metals Chemical class 0.000 claims 3
- 239000007787 solid Substances 0.000 claims 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims 1
- 239000012295 chemical reaction liquid Substances 0.000 claims 1
- 235000011121 sodium hydroxide Nutrition 0.000 claims 1
- 239000011593 sulfur Substances 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 229910018661 Ni(OH) Inorganic materials 0.000 abstract description 7
- 229910052725 zinc Inorganic materials 0.000 abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 238000002425 crystallisation Methods 0.000 abstract 1
- 230000008025 crystallization Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 20
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000012266 salt solution Substances 0.000 description 6
- 229910018916 CoOOH Inorganic materials 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000006258 conductive agent Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910021617 Indium monochloride Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 150000001869 cobalt compounds Chemical class 0.000 description 2
- 229940044175 cobalt sulfate Drugs 0.000 description 2
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- APHGZSBLRQFRCA-UHFFFAOYSA-M indium(1+);chloride Chemical compound [In]Cl APHGZSBLRQFRCA-UHFFFAOYSA-M 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910021094 Co(NO3)2-6H2O Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- IUYLTEAJCNAMJK-UHFFFAOYSA-N cobalt(2+);oxygen(2-) Chemical compound [O-2].[Co+2] IUYLTEAJCNAMJK-UHFFFAOYSA-N 0.000 description 1
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及一种在球形氢氧化镍表面包覆α-Co(OH)2的工艺。所制备的覆钴球形氢氧化镍的振实密度可达到2.2g/cm3左右。该工艺的主要内容是:用控制结晶的方法在球形氢氧化镍表面包覆一层掺杂Y、Al、Cr、Mn、Yb、Sc、La、In、Ti、Zn中一种或一种以上金属M的α-Co(OH)2,这种包覆型球形氢氧化镍,当(Co+M):Ni比(摩尔比)为0.03~0.1时,可明显改善球形氢氧化镍的产品的导电性能,提高Ni(OH)2电极性能,进而明显改善了电池的性能,例如提高比容量与输出功率,提高充/放电循环寿命与快速充电能力,提高耐过充/放电能力与搁置寿命,提高析氧过电位等。The invention relates to a process for coating α-Co(OH) 2 on the surface of spherical nickel hydroxide. The tap density of the prepared cobalt-coated spherical nickel hydroxide can reach about 2.2 g/cm 3 . The main content of the process is: use the method of controlled crystallization to coat a layer of doped one or more of Y, Al, Cr, Mn, Yb, Sc, La, In, Ti, Zn on the surface of spherical nickel hydroxide α-Co(OH) 2 of metal M, this kind of coated spherical nickel hydroxide, when the (Co+M):Ni ratio (molar ratio) is 0.03 to 0.1, it can significantly improve the quality of spherical nickel hydroxide products. Conductivity, improve the performance of Ni(OH) 2 electrodes, and then significantly improve the performance of the battery, such as increasing specific capacity and output power, improving charge/discharge cycle life and fast charging ability, improving overcharge/discharge resistance and shelf life, Increase the oxygen evolution overpotential, etc.
Description
技术领域technical field
本发明属于化工新材料制备领域。特别涉及一种在球形氢氧化镍表面包覆掺杂金属M的α-Co(OH)2的方法The invention belongs to the field of new chemical material preparation. Particularly relate to a kind of α-Co(OH) of coating doping metal M on spherical nickel hydroxide surface 2Methods
背景技术Background technique
球形氢氧化镍是氢镍电池等碱性充电电池的正极活性材料。目前,氢镍电池已经被广泛地应用于电子、通讯等领域,并在电动车领域也显示出了良好的应用前景。但由于Ni(OH)2是低导电性p型半导体,充/放电效率较低,电极性能较差,电池的容量降低,为提高活性材料的利用率及其与集流体之间的导电性,一般制作电极时在Ni(OH)2中加入适量的Ni粉、Co粉、CoO粉或Co(OH)2粉作为导电剂,在充电过程中这些物质将氧化为高导电性的CoOOH,为Ni(OH)2颗粒之间及颗粒与集流体之间提供较好的导电性。目前所采用的工艺为混合式添加法。Spherical nickel hydroxide is a positive electrode active material for alkaline rechargeable batteries such as nickel-hydrogen batteries. At present, nickel-hydrogen batteries have been widely used in electronics, communications and other fields, and have shown good application prospects in the field of electric vehicles. However, since Ni(OH) 2 is a low-conductivity p-type semiconductor, the charge/discharge efficiency is low, the electrode performance is poor, and the capacity of the battery is reduced. In order to improve the utilization rate of the active material and its conductivity with the current collector, Generally, an appropriate amount of Ni powder, Co powder, CoO powder or Co(OH) 2 powder is added to Ni(OH) 2 as a conductive agent when making an electrode. During the charging process, these substances will be oxidized to highly conductive CoOOH, which is Ni (OH) 2 provides good electrical conductivity between particles and between particles and current collectors. The process currently used is the mixed addition method.
混合式添加的钴或钴的化合物,在电化学过程或碱处理过程中,经溶解-再沉积过程,又部分重新沉积在球镍的表面或集流体上,形成导电网络。然而,受混合的工艺条件及物料本身特性的限制,活性材料与导电剂的混合不能十分均匀,这种工艺形成的沉积层,其均匀性和沉积率不理想,不能有效地降低Ni(OH)2颗粒之间及颗粒与集流体之间的接触电阻,从而不能较大程度地改进电极性能;此外,钴化合物溶解后所留下的空腔也未能得到充分的利用,从而限制了活性物质的装填量,降低了电池的比容量。The cobalt or cobalt compound added in a mixed manner, in the electrochemical process or alkali treatment process, undergoes a dissolution-redeposition process, and is partially redeposited on the surface of the spherical nickel or on the current collector to form a conductive network. However, limited by the mixing process conditions and the characteristics of the material itself, the mixing of the active material and the conductive agent cannot be very uniform. The deposition layer formed by this process has unsatisfactory uniformity and deposition rate, and cannot effectively reduce the Ni(OH) 2. The contact resistance between the particles and between the particles and the current collector, so that the performance of the electrode cannot be greatly improved; in addition, the cavity left by the dissolution of the cobalt compound has not been fully utilized, thus limiting the active material. The filling amount reduces the specific capacity of the battery.
