CN1298589C - 旋翼式飞机及其抗扭矩和偏航控制系统及方法 - Google Patents
旋翼式飞机及其抗扭矩和偏航控制系统及方法 Download PDFInfo
- Publication number
- CN1298589C CN1298589C CNB028092155A CN02809215A CN1298589C CN 1298589 C CN1298589 C CN 1298589C CN B028092155 A CNB028092155 A CN B028092155A CN 02809215 A CN02809215 A CN 02809215A CN 1298589 C CN1298589 C CN 1298589C
- Authority
- CN
- China
- Prior art keywords
- tail boom
- rotary
- wing aircraft
- control piece
- outside face
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/82—Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/82—Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
- B64C2027/8245—Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft using air jets
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Toys (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
- Ship Loading And Unloading (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
一种旋翼式飞机包括一个主旋翼,一根延伸通过主旋翼产生的下洗流区的尾梁,以及固定结合至尾梁上的第一、第二线性喷嘴。第一喷嘴适于沿大致与尾梁外表面相切的方向排出一流体层,以使旋翼下洗流转向,从而产生用以抵消主旋翼的偏向扭矩的力。旋翼式飞机还包括一个可移动结合至尾梁上的偏航控制件。第二喷嘴适于沿大致与偏航控制件外表面相切的方向排出一流体层,以进一步使旋翼下洗流转向,从而增加抵消主旋翼扭矩的力。
Description
发明领域
本发明涉及如直升机这样的旋翼式飞机。本发明特别涉及用于在不使用传统尾部旋翼的情况下,在旋翼式飞机中提供抗扭矩和偏航控制的系统和方法。
发明背景
尾部旋翼是最常用的装置,其用于提供偏航控制并且用于克服由旋翼式飞机(如直升机)中主旋翼产生的偏置扭矩。但是尾部旋翼具有许多实质性缺陷。例如,尾部旋翼会对在旋翼式飞机附近的地勤人员带来严重的安全隐患。另外,尾部旋翼和地面上固定物之间的意外接触每年均会引起大量的事故。尾部旋翼还需使用多个轴承,直角齿轮箱和高速轴系,因而会引发可靠性和维护性问题。
另外,其它类型武器的小型弹药和炮弹可能不适应于尾部旋翼,从而会导致抗扭转和偏航控制的突然及全部丧失,并导致飞机不可控制。这一致命性问题是军用飞机所特别关注的。另外,尾部旋翼会大大影响旋翼式飞机的整个声波特征图像波形,大大增加驾驶员的工作量,并且使旋翼式飞机在逆风条件中难以控制。
从能量消耗立场上看,尾部旋翼也具有实质性缺陷,尤其是,用于操纵尾部旋翼的能量通常占旋翼式飞机整个轴输出功率需求的很大部分,如百分之十五。因此,尾部旋翼的使用比用其他方式需要更大的动力装置,并且增加旋翼式飞机的整个燃料消耗。
已经开发研制了无需尾部旋翼的系统。例如,美国专利Nos.3,059,877;4,200,2523和4,948,068(每个专利均可在本申请中全文参考使用)披露以环量控制(也称作“环量控制风”)原理为基础的抗扭矩和偏航控制系统。环量控制是一种空气动力学现象,在该现象中,围绕机体的大量流体由与机体表面相切喷射的一股气流偏转。大量气流的偏转在机体内产生与偏转气流反向的力。
旋翼式飞机内的环量控制是利用飞机发动机产生的压缩空气或安装在机身内的辅助风扇实现的。压缩空气从飞机后部机身右侧中向下的翼缝或尾梁中射出。所引发的喷气或多层气流沿尾梁的边界流动,并且当经过尾梁时会使由主旋翼产生的下洗流偏转。这种偏转在尾梁上产生部分抵消由主旋翼产生的扭矩的侧面压力。
上述专利披露的系统通常不会产生足够的力以充分抵消主旋翼的偏向扭矩。因而,通常利用反作用喷气来补充利用环量控制产生的抗扭矩力。更特别的是,压缩空气的一股或多股喷气通过安装在尾梁后部的喷嘴侧向射出。这些喷气会产生抵消主旋翼扭矩的侧向力。反作用喷气还能提供以前由尾部旋翼提供的偏航控制。特别是,可以响应飞行员的操作对反作用喷气进行节流。这个特性允许由喷气产生的力(因此为飞机上的净侧向压力)产生变化,从而有助于进行偏航控制。
基于环量控制的抗扭矩和偏航控制系统允许在没有与尾部旋翼相关的大量缺点的情况下操纵旋翼式飞机。但是,在这些系统中使用的反作用喷气需要相当大的能量进行操作。实际上,反作用喷气的能量需求与具有相当性能的传统尾部旋翼所需能量大致相等。因此,使用了用于抗扭矩和偏航控制的环量控制技术的飞机通常需要大致与类似旋翼式飞机相同功率的动力装置并消耗大致相同量的燃料。
减少旋翼式飞机的全部能量需求能提供实质性益处。例如,降低飞机的能量需求有助于使用消耗更少量燃料的更小、更轻的发动机。这些减少能相应地增加飞机的行程和有效载重量。另外,可以将以前专用于尾部旋翼或喷气推进器的能量用来驱动位于飞机后部的推进式风扇,从而与以前的方式相比,可以允许飞机获得非常大的前进速度。
由以上论述可以得出,目前需要这样一种抗扭矩和偏航控制系统,该系统无需使用尾部旋翼,并且与不使用尾部旋翼的能够提供抗扭矩和偏航控制的当前系统相比,需要更少的能量来操作。
发明概述
本发明的一个优选实施例提供了一种旋翼式飞机,其包括:一个主旋翼,一根延伸通过由主旋翼产生的下洗流区的尾梁以及一个固定结合至尾梁上的第一线性喷嘴。所述第一线性喷嘴具有一个沿尾梁延伸的开孔,并且该喷嘴适于沿大致与尾梁外表面相切的方向排出一流体层。旋翼式飞机还包括一个可移动地结合至尾梁上的偏航控制件;和一个固定结合至尾梁上的第二线性喷嘴。所述第二线性喷嘴具有一个沿尾梁延伸的开孔,并且该喷嘴适于沿大致与偏航控制件外表面相切的方向排出一流体层。