此外通过化学镀的方法可以在球形氢氧化镍表面镀上一层金属镍或金属钴的多孔薄膜。然而,镀上的镍膜在充放电过程中会逐渐氧化为Ni(OH)2而参与到电池的充放电过程,由导电镍膜所形成的导电网络因而受到破坏,导致电池性能急剧下降;而镀上的钴膜则会生成Co(OH)2并最终转换为具有高导电性的CoOOH。然而,从化学镀的工艺角度来说,其操作条件非常苛刻,且需要使用贵重金属作为催化剂,造成产品的成本增加及对环境的污染,因而,这种工艺在工业生产上受到限制。In addition, a porous film of metal nickel or metal cobalt can be plated on the surface of the spherical nickel hydroxide by electroless plating. However, the plated nickel film will be gradually oxidized to Ni(OH) 2 during the charge and discharge process to participate in the charge and discharge process of the battery, and the conductive network formed by the conductive nickel film will be destroyed, resulting in a sharp decline in battery performance; and The deposited cobalt film generates Co(OH) 2 and finally converts to highly conductive CoOOH. However, from the perspective of the electroless plating process, its operating conditions are very harsh, and precious metals need to be used as catalysts, resulting in increased product costs and environmental pollution. Therefore, this process is limited in industrial production.
还可以用化学方法在球形氢氧化镍表面包覆β-Co(OH)2,但所包覆的β-Co(OH)2活化速度较慢,必须在使用前将其氧化为高导电性的CoOOH,但氧化工艺较为复杂。本发明开发了一种高密度的包覆α-Co(OH)2球形Ni(OH)2,产品的振实密度可达到2.2g·cm-3,而且所包覆的α-Co(OH)2能比较容易氧化为高导电性的CoOOH。It is also possible to coat β-Co(OH) 2 on the surface of spherical nickel hydroxide by chemical methods, but the activation speed of the coated β-Co(OH) 2 is slow, and it must be oxidized to high conductivity before use. CoOOH, but the oxidation process is more complicated. The present invention has developed a high-density coated α-Co(OH) 2 spherical Ni(OH) 2 , the tap density of the product can reach 2.2g·cm -3 , and the coated α-Co(OH) 2 can be easily oxidized to highly conductive CoOOH.
发明内容Contents of the invention
本发明的目的是提供一种在球形氢氧化镍表面包覆掺杂金属M的α-Co(OH)2的方法,其特征在于,该方法依次包括以下各步骤:The object of the present invention is to provide a kind of α-Co(OH) of coating doping metal M on spherical nickel hydroxide surface 2Methods , it is characterized in that, this method comprises the following steps successively:
一.配制浓度为0.5~3摩尔/升的钴盐水溶液;1. Prepare a cobalt salt aqueous solution with a concentration of 0.5 to 3 mol/liter;
二.配制浓度为0.1~0.5摩尔/升的所要掺杂金属盐的水溶液;2. Prepare an aqueous solution of metal salt to be doped with a concentration of 0.1 to 0.5 mol/liter;
三.配制浓度为3~8摩尔/升的碱水溶液;3. Prepare an aqueous alkali solution with a concentration of 3 to 8 mol/liter;
四.配制一定浓度的络合剂水溶液;4. Prepare a certain concentration of complexing agent aqueous solution;
五.称取一定重量的球形氢氧化镍和1~5倍重量的无离子水置于反应器中,将上述钴盐水溶液、金属元素M的盐水溶液、碱水溶液和络合剂水溶液用泵分别连续输入到带搅拌的反应器中,控制钴盐水溶液和络合剂水溶液的流量,即控制络合剂与Co的摩尔比,调节碱水溶液的流量使反应器内反应液的pH值为8~11,控制反应温度为30~60℃,包覆的金属M和Co与被包覆的氢氧化镍的Ni的摩尔比为:(Co+M)∶Ni=0.03~0.1,金属M与Co的摩尔比为0.01~0.25,该反应为间歇反应;5. Take a certain weight of spherical nickel hydroxide and 1 to 5 times the weight of ion-free water and place them in the reactor, and pump the above-mentioned cobalt salt solution, metal element M salt solution, alkali solution and complexing agent solution respectively Continuously input into a stirred reactor, control the flow of cobalt salt aqueous solution and complexing agent aqueous solution, that is, control the molar ratio of complexing agent to Co, adjust the flow of alkaline aqueous solution so that the pH of the reaction solution in the reactor is 8~ 11. Control the reaction temperature at 30-60°C, the molar ratio of the coated metal M and Co to the coated nickel hydroxide Ni is: (Co+M): Ni=0.03-0.1, the ratio of metal M and Co The molar ratio is 0.01~0.25, and the reaction is a batch reaction;
六.将步骤五所得产物转入固液分离器中进行固液分离,用无离子水洗涤固液分离所得的固体产物至洗涤水的pH值小于8为止;洗涤后的产物在干燥器中于60~100℃下干燥,得到包覆掺杂金属的α-Co(OH)2的球形氢氧化镍产品。Six. The product obtained in step 5 is transferred to the solid-liquid separator for solid-liquid separation, and the solid product obtained by the solid-liquid separation is washed with ion-free water until the pH value of the washing water is less than 8; Dry at 60-100°C to obtain a spherical nickel hydroxide product coated with metal-doped α-Co(OH) 2 .
所述α-Co(OH)2的掺杂金属M为Y、Al、Cr、Mn、Yb、Sc、La、In、Ti或Zn中的一种或一种以上。The doping metal M of the α-Co(OH) 2 is one or more of Y, Al, Cr, Mn, Yb, Sc, La, In, Ti or Zn.
所述钴盐为硫酸钴或硝酸钴。The cobalt salt is cobalt sulfate or cobalt nitrate.
所述掺杂金属的盐为氯化物、硝酸盐或可溶解硫酸盐中的一种或一种以上,添加比例为M∶Co=0.01~0.25(摩尔比);所掺杂金属可以单独配制溶液,单独进料,也可以与钴盐水溶液或碱水溶液配制成混合溶液进料。The salt of the doped metal is one or more of chloride, nitrate or soluble sulfate, and the addition ratio is M:Co=0.01~0.25 (molar ratio); the doped metal can be prepared separately , feed alone, and can also be mixed with cobalt salt solution or alkali solution to feed mixed solution.
所述碱水溶液为氢氧化钠水溶液或氢氧化钾水溶液。The aqueous alkali solution is an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution.
所述的络合剂为氨、乙二胺、草酸或柠檬酸中的一种或二种以上的混合。络合剂可以单独配制溶液,单独进料,也可以与钴盐水溶液或碱水溶液配制成混合溶液进料。The complexing agent is one or a mixture of two or more of ammonia, ethylenediamine, oxalic acid or citric acid. The complexing agent can be prepared as a solution and fed separately, or it can be prepared as a mixed solution with cobalt salt aqueous solution or alkali aqueous solution and fed.