本发明的另一优选实施例提供了一种旋翼式飞机,其包括:一个机身,一个旋转结合至机身上的主旋翼以及一个尾梁,该尾翼固定结合至机身上,以便使至少一部分尾梁位于由主旋翼产生的下洗流区内。旋翼式飞机还包括一个可移动地结合至尾梁下部的偏航控制件,以及一个线性喷嘴,其安装在尾梁上并具有一个沿尾梁延伸的开孔。所述线性喷嘴适于沿大致与尾梁外表面相切和朝向偏航控制件的方向排出一流体层。
本发明的另一优选实施例提供了一种用于旋翼式飞机的抗扭矩和偏航控制的系统,所述旋翼式飞机具有一个主旋翼以及一根位于由主旋翼产生的下洗流区中的尾梁。该系统包括:一个适于可移动地结合至尾梁上的偏航控制件;以及一个第一线性喷嘴,其适于沿大致与尾梁外表面相切的方向排放一股喷射流体,以产生沿外表面延伸的流体层。该系统还包括一个第二线性喷嘴,其适于沿大致与偏航控制件外表面相切的方向排出一股喷射流体,产生沿偏航控制件外表面延伸的流体层。
本发明的另一优选实施例提供了一种旋翼式飞机,其包括:一个主旋翼,一根延伸通过由主旋翼产生的下洗流区的尾梁,以及一个固定结合至尾梁上的线性喷嘴。该线性喷嘴具有一个沿尾梁延伸的开孔,并且该喷嘴适于沿大致与尾梁外表面相切的方向排出一股喷射流体,以沿至少一部分外表面产生流体层,从而改变主旋翼下洗流的方向。所述旋翼式飞机还包括一个偏航控制件,其结合至尾梁上且可响应旋翼式飞机的驾驶员的输入,可选择地定位,以进一步改变主旋翼下洗流的方向,从而有助于旋翼式飞机的偏航控制。
本发明的另一优选实施例提供了一种旋翼式飞机,其包括:一个主旋翼,一根延伸通过由主旋翼产生的下洗流区的尾梁,一个固定结合至尾梁上的第一线性喷嘴。该第一线性喷嘴具有一个沿尾梁延伸的开孔,并且适于沿大致与尾梁外表面相切的方向排出一流体层。所述旋翼式飞机还包括一个可移动地结合至尾梁上的偏航控制件;以及一个第二线性喷嘴,其固定结合至偏航控制件上。所述第二线性喷嘴具有一个沿偏航控制件延伸的开口,并适于沿大致与偏航控制件外表面相切的方向排出一流体层。
一种用于在直升机中抵消主旋翼扭矩及控制偏航的优选方法,所述直升机具有一个主旋翼和一根位于由主旋翼产生的下洗流区内的尾梁,该方法包括:通过沿尾梁外表面导引一个喷射流体以由沿至少一部分所述外表面产生一流体层来改变主旋翼下洗流的流向;并且通过利用一个与尾梁相结合的可移动偏航控制件使流体层偏转,进一步改变主旋翼下洗流的流向。
另一种用于在旋翼式飞机中抵消主旋翼扭矩及控制偏航的优选方法,所述旋翼式飞机具有一个主旋翼和一根位于由主旋翼产生的下洗流区内的尾梁,该方法包括:通过沿大致与尾梁外表面相切的方向导引第一流体层,沿所述外表面形成第一流体层;并且通过利用第二线性喷嘴,沿大致与偏航控制件外表面相切的方向排出一第二流体层,沿一与尾梁相结合的可移动偏航控制件的外表面形成第二流体层。
附图的简要说明
在结合附图阅读时,能更好地理解前述的概要以及对本发明优选实施例的以下详细描述。为了说明本发明,附图示出了优选的实施例。但是,本发明不应局限于附图中披露的特定方式。在附图中:
图1为本发明中具有抗扭矩和偏航控制系统的旋翼式飞机的示意性侧视图;
图2为剖面图,其显示了从后向前观察,沿图1中线2-2截取的图1中所示的旋翼式飞机的尾梁和偏航控制件;
图2A为图2中所示的尾梁和偏航控制件的剖面图,其显示了从后向前观察的偏航控制件的运动路径;
图3为从后向前观察的图2中所示的尾梁和偏航控制件的透视图;
图4为一种旋翼式飞机的示意性侧视图,这种旋翼式飞机具有本发明的抗扭矩和偏航控制系统,以及一个推进式风扇;
图5为从后向前观察的图2,2A和3中所示的尾梁和偏航控制件的第一选择实施例的剖面图;
图6为从后向前观察的图2,2A和3中所示的尾梁和偏航控制件的第二选择实施例的剖面图。
对最佳实施例的详细描述
本发明提供了一种用于旋翼式飞机(如直升机)的抗扭矩和偏航控制系统。本发明还提供了一种用于在旋翼式飞机中抵消主旋翼扭矩和控制偏航的方法。结合一种特殊类型的直升机对本发明进行了说明。由于本发明实际上适用于任何类型的需要抗扭矩和偏航控制的旋翼式飞机时,因此,对该实施例的描述仅仅为了说明。
图1描述了一种直升机12,其具有一个具有传统结构的主旋翼14。从上面观察,主旋翼14绕通过其中心的轴线16逆时针方向旋转。具有传统结构的机身18位于主旋翼14的下方。机身18包括一个容纳驾驶员、乘客和货物的座舱20。机身18还包括一动力装置28,一传动装置30和一低压力比、可变螺距的风扇32(所有这些均在图1中以虚线示出)。动力装置28通过传动装置30驱动主旋翼14和风扇32。本发明的选择实施例可以包括一个用于驱动风扇32的独立动力装置。
直升机12还包括一个细长的尾梁22,其与机身18牢固结合且具有外表面22a。尾梁22从机身18中向后伸出。尾梁22延伸通过一个下洗流区(即当直升机12盘旋或以比较低的前进速度运动时,由主旋翼14的旋转产生的涡区)。由主旋翼14产生的下洗流由图中的箭头26象征性的表示。
尾梁22实质上是空心的。尾梁22的内表面22b限定有一个在尾梁22内的细长增压腔31(参见图2和3)。增压腔31从风扇32向后延伸。具有传统结构的一个垂直尾翼23和一个水平尾翼24牢固结合至尾梁22的后端。
三个线性(纵向)喷嘴或翼缝33,34,35安装在尾梁22的右侧(从后向前观察)。在图1中,将翼缝33,34,35描述为延伸了尾梁22的实质整个长度。这种结构仅仅用于说明。翼缝33,34,35的最佳长度根据因素(如给定的尾梁的尺寸和几何形状以及操作尾梁时的空气动力条件)变化。
喷嘴33,34,35使增压腔31与围绕尾梁22的周围环境保持流体连通。下面,将对涉及喷嘴33,34,35,增压腔31和风扇32的操作细节进行说明。
根据本发明,偏航控制件37可移动地结合最接近下部喷嘴35的尾梁22的下部。偏航控制件37最好具有与喷嘴33,34,35大致相等的长度。偏航控制件37具有一个前缘37a和相对的侧板37b和37c。如图2所示,前缘37a最好为圆形,而每一侧板37b,37c均最好具有弧形剖面轮廓。侧板37b和37c从前缘37a伸出,并会聚于后缘37d。这种结构使偏航控制件37具有近似椭圆形机翼形状的横断面轮廓。对这种特殊的横断面的详细描述仅用于说明。根据因素(如偏航控制件37操作时的特定空气动力条件),所述轮廓可具有多种变化。
偏航控制件37还包括一个前缘37e和一个后缘37f(参见图1)。前缘37e和后缘37f最好具有圆形轮廓(类似于前缘37a),以便在向前飞行期间使阻力降至最小。
尾梁22和偏航控制件37具有近似椭圆形机翼形状的结合横断面(参见图2)。对这种特殊的横断面的描述仅为了说明。例如基于对空气动力或结构的考虑,在剖面图中可能有多种变化。