所述的络合剂与Co的摩尔比分别为:NH3∶Co=0.1~0.5、乙二胺∶Co=0.1~0.3、草酸∶Co=0.05~0.2、柠檬酸∶Co=0.01~0.1。The molar ratios of the complexing agent to Co are respectively: NH 3 : Co=0.1-0.5, ethylenediamine: Co=0.1-0.3, oxalic acid: Co=0.05-0.2, citric acid: Co=0.01-0.1.
本发明的有益效果是所提出的包覆掺杂金属元素M的α-Co(OH)2的球形氢氧化镍的工艺与传统的用机械混合式添加金属Co及/或其化合物的工艺相比,这种α-Co(OH)2包覆物经过氧化或在首次充电时即能迅速转变为高导电性的CoOOH,从而明显改善球形氢氧化镍的导电性能,提高了Ni(OH)2电极性能,进而明显改善电池的性能,如:更低的充电电压和较高的放电电位,高比容量与输出功率,更长的充/放电循环寿命与快速充电能力,耐过充/放电能力与长时间搁置后的容量恢复,提高析氧过电位等,具有重大的应用价值。Beneficial effect of the present invention is that the α-Co(OH) of the proposed cladding doping metal element M 2The technique of spherical nickel hydroxide is compared with the technique of adding metal Co and/or its compound with traditional mechanical mixing , this α-Co(OH) 2 coating can quickly transform into highly conductive CoOOH after oxidation or when it is first charged, thereby significantly improving the conductivity of spherical nickel hydroxide and improving the performance of Ni(OH) 2 electrodes. Performance, and then significantly improve the performance of the battery, such as: lower charging voltage and higher discharge potential, high specific capacity and output power, longer charge/discharge cycle life and fast charging capability, overcharge/discharge resistance and It has great application value for capacity recovery after long-term storage and improvement of oxygen evolution overpotential.
具体实施方式Detailed ways
本发明提供一种在球形氢氧化镍表面包覆掺杂金属M的α-Co(OH)2的方法。该方法依次包括以下各步骤:The invention provides a method for coating α-Co(OH) 2 doped with metal M on the surface of spherical nickel hydroxide. The method includes the following steps in sequence:
一.配制浓度为0.5~3摩尔/升的钴盐水溶液;1. Prepare a cobalt salt aqueous solution with a concentration of 0.5 to 3 mol/liter;
二.配制浓度为0.1~0.5摩尔/升的所要掺杂金属盐的水溶液;2. Prepare an aqueous solution of metal salt to be doped with a concentration of 0.1 to 0.5 mol/liter;
三.配制浓度为3~8摩尔/升的碱水溶液;3. Prepare an aqueous alkali solution with a concentration of 3 to 8 mol/liter;
四.配制一定浓度的络合剂水溶液;4. Prepare a certain concentration of complexing agent aqueous solution;
五.称取一定重量的球形氢氧化镍和1~5倍重量的无离子水置于反应器中,将上述钴盐水溶液、金属元素M的盐水溶液、碱水溶液和络合剂水溶液用泵分别连续输入到带搅拌的反应器中,控制钴盐水溶液和络合剂水溶液的流量,即控制络合剂与Co的摩尔比,调节碱水溶液的流量使反应器内反应液的pH值为8~11,控制反应温度为30~60℃,包覆的金属M和Co与被包覆的氢氧化镍的Ni的摩尔比为:(Co+M)∶Ni=0.03~0.1,金属M与Co的摩尔比为0.01~0.25,该反应为间歇反应;5. Take a certain weight of spherical nickel hydroxide and 1 to 5 times the weight of ion-free water and place them in the reactor, and pump the above-mentioned cobalt salt solution, metal element M salt solution, alkali solution and complexing agent solution respectively Continuously input into a stirred reactor, control the flow of cobalt salt aqueous solution and complexing agent aqueous solution, that is, control the molar ratio of complexing agent to Co, adjust the flow of alkaline aqueous solution so that the pH of the reaction solution in the reactor is 8~ 11. Control the reaction temperature at 30-60°C, the molar ratio of the coated metal M and Co to the coated nickel hydroxide Ni is: (Co+M): Ni=0.03-0.1, the ratio of metal M and Co The molar ratio is 0.01~0.25, and the reaction is a batch reaction;
六.将步骤五所得产物转入固液分离器中进行固液分离,用无离子水洗涤固液分离所得的固体产物至洗涤水的pH值小于8为止;洗涤后的产物在干燥器中于60~100℃下干燥,得到包覆掺杂金属的α-Co(OH)2的球形氢氧化镍产品。Six. The product obtained in step 5 is transferred to the solid-liquid separator for solid-liquid separation, and the solid product obtained by the solid-liquid separation is washed with ion-free water until the pH value of the washing water is less than 8; Dry at 60-100°C to obtain a spherical nickel hydroxide product coated with metal-doped α-Co(OH) 2 .
所述α-Co(OH)2的掺杂金属M为Y、Al、Cr、Mn、Yb、Sc、La、In、Ti或Zn中的一种或一种以上。The doping metal M of the α-Co(OH) 2 is one or more of Y, Al, Cr, Mn, Yb, Sc, La, In, Ti or Zn.
所述钴盐为硫酸钴或硝酸钴。The cobalt salt is cobalt sulfate or cobalt nitrate.
所述掺杂金属的盐为氯化物、硝酸盐或可溶解硫酸盐中的一种或一种以上,添加比例为M∶Co=0.01~0.25(摩尔比);所掺杂金属可以单独配制溶液,单独进料,也可以与钴盐水溶液或碱水溶液配制成混合溶液进料。The salt of the doped metal is one or more of chloride, nitrate or soluble sulfate, and the addition ratio is M:Co=0.01~0.25 (molar ratio); the doped metal can be prepared separately , feed alone, and can also be mixed with cobalt salt solution or alkali solution to feed mixed solution.
所述碱水溶液为氢氧化钠水溶液或氢氧化钾水溶液。The aqueous alkali solution is an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution.
所述的络合剂为氨、乙二胺、草酸或柠檬酸中的一种或二种以上的混合。络合剂可以单独配制溶液,单独进料,也可以与钴盐水溶液或碱水溶液配制成混合溶液进料。The complexing agent is one or a mixture of two or more of ammonia, ethylenediamine, oxalic acid or citric acid. The complexing agent can be prepared as a solution and fed separately, or it can be prepared as a mixed solution with cobalt salt aqueous solution or alkali aqueous solution and fed.