如图2A所示,以允许偏航控制件37偏转的任何常规方式,即以允许后缘37d沿图2A中所示箭头39所示的的路径运行的方式,可以使偏航控制件37与尾梁22结合。例如,偏航控制件37可通过铰链41结合尾梁22(如图2和3所示)。偏航控制件37可根据飞行员的输入可选择地定位,并且可以通过任何如液压或缆线这样的传统装置(在图2和3示意性地显示了用于操纵偏航控制件37的液压系统47)对其进行操纵。
本发明的操作细节如下。风扇32通过位于机身18上部的入口48吸入周围的空气(仅为了说明,在该位置处描述了入口48;实际上,入口48也可以位于机身18的任何位置)。风扇32压缩周围的空气,并使压缩空气循环流入尾梁22内的增压腔31。随后,由于在增压腔31和围绕尾梁22的周围环境之间的压力差,迫使压缩空气通过喷嘴33,34,35或由这些喷嘴排出。对于给定的操作条件,风扇32的可变螺距允许穿过喷嘴33,34,35的压力比达到最佳。
上部和中部喷嘴33,34的结构均能使一股线性喷气或一层压缩空气沿大致与尾梁22外表面22a的邻近部分相切的方向排出。通过喷嘴33,34形成的薄层空气由图2所示的箭头43示意性地表示(为了清楚起见,在图3中不包括箭头43和26)。薄层43沿外表面22a、以大于主旋翼下洗流26的速度向下流动。由于在离心力和吸力之间的平衡,因此,薄层43仍保持附着在外表面22a上。空气动力学的技术人员将这种现象称为“柯恩达效应”。
当直升机12盘旋或竖直飞行或低速向前飞行时,较快运动的喷嘴排出空气层43在尾梁22的右侧输送旋翼下洗流26。这种输送会引起右侧的下洗流26比左侧的下洗流26更接近尾梁22的轮廓,从而产生围绕尾梁22的顺时针环流模式(参见图2)。所强调的环流模式导致具有侧向分量的力(由图2中箭头45所示),该力以与主旋翼14的偏向扭矩相反的方向作用,从而能够抵消偏向扭矩。事实上,可以将尾梁22概念化为在由主旋翼14产生的流体区域中工作的小展弦比机翼,同时侧向力的分量45表示由机翼产生的升力。
下部喷嘴35的结构应能大致沿与偏航控制件37的侧缘37b相切的方向排出线性喷气或一层压缩空气(参见图2)。由喷嘴35排出的空气增大并驱动喷嘴排出的空气层43,从而导致所述层43更接近偏航控制件37的侧缘37b的轮廓。所述层43越过偏航控制件37的流动还会改变主旋翼下洗流26的路径,从而增大净侧向力分量45。换句话说,偏航控制件37在旋翼下洗流26的环流模式上的作用会增大适用于抵消主旋翼14的偏向扭矩的净力。下面,将对由附加的抗扭矩力提供的实质的优点进行论述。
偏航控制件37也有助于直升机12的偏航控制。特别是,如前所述,偏航控制件37可通过预定的运动范围偏转。偏航控制件37的位置会影响主旋翼下洗流26的方向改变的程度,而该程度又会影响由下洗流26施加的侧向力分量45。因此,响应驾驶员的输入而对偏航控制件37进行可选择的定位允许驾驶员控制直升机12的偏航位置和偏航速度。
因此,偏航控制件37有助于直升机12的偏航控制,同时补充可通过改变主旋翼下洗流26环流模式获得的抗扭矩力。换句话说,申请人已研制出了这样一种系统和方法,该系统和方法通过只使用环量控制技术,便可以提供所有所需的偏航和抗扭矩力。
因此,本发明提供了可通过不使用尾部旋翼而控制主旋翼扭矩同时避免与无尾部旋翼直升机有关的本来缺陷获得的实质性优点。更特别的是,本发明能省去或减少用以对控制偏航并补充利用环量控制技术产生的抗扭矩力的喷气推进器的需要。前面所述的喷气推进器会消耗相当多的能量。与此相比,使用环量控制技术产生抗扭矩和偏航力则需要相当小的能量。
因此,通常只依赖用于抗扭矩和偏航控制的环量控制的旋翼式飞机需要更小、更轻的动力装置,并且与使用喷气推进器的类似的飞机相比,将消耗更少的燃料。当这些类型飞机的消费者不断对这类飞机的制造商施加压力,要求增加其产品的行程和载重能力时,这些优点在旋翼式飞机中特别有益。作为可以选择的方案,可以将不再需要驱动尾部旋翼或供给喷气推进器动力的能量用来驱动推进式风扇,从而不必增加动力装置的尺寸就能增加直升机的最大前进速度。例如,图4描述一种使本发明与一推进式风扇202相结合的直升机200(另外,直升机200实质上与直升机12相同;在图1和4中使用相同的参考标号来表示直升机12和200中共同的选定特征)。
应理解:即使在前面的描述中已阐明了本发明的许多特性和优点,以及结构的细节和本发明的功用,但是披露仅仅是说明性的,在本发明的原理(其整个范围由权利要求表述的术语的广义一般性含义说明)范围内,在细节上,特别是在部件的形状和尺寸以及布置上可作出多种改进。
例如,代替直升机12的单一细长部件37,在特定的用途中可使用多个偏航控制件。另外,通过将由动力装置28产生的排气引入增压腔31内(代替使用通过如风扇32这样的单一风扇压缩的周围空气),可提供用于喷嘴33,34,35的压缩空气。另外,用于规定旋翼式飞机的线性喷嘴的最佳数目根据例如直升机的尺寸、速度、形状和空气动力特性而变化。因此,本发明中可选择的实施例所使用的线性喷嘴数目可大于或小于直升机12上的三个喷嘴33,34,35。另外,可选择的实施例可以无需使用下部喷嘴,即,直接排气至偏航控制件37上的喷嘴35。
图5是一个可选择的实施例的剖面图,其包括一根尾梁49和一个可移动地与尾梁49结合的偏航控制件50。偏航控制件50具有一个内部通道(未示出),所述内部通道用于将压缩空气导引至安装在部件50的前缘50a上的一个线性喷嘴52。喷嘴52适于将压缩空气排放至偏航控制件50的侧板50b上,如图5的箭头55所示。线性喷嘴53,54安装在尾梁50上,并且与上述喷嘴33,34的功能基本相同。
图6是另一可选择实施例的剖面图,其包括一根在其上安装有线性喷嘴62,64,66的尾梁60以及一个可移动地与尾梁60结合的偏航控制件68。
Claims (32)
1.一种旋翼式飞机,其包括:
一个主旋翼;
一根延伸通过由主旋翼产生的下洗流区的尾梁;
一个第一线性喷嘴,其固定结合至尾梁上并具有一个沿尾梁延伸的开孔,所述第一线性喷嘴适于沿与尾梁外表面相切的方向排出一流体层;
一个可移动地结合至尾梁上的偏航控制件;
一个第二线性喷嘴,其固定结合至尾梁上并具有一个沿尾梁延伸的开孔,所述第二线性喷嘴适于沿与偏航控制件外表面相切的方向排出一流体层。
2.根据权利要求1所述的旋翼式飞机,其中:偏航控制件可以响应来自旋翼式飞机驾驶员的输入,相对于尾梁选择定位。
3.根据权利要求1所述的旋翼式飞机,其中:偏航控制件通过铰链与尾梁结合。