所述的络合剂与Co的摩尔比分别为:NH3∶Co=0.1~0.5、乙二胺∶Co=0.1~0.3、草酸∶Co=0.05~0.2、柠檬酸∶Co=0.01~0.1。The molar ratios of the complexing agent to Co are respectively: NH 3 : Co=0.1-0.5, ethylenediamine: Co=0.1-0.3, oxalic acid: Co=0.05-0.2, citric acid: Co=0.01-0.1.
下面介绍本发明的实施例:Introduce the embodiment of the present invention below:
实施例一、配制含CoSO4·7H2O 1.8摩尔/升、YCl3 0.02摩尔/升的混合水溶液350毫升,配制0.2摩尔/升草酸溶液400mL,含NH3浓度为0.9摩尔/升的4摩尔/升的氢氧化钠水溶液400毫升。称取球形氢氧化镍600克,置于有效容积为5升的反应器中,同时加入0.6升无离子水。控制反应器内的温度为45℃,搅拌速度为1200转/分。将CoSO4、YCl3混合水溶液、草酸溶液和含NH3的氢氧化钠水溶液用计量泵分别连续输入到反应器中,CoSO4、YCl3混合水溶液的流量为1.5毫升/分,草酸溶液的流量按草酸∶Co(摩尔比)=0.12进料,并通过调节NaOH水溶液的流量来控制反应液的pH值为10.00±0.02。当CoSO4、YCl3混合水溶液用完后停止反应,从反应器中排出料液进行固液分离。用60℃的无离子水洗涤固体产物直至洗涤液的pH值小于8为止。将洗涤后的固体产物放入干燥箱中在80℃下干燥4小时,得到包覆掺钇氢氧化钴的球形氢氧化镍产品。Example 1: Prepare 350 ml of mixed aqueous solution containing CoSO 4 7H 2 O 1.8 mol/liter and YCl 3 0.02 mol/liter, prepare 400 mL of 0.2 mol/liter oxalic acid solution, and prepare 4 moles of NH with a concentration of 0.9 mol/liter 400 ml of sodium hydroxide solution per liter. Weigh 600 grams of spherical nickel hydroxide, place it in a reactor with an effective volume of 5 liters, and add 0.6 liters of deionized water simultaneously. The temperature in the reactor was controlled to be 45° C., and the stirring speed was 1200 rpm. CoSO 4 , YCl 3 mixed aqueous solution, oxalic acid solution and sodium hydroxide aqueous solution containing NH 3 are respectively continuously input into the reactor with a metering pump, the flow rate of CoSO 4 , YCl 3 mixed aqueous solution is 1.5 ml/min, the flow rate of oxalic acid solution Feed according to oxalic acid: Co (molar ratio) = 0.12, and control the pH value of the reaction solution to 10.00 ± 0.02 by adjusting the flow rate of NaOH aqueous solution. When the mixed aqueous solution of CoSO 4 and YCl 3 is used up, the reaction is stopped, and the feed liquid is discharged from the reactor for solid-liquid separation. The solid product was washed with deionized water at 60° C. until the pH value of the washing solution was less than 8. The washed solid product was put into a drying oven and dried at 80° C. for 4 hours to obtain a spherical nickel hydroxide product coated with yttrium-doped cobalt hydroxide.
实施例二、包覆所用的Co(NO3)2·6H2O 1.8摩尔/升、YCl30.02摩尔/升的混合水溶液共245毫升,草酸溶液的流量按草酸∶Co(摩尔比)=0.2进料,控制反应器内的温度为60℃,其它条件与实施例一相同。Example 2, Co(NO 3 ) 2 6H 2 O 1.8 mol/liter, YCl 3 0.02 mol/liter mixed aqueous solution used for coating is 245 milliliters in total, and the flow rate of the oxalic acid solution is oxalic acid: Co (molar ratio)=0.2 Feed, the temperature in the control reactor is 60 ℃, other conditions are identical with embodiment one.
实施例三、包覆所用的CoSO4·7H2O1.8摩尔/升、Y(NO3)30.02摩尔/升的混合水溶液共105毫升,草酸溶液的流量按草酸∶Co(摩尔比)=0.05进料,控制反应器内的温度为30℃,其它条件与实施例一相同。Example 3, CoSO 4 7H 2 O 1.8 mol/liter, Y(NO 3 ) 3 0.02 mol/liter mixed aqueous solution used for coating is 105 milliliters in total, the flow rate of the oxalic acid solution is oxalic acid: Co (molar ratio) = 0.05 feeding, the temperature in the control reactor is 30 ℃, other conditions are identical with embodiment one.
实施例四、包覆所用的CoSO4·7H2O 1.8摩尔/升、Y(SO4)30.02摩尔/升的混合水溶液共245毫升,配制0.2摩尔/升柠檬酸酸溶液400mL,柠檬酸溶液的流量按柠檬酸∶Co(摩尔比)=0.05进料,其它条件与实施例一相同。Example 4, CoSO 4 ·7H 2 O 1.8 mol/L, Y(SO 4 ) 3 0.02 mol/L mixed aqueous solution used for coating was 245 ml in total, 400 mL of 0.2 mol/L citric acid solution was prepared, citric acid solution The flow rate is by citric acid: Co (molar ratio)=0.05 feed, other conditions are identical with embodiment one.
实施例五、配制含CoSO4·7H2O 1.8摩尔/升,YCl3 0.27摩尔/升的混合水溶液216毫升,其它条件与实施例四相同。Example 5: Prepare 216 ml of a mixed aqueous solution containing 1.8 mol/L of CoSO 4 ·7H 2 O and 0.27 mol/L of YCl 3 . Other conditions are the same as in Example 4.
实施例六、配制含CoSO4·7H2O 1.8摩尔/升,YCl3 0.45摩尔/升的混合水溶液199毫升,其它条件与实施例四相同。Example 6: Prepare 199 ml of a mixed aqueous solution containing 1.8 mol/L of CoSO 4 ·7H 2 O and 0.45 mol/L of YCl 3 , and other conditions are the same as in Example 4.
实施例七、配制含CoSO4·7H2O 1.8摩尔/升,ScCl3 0.02摩尔/升的混合水溶液245毫升,其它条件与实施例一相同。Example 7. Prepare 245 ml of a mixed aqueous solution containing 1.8 mol/L CoSO 4 ·7H 2 O and 0.02 mol/L ScCl 3 . Other conditions are the same as in Example 1.
实施例八、配制含CoSO4·7H2O 0.5摩尔/升,Sc(NO3)3 0.08摩尔/升的混合水溶液770毫升,配制含NH3浓度为0.1摩尔/升的2摩尔/升的氢氧化钠水溶液800毫升。称取球形氢氧化镍600克,置于有效容积为10升的反应器中,同时加入3升无离子水。其中草酸溶液的流量按草酸∶Co(摩尔比)=0.2进料,其它条件与Example 8: Prepare 770 ml of a mixed aqueous solution containing CoSO 4 7H 2 O 0.5 mol/liter, Sc(NO 3 ) 3 0.08 mol/liter, and prepare 2 mol/liter hydrogen containing NH 3 with a concentration of 0.1 mol/liter Sodium oxide aqueous solution 800 ml. Weigh 600 grams of spherical nickel hydroxide, place it in a reactor with an effective volume of 10 liters, and add 3 liters of deionized water simultaneously. Wherein the flow rate of oxalic acid solution is by oxalic acid: Co (mol ratio)=0.2 feed, other conditions and
实施例一相同。Embodiment 1 is the same.
实施例九、配制含CoSO4·7H2O 3摩尔/升(料液温度保持45℃),ScCl3 0.45摩尔/升的混合水溶液130毫升,草酸溶液的流量按草酸∶Co(摩尔比)=0.05进料,其它条件与实施例一相同。Embodiment nine, preparation contains CoSO 4 7H 2 O 3 mol/liter (feed liquid temperature keeps 45 ℃), ScCl 0.45 mol/liter mixed aqueous solution 130 milliliters, the flow rate of oxalic acid solution is according to oxalic acid: Co (molar ratio)= 0.05 feed, other conditions are identical with embodiment one.
实施例十、配制含CoSO4·7H2O 1.8摩尔/升,YbCl3 0.18摩尔/升的混合水溶液225毫升,配制0.2摩尔/升草酸溶液300mL,按草酸∶Co(摩尔比)=0.12控制草酸流量进料,控制反应液的pH值为8.00±0.02,其它条件与实施例一相同。Embodiment 10, preparation contains CoSO 4 7H 2 O 1.8 mol/liter, YbCl 3 0.18 mol/liter mixed aqueous solution 225 milliliters, preparation 0.2 mol/liter oxalic acid solution 300mL, control oxalic acid according to oxalic acid: Co (molar ratio)=0.12 Feed at a flow rate, control the pH value of the reaction solution to 8.00±0.02, and other conditions are the same as in Example 1.
实施例十一、控制反应液的pH值为9.00±0.02,其它条件与实施例十相同。Embodiment 11. The pH value of the reaction solution is controlled to be 9.00±0.02, and other conditions are the same as in Embodiment 10.
实施例十二、控制反应液的pH值为10.00±0.02,其它条件与实施例十相同。Embodiment 12. Control the pH value of the reaction solution to 10.00±0.02, and other conditions are the same as in Embodiment 10.
实施例十三、控制反应液的pH值为11.00±0.02,其它条件与实施例十相同。Embodiment 13. Control the pH value of the reaction solution to 11.00±0.02, and other conditions are the same as in Embodiment 10.
实施例十四、配制含CoSO4·7H2O 1.8摩尔/升,InCl3 0.18摩尔/升的混合水溶液225毫升,配制0.2摩尔/升柠檬酸溶液300mL,按柠檬酸∶Co(摩尔比)=0.1控制柠檬酸流量进料,控制反应液的pH值为9.00±0.02,控制反应温度为60℃,其它条件与实施例一相同。Embodiment 14, preparation contains CoSO 4 7H 2 O 1.8 mol/liter, InCl 0.18 mol/liter mixed aqueous solution 225 milliliters, prepares 0.2 mol/liter citric acid solution 300mL, according to citric acid: Co (molar ratio)= 0.1 Control the feed rate of citric acid, control the pH value of the reaction solution to 9.00±0.02, control the reaction temperature to 60° C., and other conditions are the same as in Example 1.
实施例十五、配制0.2摩尔/升柠檬酸溶液300mL,按柠檬酸/Co(摩尔比)=0.05控制柠檬酸流量进料,控制反应液的pH值为10.00±0.02,控制反应温度为45℃,其它条件与实施例十四相同。Example 15. Prepare 300 mL of 0.2 mol/liter citric acid solution, control the flow rate of citric acid feed according to citric acid/Co (molar ratio)=0.05, control the pH value of the reaction solution to 10.00±0.02, and control the reaction temperature to 45°C , other conditions are the same as in Example 14.
实施例十六、配制0.2摩尔/升柠檬酸溶液300mL,按柠檬酸∶Co(摩尔比)=0.01控制柠檬酸流量进料,控制反应液的pH值为11.00±0.02,控制反应温度为30℃,其它条件与实施例十四相同。Embodiment 16, prepare 300mL of 0.2 mol/liter citric acid solution, control citric acid flow feeding according to citric acid: Co (molar ratio)=0.01, control the pH value of reaction solution to be 11.00 ± 0.02, control reaction temperature to be 30 ℃ , other conditions are the same as in Example 14.
实施例十七、配制含CoSO4·7H2O 1.8摩尔/升,LaCl3 0.18摩尔/升的混合水溶液225毫升,配制0.2摩尔/升草酸溶液300mL,按草酸∶Co(摩尔比)=0.01控制草酸流量进料,配制含乙二胺浓度为0.2摩尔/升的3摩尔/升的氢氧化钠水溶液600毫升。控制反应液的pH值为11.00±0.02,其它条件与实施例一相同。Example 17. Preparation of 225 ml of mixed aqueous solution containing CoSO 4 7H 2 O 1.8 mol/liter, LaCl 3 0.18 mol/liter, 300 mL of 0.2 mol/liter oxalic acid solution, controlled by oxalic acid: Co (molar ratio)=0.01 Feed oxalic acid flow rate, prepare 600 milliliters of sodium hydroxide aqueous solution containing 0.2 mol/liter of ethylenediamine concentration of 3 mol/liter. The pH of the reaction solution was controlled to be 11.00±0.02, and the other conditions were the same as in Example 1.
实施例十八、配制含乙二胺浓度为0.4摩尔/升的6摩尔/升的氢氧化钠水溶液400毫升。其它条件与实施例十七相同。Embodiment 18. Prepare 400 milliliters of 6 mol/liter sodium hydroxide aqueous solution containing ethylenediamine at a concentration of 0.4 mol/liter. Other conditions are the same as in Example 17.
实施例十九、配制含乙二胺浓度为0.54摩尔/升的8摩尔/升的氢氧化钠水溶液400毫升。其它条件与实施例十七相同。Example 19: Prepare 400 ml of 8 mol/L sodium hydroxide aqueous solution containing ethylenediamine at a concentration of 0.54 mol/L. Other conditions are the same as in Example 17.