4.根据权利要求1所述的旋翼式飞机,其中:偏航控制件包括一个圆形前缘和每一个均具有弧形轮廓的第一、第二侧板,所述第一、第二侧板邻接前缘并在偏航控制件的后缘处会聚。
5.根据权利要求4所述的旋翼式飞机,其中:第二线性喷嘴适于沿与偏航控制件的第一侧板相切的方向排出流体层。
6.根据权利要求1所述的旋翼式飞机,其中:偏航控制件的长度与第一、第二线性喷嘴中的每一个喷嘴的长度相等。
7.根据权利要求1所述的旋翼式飞机,其中:尾梁限定了一个与第一、第二线性喷嘴流体相通的增压腔。
8.根据权利要求7所述的旋翼式飞机,其还包括:一个与增压腔流体相通的风扇。
9.根据权利要求8所述的旋翼式飞机,其中:风扇为一种低压力比、可变螺距的风扇。
10.根据权利要求8所述的旋翼式飞机,其还包括:一个位于机身顶部并与风扇流体相通的空气入口。
11.根据权利要求1所述的旋翼式飞机,其还包括:一个固定结合至尾梁上并具有一个沿尾梁延伸的开孔的第三线性喷嘴,所述第三线性喷嘴适于沿与尾梁外表面相切的方向排出一流体层。
12.根据权利要求1所述的旋翼式飞机,其中:从后向前观察,第一、第二线性喷嘴固定结合至尾梁的右侧。
13.根据权利要求1所述的旋翼式飞机,还包括:一个固定结合在尾梁中与机身相对的端部的垂直尾翼。
14.根据权利要求1所述的旋翼式飞机,其中:偏航控制件固定结合至尾梁底部。
15.根据权利要求1所述的旋翼式飞机,其中:尾梁和偏航控制件具有椭圆形机翼横断轮廓的组合横断轮廓。
16.根据权利要求1所述的旋翼式飞机,其还包括:一个固定地结合至尾梁上的推进式风扇。
17.一种旋翼式飞机,其包括:
一个机身;
一个旋转结合至机身上的主旋翼;
一个尾梁,其固定结合至机身上,以便使至少一部分尾梁位于由主旋翼产生的下洗流区内;
一个可移动地结合至尾梁下部的偏航控制件;
一个线性喷嘴,其安装在尾梁上并具有一个沿尾梁延伸的开孔,所述线性喷嘴适于沿与尾梁外表面相切和朝向偏航控制件的方向排出一流体层。
18.根据权利要求17所述的旋翼式飞机,其还包括:一个第二线性喷嘴,其固定结合至尾梁上且具有一个沿尾梁延伸的开孔,所述第二线性喷嘴适于沿与偏航控制件外表面相切的方向排出一流体层。
19.根据权利要求17所述的旋翼式飞机,其中:偏航控制件可以响应来自旋翼式飞机驾驶员的输入,相对于尾梁选择定位。
20.根据权利要求17所述的旋翼式飞机,其中:偏航控制件包括一个圆形前缘和每一个均具有弧形轮廓的第一、第二侧板,所述第一、第二侧板邻接前缘并在偏航控制件的后缘处会聚。
21.根据权利要求20所述的旋翼式飞机,其中:第二线性喷嘴适于沿与偏航控制件的第一侧板相切的方向排出流体层。
22.根据权利要求17所述的旋翼式飞机,其中:尾梁限定了一个与第一、第二线性喷嘴流体相通的增压腔。
23.根据权利要求22所述的旋翼式飞机,其还包括:一个与增压腔流体相通的风扇。
24.根据权利要求23所述的旋翼式飞机,其还包括:一个位于机身顶部并与风扇流体相通的空气入口。
25.根据权利要求18所述的旋翼式飞机,其还包括:一个安装在尾梁上并具有一个沿尾梁延伸的开孔的第三线性喷嘴,所述第三线性喷嘴适于沿与尾梁外表面相切并朝向偏航控制件的方向排出一流体层。
26.一种用于旋翼式飞机的抗扭矩和偏航控制的系统,所述旋翼式飞机具有一个主旋翼以及一根位于由主旋翼产生的下洗流区中的尾梁,所述系统包括:
一个适于可移动地结合至尾梁上的偏航控制件;
一个第一线性喷嘴,其适于沿与尾梁外表面相切的方向排放一股喷射流体,以产生沿外表面延伸的流体流动层;
一个第二线性喷嘴,其适于沿与偏航控制件外表面相切的方向排出一股喷射流体,产生沿偏航控制件外表面延伸的流体流动层。
27.根据权利要求26所述的抗扭矩和偏航控制系统,其还包括:一个第三线性喷嘴,其适于沿与偏航控制件外表面相切的方向排出一股喷射流体,以进一步产生沿偏航控制件外表面延伸的流体流动层。
28.一种旋翼式飞机,其包括:
一个主旋翼;
一根延伸通过由主旋翼产生的下洗流区的尾梁;
一个线性喷嘴,其固定结合至尾梁上且具有一个沿尾梁延伸的开孔,所述线性喷嘴适于沿与尾梁外表面相切的方向排出一股喷射流体,以沿至少一部分外表面产生流体流动层,从而改变主旋翼下洗流的方向;以及
一个偏航控制件,其结合至尾梁上且可响应旋翼式飞机的驾驶员的输入可选择地定位,以进一步改变主旋翼下洗流的方向,从而有助于旋翼式飞机的偏航控制。
29.根据权利要求28所述的旋翼式飞机,其还包括:一个固定结合至尾梁上且具有一个沿尾梁延伸的开孔的第二线性喷嘴,所述第二线性喷嘴适于沿与偏航控制件外表面相切的方向排出一流体层。
30.一种旋翼式飞机,其包括:
一个主旋翼;
一根延伸通过由主旋翼产生的下洗流区的尾梁;
一个第一线性喷嘴,其固定结合至尾梁上且具有一个沿尾梁延伸的开孔,所述第一线性喷嘴适于沿与尾梁外表面相切的方向排出一流体层;
一个可移动地结合至尾梁上的偏航控制件;
一个第二线性喷嘴,其固定结合至偏航控制件上且具有一个沿偏航控制件延伸的开孔,所述第二线性喷嘴适于沿与偏航控制件外表面相切的方向排出一流体层。
31.一种用于在直升机中抵消主旋翼扭矩及控制偏航的方法,所述直升机具有一个主旋翼和一根位于由主旋翼产生的下洗流区内的尾梁,该方法包括:
通过沿尾梁外表面导引一股喷射流体以沿至少一部分所述外表面产生一流体流动层来改变主旋翼下洗流的流向;并且
通过利用一个与尾梁相结合的可移动偏航控制件使流体流动层偏转,进一步改变主旋翼下洗流的流向。
32.一种用于在旋翼式飞机中抵消主旋翼扭矩及控制偏航的方法,所述旋翼式飞机具有一个主旋翼和一根位于由主旋翼产生的下洗流区内的尾梁,该方法包括:
通过沿与尾梁外表面相切的方向导引第一流体层,沿所述外表面形成第一流体流动层;并且
通过利用第二线性喷嘴,沿与偏航控制件外表面相切的方向排出第二流体层,沿一与尾梁相结合的可移动偏航控制件的外表面形成第二流体流动层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/846,072 | 2001-05-01 | ||
US09/846,072 US6416015B1 (en) | 2001-05-01 | 2001-05-01 | Anti-torque and yaw-control system for a rotary-wing aircraft |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1531496A CN1531496A (zh) | 2004-09-22 |