实施例二十、包覆所用的CoSO4 1.8摩尔/升、CrCl3 0.02摩尔/升混合水溶液共245毫升,含NH3浓度为0.2摩尔/升的4摩尔/升的氢氧化钠水溶液400毫升。其它条件与实施例一相同。Example 20, Coating 245 ml of mixed aqueous solution of 1.8 mol/L CoSO 4 and 0.02 mol/L CrCl 3 , 400 ml of 4 mol/L sodium hydroxide aqueous solution containing NH 3 concentration of 0.2 mol/L. Other conditions are the same as in Example 1.
实施例二十一、包覆所用的CoSO4 1.8摩尔/升、Cr(NO3)3 0.27摩尔/升混合水溶液共216毫升。其它条件与实施例二十相同。Example 21: Coating used a mixed aqueous solution of 1.8 mol/L CoSO 4 and 0.27 mol/L Cr(NO 3 ) 3 in total 216 ml. Other conditions are the same as in Example 20.
实施例二十二、包覆所用的CoSO4 1.8摩尔/升、Cr(SO4)3 0.45摩尔/升混合水溶液共199毫升。其它条件与实施例二十相同。Example 22: Coating used a mixed aqueous solution of 1.8 mol/L CoSO 4 and 0.45 mol/L Cr(SO 4 ) 3 in a total of 199 ml. Other conditions are the same as in Example 20.
实施例二十三、包覆所用的CoSO4 1.8摩尔/升、YCl3 0.02摩尔/升、MnSO4 0.02摩尔/升混合水溶液共245毫升。其它条件与实施例一相同。Example 23: Coating used a mixed aqueous solution of 1.8 mol/L CoSO 4 , 0.02 mol/L YCl 3 , and 0.02 mol/L MnSO 4 in total 245 ml. Other conditions are the same as in Example 1.
实施例二十四、包覆所用的CoSO4 1.8摩尔/升、Yb(NO3)3 0.02摩尔/升、MnCl20.16摩尔/升混合水溶液共225毫升。其它条件与实施例一相同。Example 24: Coating used a mixed aqueous solution of 1.8 mol/L CoSO 4 , 0.02 mol/L Yb(NO 3 ) 3 , and 0.16 mol/L MnCl 2 in total of 225 ml. Other conditions are the same as in Example 1.
实施例二十五、包覆所用的CoSO4 1.8摩尔/升、La(NO3)3 0.02摩尔/升、Mn(NO3)3 0.4摩尔/升混合水溶液共200毫升。其它条件与实施例一相同。Example 25: Coating used a mixed aqueous solution of 1.8 mol/L CoSO 4 , 0.02 mol/L La(NO 3 ) 3 , and 0.4 mol/L Mn(NO 3 ) 3 in total 200 ml. Other conditions are the same as in Example 1.
实施例二十六、包覆所用的CoSO4 1.8摩尔/升、ScCl3 0.02摩尔/升、TiCl40.02摩尔/升混合水溶液共245毫升。其它条件与实施例一相同。Example 26: Coating used a mixed aqueous solution of 1.8 mol/L CoSO 4 , 0.02 mol/L ScCl 3 , and 0.02 mol/L TiCl 4 in total of 245 ml. Other conditions are the same as in Example 1.
实施例二十七、包覆所用的CoSO4 1.8摩尔/升、CrCl3 0.02摩尔/升、Ti(SO4)20.16摩尔/升混合水溶液共225毫升。其它条件与实施例一相同。Example 27, Coating 225 ml of a mixed aqueous solution of 1.8 mol/L CoSO 4 , 0.02 mol/L CrCl 3 , and 0.16 mol/L Ti(SO 4 ) 2 was used. Other conditions are the same as in Example 1.
实施例二十八、包覆所用的CoSO4 1.8摩尔/升、In(NO3)3 0.02摩尔/升、Ti(NO3)4 0.4摩尔/升混合水溶液共200毫升。其它条件与实施例一相同。Example 28: Coating uses a mixed aqueous solution of 1.8 mol/L CoSO 4 , 0.02 mol/L In(NO 3 ) 3 , and 0.4 mol/L Ti(NO 3 ) 4 in total of 200 ml. Other conditions are the same as in Example 1.
实施例二十九、配制含CoSO4·7H2O 1.8摩尔/升,草酸0.3摩尔/升的混合水溶液350毫升,含Al2(SO4)30.02摩尔/升的3.6摩尔/升的氢氧化钠水溶液400毫升。其它条件与实施例一相同。Example 29. Prepare 350 ml of mixed aqueous solution containing CoSO 4 7H 2 O 1.8 mol/L, oxalic acid 0.3 mol/L, and 3.6 mol/L Hydroxide containing Al 2 (SO 4 ) 3 0.02 mol/L Sodium aqueous solution 400 ml. Other conditions are the same as in Example 1.
实施例三十、配制含NaAlO2 0.18摩尔/升的3.6摩尔/升的氢氧化钠水溶液400毫升。其它条件与实施例二十九相同。Example 30. Prepare 400 ml of 3.6 mol/L sodium hydroxide aqueous solution containing 0.18 mol/L NaAlO 2 . Other conditions are the same as in Example 29.
实施例三十一、配制含Al(NO3)3 0.45摩尔/升的3.6摩尔/升的氢氧化钠水溶液400毫升。其它条件与实施例二十九相同。Example 31. Prepare 400 ml of 3.6 mol/L sodium hydroxide aqueous solution containing 0.45 mol/L of Al(NO 3 ) 3 . Other conditions are the same as in Example 29.
实施例三十二、配制含ZnSO4 0.02摩尔/升的3.6摩尔/升的氢氧化钠水溶液400毫升。其它条件与实施例二十九相同。Example 32. Prepare 400 ml of 3.6 mol/L sodium hydroxide aqueous solution containing 0.02 mol/L ZnSO 4 . Other conditions are the same as in Example 29.
实施例三十三、配制含Na2ZnO2 0.18摩尔/升的3.6摩尔/升的氢氧化钠水溶液400毫升。其它条件与实施例二十九相同。Example 33. Prepare 400 ml of 3.6 mol/L sodium hydroxide aqueous solution containing 0.18 mol/L Na 2 ZnO 2 . Other conditions are the same as in Example 29.
实施例三十四、配制含Zn(NO3)2 0.45摩尔/升的3.6摩尔/升的氢氧化钠水溶液400毫升。其它条件与实施例二十九相同。Example 34. Prepare 400 ml of 3.6 mol/L sodium hydroxide aqueous solution containing 0.45 mol/L of Zn(NO 3 ) 2 . Other conditions are the same as in Example 29.