CN1298589C true CN1298589C (zh) | 2007-02-07 |
Family
ID=25296862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB028092155A Expired - Fee Related CN1298589C (zh) | 2001-05-01 | 2002-04-30 | 旋翼式飞机及其抗扭矩和偏航控制系统及方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US6416015B1 (zh) |
EP (2) | EP1395489A4 (zh) |
CN (1) | CN1298589C (zh) |
AU (1) | AU2002305551A1 (zh) |
CA (1) | CA2446191C (zh) |
RU (1) | RU2003132425A (zh) |
WO (1) | WO2002087967A2 (zh) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ289229B6 (cs) * | 1999-10-12 | 2001-12-12 | Jan Ing. Csc. Námisňák | Vznáąivé těleso |
US6755374B1 (en) * | 2003-01-27 | 2004-06-29 | Franklin D. Carson | Anti-Torque and yaw-control system for a rotary-wing aircraft |
DE05858230T1 (de) * | 2004-10-14 | 2007-11-29 | Bell Helicopter Textron, Inc., Fort Worth | Mechanisches flugsteuerungssystem mit hilfsantriebskraft |
US7032860B1 (en) | 2004-11-05 | 2006-04-25 | Eatts, Llc | Emergency anti-torque thruster system |
US7644893B2 (en) * | 2006-02-15 | 2010-01-12 | Sikorsky Aircraft Corporation | Full authority fly-by-wire pedal system |
US20090101753A1 (en) * | 2007-10-20 | 2009-04-23 | Shahin Kassai | Device for compensation of the Tail rotor in a helicopter |
US20090283628A1 (en) * | 2008-05-19 | 2009-11-19 | Frederickson Kirk C | Directional control arrangement to provide stabilizing feedback to a structural bending mode |
US8231077B2 (en) | 2008-08-07 | 2012-07-31 | Leon Botich | Torque counter-action device |
US8561938B2 (en) | 2010-05-31 | 2013-10-22 | Executive Access Inc. | Directional control for a helicopter |
GB201012675D0 (en) * | 2010-07-29 | 2010-09-15 | Rolls Royce Plc | Aerospace vehicle yaw generating tail section |
US8998127B2 (en) * | 2010-09-09 | 2015-04-07 | Groen Brothers Aviation, Inc. | Pre-landing, rotor-spin-up apparatus and method |
CA2808329C (en) * | 2010-09-20 | 2016-02-23 | Bell Helicopter Textron Inc. | Airfoil shaped tail boom |
US8840058B2 (en) * | 2010-09-20 | 2014-09-23 | Textron Innovations Inc. | Airfoil shaped tail boom |
EP2687442B1 (en) * | 2012-07-20 | 2015-06-03 | Bell Helicopter Textron Inc. | Airfoil shaped tail boom |
WO2015026302A1 (en) * | 2013-08-23 | 2015-02-26 | Defence Technology Institute (Public Organization) | Vertical take off and landing unmanned aerial vehicle with twin yaw control system |
US9869190B2 (en) | 2014-05-30 | 2018-01-16 | General Electric Company | Variable-pitch rotor with remote counterweights |
FR3026386B1 (fr) * | 2014-09-30 | 2016-10-21 | Airbus Helicopters | Giravion muni d'un dispositif stabilisateur |
US10072510B2 (en) | 2014-11-21 | 2018-09-11 | General Electric Company | Variable pitch fan for gas turbine engine and method of assembling the same |
CN105836100B (zh) * | 2015-01-15 | 2018-11-06 | 空客直升机 | 机舱和设备两空间之间有承重中间层的旋翼飞行器机身结构 |
RU2577932C1 (ru) * | 2015-01-21 | 2016-03-20 | Андрей Леонидович Шпади | Компенсатор реактивного момента несущего винта одновинтового вертолёта |
PL3056423T3 (pl) * | 2015-02-16 | 2018-04-30 | Airbus Helicopters Deutschland GmbH | Statek powietrzny z kadłubem, który wyznacza co najmniej obszar wewnętrzny i obszar mieszczący układ napędowy |
CH710831A1 (de) * | 2015-03-09 | 2016-09-15 | Marenco Swisshelicopter Ag | Heckrotorvorrichtung eines Helikopters. |
US10279899B2 (en) * | 2015-07-02 | 2019-05-07 | Blr Aerospace L.L.C. | Helicopter with anti-torque system, related kit and methods |
US10100653B2 (en) | 2015-10-08 | 2018-10-16 | General Electric Company | Variable pitch fan blade retention system |
WO2022036433A1 (en) * | 2020-08-17 | 2022-02-24 | Enexsys Research Inc. | Flight control system for an aircraft |
US11584522B2 (en) * | 2020-11-30 | 2023-02-21 | Textron Innovations Inc. | Rotorcraft with cooling anti-torque system |
EP4011765B1 (en) | 2020-12-14 | 2024-10-23 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A rotary wing aircraft with an asymmetrical rear section |
EP4011767B1 (en) * | 2020-12-14 | 2023-11-08 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A rotary wing aircraft with a stabilizer arrangement |
EP4011766B1 (en) * | 2020-12-14 | 2024-10-23 | Airbus Helicopters Deutschland GmbH | A rotary wing aircraft with an asymmetrical front section |
EP4036003B1 (en) | 2021-01-27 | 2024-07-31 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A rotary wing aircraft with a shrouded tail propeller |
US11674435B2 (en) | 2021-06-29 | 2023-06-13 | General Electric Company | Levered counterweight feathering system |
US11795964B2 (en) | 2021-07-16 | 2023-10-24 | General Electric Company | Levered counterweight feathering system |
EP4122823A1 (en) | 2021-07-22 | 2023-01-25 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A rotary wing aircraft with a shrouded tail propeller |
WO2023188268A1 (ja) * | 2022-03-31 | 2023-10-05 | 三共木工株式会社 | 回転翼機 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4462559A (en) * | 1982-09-07 | 1984-07-31 | Garza Roberto M | Means for controlling lateral movement of a helicopter |
US5209430A (en) * | 1991-11-07 | 1993-05-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Helicopter low-speed yaw control |
US5240205A (en) * | 1991-07-16 | 1993-08-31 | Aerospatiale Societe Nationale Industrielle | Anti-torque system for helicopters |
CN1114623A (zh) * | 1994-04-20 | 1996-01-10 | 丹耐尔(控股)有限公司 | 直升飞机的操纵 |
CN1191512A (zh) * | 1995-07-25 | 1998-08-26 | 丹尼尔有限公司 | 直升飞机的操纵 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3059877A (en) | 1961-08-11 | 1962-10-23 | United Aircraft Corp | Helicopter anti-torque device |
US3807662A (en) | 1972-11-13 | 1974-04-30 | Lockheed Aircraft Corp | Anti-torque, propulsion, and directional control system |