比较实施例一、配制CoSO4·7H2O 1.8摩尔/升的水溶液350毫升。其它条件与实施例一相同,制备不掺任何其它金属离子的覆钴球形氢氧化镍。Comparative Example 1. Prepare 350 ml of CoSO 4 ·7H 2 O 1.8 mol/L aqueous solution. Other conditions were the same as in Example 1, and cobalt-coated spherical nickel hydroxide without any other metal ions was prepared.
比较实施例二、在包覆过程中不加任何络合剂,其它条件与实施例一相同,制备掺钇的覆钴球形氢氧化镍。Comparative Example 2: No complexing agent was added during the coating process, and other conditions were the same as in Example 1 to prepare yttrium-doped cobalt-coated spherical nickel hydroxide.
比较实施例三、包覆时的温度为20℃,其它条件与实施例一相同,制备掺钇的覆钴球形氢氧化镍。Comparative Example 3: The coating temperature was 20° C., and the other conditions were the same as in Example 1 to prepare yttrium-doped cobalt-coated spherical nickel hydroxide.
比较实施例三、包覆时的温度为70℃,其它条件与实施例一相同,制备掺钇的覆钴球形氢氧化镍。Comparative Example 3: The coating temperature was 70° C., and other conditions were the same as in Example 1 to prepare yttrium-doped cobalt-coated spherical nickel hydroxide.
比较实施例四、包覆时将pH值控制在7.00±0.02,其它条件与实施例七相同,制备掺钪的覆钴球形氢氧化镍。Comparative Example 4. During coating, the pH value was controlled at 7.00±0.02, and other conditions were the same as in Example 7, to prepare scandium-doped cobalt-coated spherical nickel hydroxide.
比较实施例五、包覆时将pH值控制在12.00±0.02。其它条件与实施例十相同,制备掺镱的覆钴球形氢氧化镍。Comparative Example 5, the pH value was controlled at 12.00±0.02 during coating. Other conditions are the same as in Example 10, and ytterbium-doped cobalt-coated spherical nickel hydroxide is prepared.
比较实施例六、包覆所用的CoSO4 1.8摩尔/升、InCl3 0.27摩尔/升混合水溶液共30毫升。其它条件与实施例十五相同,制备掺铟的覆钴球形氢氧化镍。Comparative Example 6: 30 ml of a mixed aqueous solution of CoSO 4 1.8 mol/L and InCl 3 0.27 mol/L was used for coating. Other conditions are the same as in Example 15, and indium-doped cobalt-coated spherical nickel hydroxide is prepared.
比较实施例七、包覆所用的CoSO4 1.8摩尔/升、CrCl3 0.6摩尔/升混合水溶液共400毫升。其它条件与实施例二十相同,制备掺铬的覆钴球形氢氧化镍。Comparative Example 7: 400 ml of a mixed aqueous solution of CoSO 4 1.8 mol/liter and CrCl 3 0.6 mol/liter was used for coating. Other conditions are the same as in Example 20 to prepare chromium-doped cobalt-coated spherical nickel hydroxide.
比较实施例八、包覆所用的CoSO4 1.8摩尔/升、CrCl3 0.54摩尔/升混合水溶液共190毫升。其它条件与实施例二十相同,制备掺钪的覆钴球形氢氧化镍。Comparative Example 8: A total of 190 ml of a mixed aqueous solution of CoSO 4 1.8 mol/liter and CrCl 3 0.54 mol/liter was used for coating. Other conditions are the same as in Example 20, and scandium-doped cobalt-coated spherical nickel hydroxide is prepared.
电池制作及性能测试条件:分别称取实施例一~三十四,比较实施例一~八的掺金属元素M的覆钴球形氢氧化镍样品各15克,不加其它导电剂,加适量羧甲基纤维素(CMC)、聚四氟乙烯(PETF)乳液作为黏合剂,以泡沫镍为集流体,每15克样品分别制成三张正极片,以储氢合金极片为负极(每片含7.5克储氢合金),制成三只AA型氢镍电池。电池经过3次0.2C充放电活化后,再进行常温(25℃)和高温(60℃)的充放电测试(充放电倍率为1C),测试结果(每个样品制作的三只电池取平均值)列于表1中。Battery production and performance test conditions: Weigh 15 grams each of the cobalt-coated spherical nickel hydroxide samples doped with the metal element M in Examples 1 to 34 and Comparative Examples 1 to 8, without adding other conductive agents, and adding an appropriate amount of carboxylate Methylcellulose (CMC) and polytetrafluoroethylene (PETF) emulsion were used as binders, nickel foam was used as current collector, and three positive electrodes were made for each 15 g sample, and hydrogen storage alloy electrodes were used as negative electrodes (each Containing 7.5 grams of hydrogen storage alloy), made into three AA-type nickel-hydrogen batteries. After the battery has been activated by charging and discharging at 0.2C for 3 times, the charge and discharge test at room temperature (25°C) and high temperature (60°C) is carried out (the charge and discharge rate is 1C). The test results (the average value of three batteries made for each sample) ) are listed in Table 1.
比较实施例九、称取未覆钴的球形氢氧化镍样品15克,加0.5克镍粉、1.05克氧化亚钴粉作为导电剂,其它操作条件和步骤与上述电池制作及性能测试条件相同。测试结果列于表1中。Comparative Example 9: Take 15 grams of spherical nickel hydroxide sample without cobalt coating, add 0.5 gram of nickel powder and 1.05 gram of cobaltous oxide powder as conductive agent, and other operating conditions and steps are the same as the above battery production and performance test conditions. The test results are listed in Table 1.