US4200252A (en) | 1977-12-21 | 1980-04-29 | Summa Corporation | Helicopter antitorque system using circulation control |
US4660785A (en) | 1985-12-16 | 1987-04-28 | Munski Michael S | Helicopter antitorque auxiliary propulsion system |
US4708305A (en) | 1987-01-30 | 1987-11-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Helicopter anti-torque system using fuselage strakes |
US4928907A (en) | 1988-02-29 | 1990-05-29 | Y & B Investment Corporation | Compound helicopter with no tail rotor |
US5067668A (en) | 1988-02-29 | 1991-11-26 | Y&B Investment Corporation | Compound helicopter with no tail rotor |
US4948068A (en) | 1988-05-12 | 1990-08-14 | Mcdonnell Douglas Corporation | Circulation control slots in helicopter yaw control system |
GB8927785D0 (en) * | 1989-12-08 | 1990-05-30 | Westland Helicopters | Helicopters |
US5232183A (en) | 1991-03-06 | 1993-08-03 | The Boeing Company | Helicopter anti-torque control system utilizing exhaust gas |
US5131604A (en) | 1991-04-11 | 1992-07-21 | United Technologies Corporation | Helicopter antitorque device |
FR2683504A1 (fr) | 1991-11-07 | 1993-05-14 | Aerospatiale | Systeme anticouple a rotor arriere pour helicoptere. |
FR2689854B1 (fr) | 1992-04-14 | 1994-07-01 | Eurocopter France | Helicoptere monorotor a systeme anticouple mixte et procede pour contrecarrer le couple induit par ce monorotor. |
FR2719549B1 (fr) | 1994-05-04 | 1996-07-26 | Eurocopter France | Dispositif anti-couple à rotor caréné et modulation de phase des pales, pour hélicoptère. |
US5676335A (en) * | 1995-03-08 | 1997-10-14 | Mcdonnell Douglas Helicopter Company | Airflow control system for a helicopter |
FR2736889B1 (fr) | 1995-07-21 | 1997-09-12 | Eurocopter France | Aeronef a voilure tournante du type combine et element structurel arriere pour un tel aeronef |
US5908185A (en) | 1995-10-12 | 1999-06-01 | Pawling Corporation | Handrail and bumper combination |
FR2769284B1 (fr) | 1997-10-07 | 1999-12-03 | Eurocopter France | Dispositif de commande d'une surface aerodynamique de direction d'un helicoptere |
-
2001
- 2001-05-01 US US09/846,072 patent/US6416015B1/en not_active Expired - Lifetime
-
2002
- 2002-04-30 EP EP02734381A patent/EP1395489A4/en not_active Withdrawn
- 2002-04-30 CA CA2446191A patent/CA2446191C/en not_active Expired - Fee Related
- 2002-04-30 CN CNB028092155A patent/CN1298589C/zh not_active Expired - Fee Related
- 2002-04-30 EP EP08158476A patent/EP1964773A2/en not_active Withdrawn
- 2002-04-30 WO PCT/US2002/014980 patent/WO2002087967A2/en not_active Application Discontinuation
- 2002-04-30 RU RU2003132425/11A patent/RU2003132425A/ru not_active Application Discontinuation