表1
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100779498A CN1299370C (en) | 2004-09-21 | 2004-09-21 | Method for coating and mixing metal M alpha-Co(OH)2 on ball shape nickel hydroxide surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100779498A CN1299370C (en) | 2004-09-21 | 2004-09-21 | Method for coating and mixing metal M alpha-Co(OH)2 on ball shape nickel hydroxide surface |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1588676A CN1588676A (en) | 2005-03-02 |
CN1299370C true CN1299370C (en) | 2007-02-07 |
Family
ID=34604930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100779498A Expired - Fee Related CN1299370C (en) | 2004-09-21 | 2004-09-21 | Method for coating and mixing metal M alpha-Co(OH)2 on ball shape nickel hydroxide surface |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1299370C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8883156B2 (en) | 2006-04-05 | 2014-11-11 | Abbvie Biotechnology Ltd. | Purified antibody composition |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100345770C (en) * | 2005-04-20 | 2007-10-31 | 河南新飞科隆电源有限公司 | Spherical nickel hydroxide with composite cobalt layer being coated and preparation method |
CN1328804C (en) * | 2005-08-01 | 2007-07-25 | 桂林工学院 | Method for synthesizing molten salt package of spheric doping Li-Ni oxides |
CN102054987A (en) * | 2010-11-24 | 2011-05-11 | 安徽亚兰德新能源材料有限公司 | Spherical nickel hydroxide for high-temperature battery anode and preparation method thereof |
JP6461370B2 (en) * | 2015-11-06 | 2019-01-30 | トヨタ自動車株式会社 | Cathode active material and alkaline battery |
CN105551818B (en) * | 2016-01-20 | 2018-07-06 | 复旦大学 | β-cobalt hydroxide nickel and nickel-plating carbon nanotube composite material and its preparation method and application |
CN107308958B (en) * | 2017-06-12 | 2019-11-05 | 首都师范大学 | A kind of oxygen evolution reaction electrochemical catalyst and its preparation and application |
CN108054370A (en) * | 2017-12-15 | 2018-05-18 | 淄博君行电源技术有限公司 | The positive electrode and preparation method of a kind of Ni-MH battery |
CN110339838B (en) * | 2019-06-28 | 2022-02-11 | 华东师范大学 | Preparation method and application of transition metal doped nano alpha-cobalt hydroxide material |
CN110882698B (en) * | 2019-11-26 | 2020-12-01 | 北京科技大学 | Preparation and application of a new type of electrocatalyst |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1064535A (en) * | 1996-08-26 | 1998-03-06 | Yuasa Corp | Nickel electrode for alkaline storage battery |
JPH10125315A (en) * | 1996-10-17 | 1998-05-15 | Yuasa Corp | Nickel electrode for alkaline storage battery |
CN1234622A (en) * | 1999-05-21 | 1999-11-10 | 清华大学 | Process of surface cobalt-coating for high-density ball-shape nickel hydroxide |
US6620549B2 (en) * | 1998-06-16 | 2003-09-16 | Matsushita Electric Industrial Co., Ltd. | Alkaline storage battery |
-
2004
- 2004-09-21 CN CNB2004100779498A patent/CN1299370C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1064535A (en) * | 1996-08-26 | 1998-03-06 | Yuasa Corp | Nickel electrode for alkaline storage battery |
JPH10125315A (en) * | 1996-10-17 | 1998-05-15 | Yuasa Corp | Nickel electrode for alkaline storage battery |
US6620549B2 (en) * | 1998-06-16 | 2003-09-16 | Matsushita Electric Industrial Co., Ltd. | Alkaline storage battery |
CN1234622A (en) * | 1999-05-21 | 1999-11-10 | 清华大学 | Process of surface cobalt-coating for high-density ball-shape nickel hydroxide |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8883156B2 (en) | 2006-04-05 | 2014-11-11 | Abbvie Biotechnology Ltd. | Purified antibody composition |
US8895009B2 (en) | 2006-04-05 | 2014-11-25 | Abbvie Biotechnology Ltd. | Purified antibody composition |
US8906372B2 (en) | 2006-04-05 | 2014-12-09 | Abbvie Biotechnology Ltd. | Purified antibody composition |
US8916153B2 (en) | 2006-04-05 | 2014-12-23 | Abbvie Biotechnology Ltd. | Purified antibody composition |
US9096666B2 (en) | 2006-04-05 | 2015-08-04 | Abbvie Biotechnology Ltd | Purified antibody composition |
US9102723B2 (en) | 2006-04-05 | 2015-08-11 | Abbvie Biotechnology Ltd | Purified antibody composition |
Also Published As
Publication number | Publication date |
---|---|
CN1588676A (en) | 2005-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1078389C (en) | Nickel electrode active material, a nickel electrode and a nickel alkali storage cell using such nickel electrode active material, and production methods of such material electrode, and cell | |
CN1117405C (en) | Non-sintered nickel electrode for alkaline storage battery, alkaline storage battery including the same, and method for production of non-sintered nickel electrode for alkalind storage battery | |
CN1299370C (en) | Method for coating and mixing metal M alpha-Co(OH)2 on ball shape nickel hydroxide surface | |
CN113571674B (en) | Preparation method and application of an in-situ carbon-coated binary transition metal oxide heterojunction bowl-shaped nanocomposite | |
US20180287147A1 (en) | Coated Nickel Hydroxide Powder for Positive Electrode Active Material of Alkaline Secondary Battery, and Production Method Therefor | |
CN1195897A (en) | Manufacturing method of active materials for positive electrode in alkaline storage batteries | |
CN111868975B (en) | Positive electrode compound | |
CN101083318A (en) | Process for preparing anode composite material of lithium ionic cell | |
CN101117243B (en) | Method for preparing alkaline secondary cell anode active matter | |
CN114772658B (en) | Precursor of positive electrode material of power lithium ion battery and preparation method thereof | |
CN1447464A (en) | Method for preparing spherical lighium manganate anode material of lighium ion batteries | |
CN1228867C (en) | Prepn of Y-containing spherical nickel hydroxide | |
CN113314707B (en) | Modified nickel-cobalt lithium aluminate anode material and preparation method and application thereof | |
CN119018945A (en) | A zinc-sodium ion battery positive electrode material precursor and preparation method thereof | |
CN103094575A (en) | Method for coating surface of nano-alpha-phase nickel hydroxide with CoOOH | |
CN1624966A (en) | Nickle-hydrogen alkaline battery and preparation method thereof | |
CN1279641C (en) | Alkaline primary battery positive electrode material and preparation method of positive electrode thereof | |
CN1794493A (en) | Method of improving high temperature performance of spherical nickel hydroxide | |
CN1467160A (en) | Preparation method of spherical nickel hydroxide with high rate charge and discharge capability | |
CN1767233A (en) | Multi-element metal oxide, lithium-ion battery cathode material and preparation method thereof | |
CN110504433A (en) | A kind of lithium lanthanum-oxides coated lithium ion battery tertiary cathode material and its preparation method | |
CN1815779A (en) | Method for making lithium ion cell positive electrode sheet, positive-electrode sheet and lithium ion cell | |
CN100345770C (en) | Spherical nickel hydroxide with composite cobalt layer being coated and preparation method | |
CN1610150A (en) | γ-nickel oxyhydroxide and its preparation method | |
CN1815780A (en) | Nano gamma hydrocarboxyl nickel/high ferrite composite material and preparing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070207 Termination date: 20091021 |