- 2002-04-30 AU AU2002305551A patent/AU2002305551A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4462559A (en) * | 1982-09-07 | 1984-07-31 | Garza Roberto M | Means for controlling lateral movement of a helicopter |
US5240205A (en) * | 1991-07-16 | 1993-08-31 | Aerospatiale Societe Nationale Industrielle | Anti-torque system for helicopters |
US5209430A (en) * | 1991-11-07 | 1993-05-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Helicopter low-speed yaw control |
CN1114623A (zh) * | 1994-04-20 | 1996-01-10 | 丹耐尔(控股)有限公司 | 直升飞机的操纵 |
CN1191512A (zh) * | 1995-07-25 | 1998-08-26 | 丹尼尔有限公司 | 直升飞机的操纵 |
Also Published As
Publication number | Publication date |
---|---|
EP1395489A4 (en) | 2006-09-06 |
AU2002305551A1 (en) | 2002-11-11 |
WO2002087967A3 (en) | 2003-12-04 |
RU2003132425A (ru) | 2005-02-27 |
CN1531496A (zh) | 2004-09-22 |
CA2446191A1 (en) | 2002-11-07 |
US6416015B1 (en) | 2002-07-09 |
CA2446191C (en) | 2010-09-07 |
WO2002087967A2 (en) | 2002-11-07 |
EP1964773A2 (en) | 2008-09-03 |
EP1395489A2 (en) | 2004-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1298589C (zh) | 旋翼式飞机及其抗扭矩和偏航控制系统及方法 | |
US4789115A (en) | VTOL aircraft | |
US7275711B1 (en) | Gas-powered tip-jet-driven compound VTOL aircraft | |
US5174523A (en) | Compound helicopter with engine shaft power output control | |
US5454531A (en) | Ducted propeller aircraft (V/STOL) | |
US7147182B1 (en) | Gas-powered tip-jet-driven tilt-rotor compound VTOL aircraft | |
US20120111994A1 (en) | Cross-flow fan propulsion system | |
EP2511175A1 (en) | Systems and methods for attenuation of noise and wakes produced by aircraft | |
US20120237341A1 (en) | Lift and propulsion device, and heavier-than-air aircraft provided with such a device | |
US20150246725A1 (en) | Propulsive tail propeller assembly or tail duct fan assembly with cyclic and collective control and/or a method of thrust vectoring for aircraft maneuvering and for helicoptor single rotor head anti torque | |
US7281680B2 (en) | VTOL/STOL ducted propeller aircraft | |
US20070131820A1 (en) | Rotorcraft control system and method of using | |
US6755374B1 (en) | Anti-Torque and yaw-control system for a rotary-wing aircraft | |
CN101423117A (zh) | 采用推力尾桨和滑流舵进行操纵和推进的倾转旋翼飞机 | |
CN101052565A (zh) | 高升力分布式主动气流控制系统和方法 | |
CN1055444C (zh) | 利用气流平衡主螺旋浆扭矩以及控制直升机摇摆的方法和装置 | |
US20100019079A1 (en) | Thrust generator for a rotary wing aircraft | |
WO2009025632A1 (fr) | Aéronef à atterrissage et décollage vertical | |
US11180242B2 (en) | Flow control systems having movable slotted plates | |
CN1944188A (zh) | 一种带离心风扇可垂直起落的飞行器 | |
US10577086B2 (en) | High efficiency stall proof airfoil and means of control | |
CN1074373C (zh) | 带有喷气襟翼推进系统的飞机 | |
CN217515371U (zh) | 一种涵道推力电动垂直起降复合翼飞行器 | |
US3321157A (en) | Double hinged flap | |
CN114802735A (zh) | 一种用于垂直起降飞机的旋翼涵道 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |