CN1295823C - A laser rod thermal lens effect compensation apparatus and compensation method - Google Patents
A laser rod thermal lens effect compensation apparatus and compensation method Download PDFInfo
- Publication number
- CN1295823C CN1295823C CNB2004100257055A CN200410025705A CN1295823C CN 1295823 C CN1295823 C CN 1295823C CN B2004100257055 A CNB2004100257055 A CN B2004100257055A CN 200410025705 A CN200410025705 A CN 200410025705A CN 1295823 C CN1295823 C CN 1295823C
- Authority
- CN
- China
- Prior art keywords
- lens
- laser rod
- laser
- convex lens
- focal length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Lasers (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种固体激光器中激光棒的热透镜效应,尤其是涉及一种激光棒热透镜效应补偿装置和补偿方法。The invention relates to a thermal lens effect of a laser rod in a solid-state laser, in particular to a compensation device and a compensation method for the thermal lens effect of a laser rod.
背景技术Background technique
现有的固体激光器在运转过程中吸收泵浦光能量,除小部分以激光方式输出外,大多数能量转变为热并沉积在激光工作物质内使其产生温升,在不断重复泵浦和热传导作用下,工作物质内温度梯度不断增加,直到发热功率与冷却液带走热量相等时达到热平衡。工作物质中温度梯度的存在使原本折射率完全均匀的工作物质变为类透镜介质,光束通过工作物质后发生聚焦,俗称为热自聚焦。在对称泵浦的情况下,园柱形激光棒成为类球透镜,其主平面到焦点的距离称为热透镜焦距。热自聚焦不但使激光束发散角迅速增加,更为严重的是会在工作物质内部产生实焦点,它将在材料内部产生激光损伤。为了减轻热透镜效应对激光器件的影响,目前广泛采用将工作物质端面磨成凹面以作补偿,但只能对特定泵浦功率下的特定的热透镜效应进行补偿。为此,人们设法寻找外加的附加补偿装置来实现热透镜效应的补偿,如2003年8月27日公告授权的02266147.6号中国实用新型专利说明书中公开了一种新型的热稳腔,在固体激光介质(相当于本发明中的激光棒)与输出镜之间设置一由步进电机驱动的补偿透镜,补偿透镜根据固体激光介质功率的大小,由步进电机驱动前后移动调整补偿透镜的位置。该补偿装置的所应用的光学原理是使激光介质与补偿透镜之间的距离始终保持为热透镜焦距与补偿透镜焦距之和,即使热透镜与补偿透镜形成开普勒望远镜,由此来达到补偿固体激光介质的热透镜效应,使不稳定腔变为稳定腔,高功率的激光输出具有较好的稳定性和光束质量的目的。但是上述的补偿装置也存在以下问题:该补偿装置的补偿方法是使棒与透镜之距离等于“热透镜焦距与透镜焦距之和”即热透镜与透镜形成开普勒望远镜,由于棒的热效应只是类透镜,采用单透镜不可能完全补偿;该补偿装置只有当热透镜焦距很小时,“热透镜焦距与透镜焦距之和”可为实际激光器件采用,当热透镜焦距较大(如几米)时,“热透镜焦距与透镜焦距之和”相当大,难于为实际激光器件采用;此外,腔内加透镜后,使得激光器无法进行单次运转。Existing solid-state lasers absorb pump light energy during operation, except for a small part that is output in the form of laser, most of the energy is converted into heat and deposited in the laser working material to cause temperature rise, and the pumping and heat conduction are repeated continuously Under the action, the temperature gradient in the working substance increases continuously until the thermal equilibrium is reached when the heating power is equal to the heat taken away by the cooling liquid. The existence of a temperature gradient in the working substance makes the working substance with a completely uniform refractive index become a lens-like medium, and the light beam is focused after passing through the working substance, commonly known as thermal self-focusing. In the case of symmetrical pumping, the cylindrical laser rod becomes a spherical lens, and the distance from its main plane to the focal point is called the focal length of the thermal lens. Thermal self-focusing not only increases the divergence angle of the laser beam rapidly, but more seriously, it will generate a real focus inside the working material, which will cause laser damage inside the material. In order to reduce the impact of thermal lens effect on laser devices, it is widely used to grind the end surface of the working material into a concave surface for compensation, but it can only compensate for the specific thermal lens effect under a specific pump power. For this reason, people try to find additional additional compensating device to realize the compensation of thermal lens effect, disclose a kind of novel thermal stable cavity in No. A compensation lens driven by a stepping motor is arranged between the medium (equivalent to the laser rod in the present invention) and the output mirror. The compensation lens is driven by the stepping motor to move back and forth to adjust the position of the compensation lens according to the power of the solid laser medium. The applied optical principle of the compensation device is to keep the distance between the laser medium and the compensation lens as the sum of the focal length of the thermal lens and the focal length of the compensation lens, even if the thermal lens and the compensation lens form a Keplerian telescope, thereby achieving compensation The thermal lens effect of the solid laser medium makes the unstable cavity into a stable cavity, and the high-power laser output has better stability and beam quality. But above-mentioned compensating device also has following problem: the compensating method of this compensating device is to make the distance of rod and lens equal to " sum of thermal lens focal length and lens focal length " promptly thermal lens and lens form Keplerian telescope, because the thermal effect of rod is only It is impossible to fully compensate the single lens; the compensation device can only be used when the focal length of the thermal lens is very small, and the "sum of the focal length of the thermal lens and the focal length of the lens" can be used for the actual laser device. When the focal length of the thermal lens is large (such as several meters) , "the sum of the focal length of the thermal lens and the focal length of the lens" is quite large, which is difficult to be used in practical laser devices; in addition, the laser cannot perform a single operation after adding a lens in the cavity.
发明内容Contents of the invention
本发明所要解决的技术问题是针对上述现有技术现状而提供一种激光棒热透镜效应补偿装置和补偿方法,能够实现不同泵浦功率下对固体激光器中的激光棒的热自聚焦效应进行完全补偿。The technical problem to be solved by the present invention is to provide a laser rod thermal lens effect compensation device and compensation method in view of the above-mentioned current state of the art, which can completely realize the thermal self-focusing effect of the laser rod in the solid-state laser under different pump powers. compensate.
本发明解决上述技术问题所采用的技术方案为:一种激光棒热透镜效应补偿装置,它包括设置在激光棒后的一个凹透镜和一个凸透镜,所述的凹透镜的焦距值小于所述的凸透镜的焦距值,所述的凹透镜的中心与所述的激光棒的端面为一固定的距离,所述的凸透镜设置有位置移动机构,所述的凹透镜的光轴、所述的凸透镜的光轴及所述的激光棒的光轴三者重合。The technical solution adopted by the present invention to solve the above technical problems is: a laser rod thermal lens effect compensation device, which includes a concave lens and a convex lens arranged behind the laser rod, the focal length of the concave lens is smaller than that of the convex lens Focal length value, the center of the concave lens and the end face of the laser rod are a fixed distance, the convex lens is provided with a position movement mechanism, the optical axis of the concave lens, the optical axis of the convex lens and the The optical axes of the laser rods mentioned above coincide with each other.
所述的凸透镜移动的最大距离为所述的凸透镜的焦距减去所述的凹透镜的焦距。The maximum distance that the convex lens moves is the focal length of the convex lens minus the focal length of the concave lens.
所述的凹透镜是薄球面凹透镜,所述的凸透镜是薄球面凸透镜。The concave lens is a thin spherical concave lens, and the convex lens is a thin spherical convex lens.
本发明解决上述技术问题所采用的又一技术方案为:一种激光棒热透镜效应补偿方法,包括下述步骤,步骤一:将一个凹透镜和一个凸透镜设置在激光棒的输出端面后,使所述的凹透镜的焦距值小于所述的凸透镜的焦距值,通过调整使所述的凹透镜和所述的凸透镜的光轴与所述的激光器棒的光轴重合,使所述的凹透镜的中心与所述的激光棒的端面为一固定的距离,并调整所述的凹透镜与凸透镜之间的距离为所述的凸透镜的焦距减去所述的凹透镜的焦距;步骤二:确定所述的激光棒在不同泵浦平均功率下达到热平衡时的热透镜焦距;步骤三:根据下列公式计算出所述的凸透镜和所述的凹透镜之间的调整距离:
所述的步骤二中的热透镜焦距是根据下列公式通过计算获得的,
所述的步骤四中的动态修正是移动所述的凸透镜使激光输出的远场光斑与近场光斑接近。The dynamic correction in step 4 is to move the convex lens so that the far-field light spot output by the laser is close to the near-field light spot.
与现有技术相比,本发明的优点在于可以对激光棒在任意泵浦功率下产生的热透镜效应所引起的激光器光束发散角增大的现象作完全补偿,能够完全避免热自聚焦现象所引起的激光工作物质的损伤,并且不会对激光输出功率产生大的影响;而在激光器单次脉冲工作时,补偿装置等同于一个伽利略扩束望远镜,因而不会影响激光器的运转;通过选择具有不同焦距参数的凹透镜和凸透镜,可以不受热透镜焦距大小的影响,实现对热透镜效应的完全补偿。本发明的补偿装置可以设置在激光器的光学谐振腔内和光学谐振腔外,也可以设置在作为放大器的激光棒的后面。Compared with the prior art, the present invention has the advantage that it can completely compensate for the phenomenon that the laser beam divergence angle increases caused by the thermal lens effect produced by the laser rod at any pump power, and can completely avoid the thermal self-focusing phenomenon. The damage caused by the laser working material will not have a large impact on the laser output power; when the laser is working in a single pulse, the compensation device is equivalent to a Galileo beam expander telescope, so it will not affect the operation of the laser; by choosing a Concave and convex lenses with different focal length parameters can not be affected by the focal length of the thermal lens, and can fully compensate the thermal lens effect. The compensation device of the present invention can be arranged inside and outside the optical resonant cavity of the laser, and can also be arranged behind the laser rod as an amplifier.
附图说明Description of drawings
图1为本发明实施例一的结构示意图;FIG. 1 is a schematic structural view of
图2为本发明的补偿透镜的结构示意图;Fig. 2 is the structural representation of compensation lens of the present invention;
图3为本发明实施例二的结构示意图。Fig. 3 is a schematic structural diagram of
具体实施方式Detailed ways
以下结合附图实施例对本发明作进一步详细描述。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
实施例一:如图1和图2所示,一种激光棒热透镜效应补偿装置,包括激光棒1,在激光棒1的两端分别设置有全反射镜2和激光输出镜3构成激光器的光学谐振腔,一个凹透镜4和一个凸透镜5设置在激光棒1后的光学谐振腔内,凹透镜4的中心与激光棒1的端面为一固定的距离d1,凸透镜5设置有位置移动机构,凹透镜4是具有焦距f1的薄球面凹透镜,凸透镜5是具有焦距f2的薄球面凸透镜,凹透镜4的焦距值f1小于凸透镜5的焦距值f2,凸透镜5移动的最大距离为凸透镜5的焦距f2减去凹透镜4的焦距f1,凹透镜4的光轴、凸透镜5的光轴及激光棒1的光轴三者重合。Embodiment 1: As shown in Figures 1 and 2, a laser rod thermal lens effect compensation device includes a
实施例二:如图3所示,一种激光棒热透镜效应补偿装置,包括激光棒1,在激光棒1的两端分别设置有全反射镜2和激光输出镜3构成激光器的光学谐振腔,一个凹透镜4和一个凸透镜5设置在激光棒1后的光学谐振腔外,凹透镜4的中心与激光棒1的端面为一固定的距离d1,凸透镜5设置有位置移动机构,凹透镜4是具有焦距f1的薄球面凹透镜,凸透镜5是具有焦距f2的薄球面凸透镜,凹透镜4的焦距值f1小于凸透镜5的焦距值f2,凸透镜5移动的最大距离为凸透镜5的焦距f2减去凹透镜4的焦距f1,凹透镜4的光轴、凸透镜5的光轴及激光棒1的光轴三者重合,在凸透镜5的后面设置有第二激光棒1′作为放大器,在第二激光棒1′的后面设置一个第二凹透镜4′和一个第二凸透镜5′,第二凹透镜4′的中心与第二激光棒1′的端面为一固定的距离d1′,第二凸透镜5′设置有位置移动机构,第二凹透镜4′是具有焦距f1′的薄球面凹透镜,第二凸透镜5′是具有焦距f2′的薄球面凸透镜,第二凹透镜4′的焦距值f1′于第二凸透镜5′的焦距值f2′,第二凸透镜5′移动的最大距离为第二凸透镜5′的焦距f2′减去第二凹透镜4′的焦距f1′,第二凹透镜4′的光轴、第二凸透镜5′的光轴及第二激光棒1′的光轴三者重合。Embodiment 2: As shown in Figure 3, a laser rod thermal lens effect compensation device includes a
实施例三:一种激光棒热透镜效应补偿方法,包括下述步骤,步骤一:将一个凹透镜4和一个凸透镜5设置在激光棒1的输出端面后,通过类似于四维光学调整架这样的调整装置(图未显示)使凹透镜4和凸透镜5的光轴与激光棒1的光轴重合,使凹透镜4的中心与激光棒1的输出端面为一固定的距离d1,并调整凹透镜4与凸透镜5之间的距离为凸透镜5的焦距f2减去凹透镜4的焦距f1;步骤二:根据下列公式
我们以图3为例来实施一个具体的方案:激光棒1为Nd3+玻璃激光棒,其尺寸为φ8×200,体积为10cm3,在激光棒1的光学谐振腔后设置的放大器使用的第二激光棒1′为Nd3+玻璃激光棒,其尺寸为φ12×300,体积为34cm3,在激光棒1的光学谐振腔后设置有第一凹透镜4和第一凸透镜5,在放大器后设置有第二凹透镜4′和第二凸透镜5′,玻璃激光棒的浓度为2×1020/cm3的N3122磷酸盐激光玻璃,其发热效率χ=8%,折射率温度系数β=-4.3×10-6/℃,应力热光系数为P=5.8×10-6/℃,热传导系数为κ=0.56W/m℃。激光系统工作重复频率为2Hz,振荡器每脉冲泵浦能量为200J,泵浦平均功率密度为40W/cm3,计算得到热透镜焦距为117cm;放大器每脉冲泵浦能量为1000J,泵浦平均功率密度为59W/cm3,计算得到其热透镜焦距为53cm。两个补偿装置参数分别设置为第一凹透镜4的焦距f1=10cm,第一凸透镜5的焦距f2=15cm,第二凹透镜4′的焦距f1′=10cm,第二凸透镜5′的焦距f2′=15cm。We take Figure 3 as an example to implement a specific scheme:
调节第一凹透镜4、第一凸透镜5的光轴和第二凹透镜4′、第二凸透镜5′的光轴与激光系统光轴重合,第一凹透镜4是心距激光棒1输出端d1=30cm,第二凹透镜4′的中心距放大器的第二激光棒1′输出端面d2=5cm,当激光系统单脉冲运转时,d=f2-f1=50mm,d′=f2′-f1′=50mm,即Δd=0,Δd′=0,补偿装置作为扩束望远镜使用,其扩束倍率为1.5。当激光系统以上述工作条件重复频率运转时,计算得到补偿装置调节量分别为Δd=-14.1mm和Δd′=-35.1mm,即两补偿装置的透镜距离从伽利略望远镜时的50mm分别减小到35.9mm和14.9mm。在完成调节后使器件在上述工作条件下运转,在运转过程中作动态微调,直至振荡器和放大器输出近、远场光斑尺寸相同时即可认为已实现了完全补偿。Adjust the optical axis of the first concave lens 4, the
上述的实施例中,我们也可以将移动凸透镜改变为移动凹透镜,不过此时应对计算公式作相应的调整,其计算起来不如移动凸透镜的情况来得简便。In the above embodiments, we can also change the moving convex lens to moving concave lens, but at this time the calculation formula should be adjusted accordingly, and the calculation is not as simple as the case of moving the convex lens.
本发明适用于各种不同介质材料的固体激光器,包括连续或高重复频率的YAG激光器,同时也适用于比较复杂的“激光振荡—放大系统”中。The invention is applicable to various solid-state lasers of different dielectric materials, including continuous or high repetition frequency YAG lasers, and is also applicable to relatively complex "laser oscillation-amplification systems".
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100257055A CN1295823C (en) | 2004-06-25 | 2004-06-25 | A laser rod thermal lens effect compensation apparatus and compensation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100257055A CN1295823C (en) | 2004-06-25 | 2004-06-25 | A laser rod thermal lens effect compensation apparatus and compensation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1595737A CN1595737A (en) | 2005-03-16 |
CN1295823C true CN1295823C (en) | 2007-01-17 |
Family
ID=34663802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100257055A Expired - Fee Related CN1295823C (en) | 2004-06-25 | 2004-06-25 | A laser rod thermal lens effect compensation apparatus and compensation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1295823C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101414727B (en) * | 2008-12-05 | 2010-06-02 | 长春理工大学 | Self-adaptive equalization thermal lens laser resonant cavity for crystal lens |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105514775B (en) * | 2016-01-06 | 2018-06-19 | 中国科学院上海光学精密机械研究所 | The suppressing method of high energy Ti∶Sapphire laser multi-pass amplifier thermal lensing effect |
CN109683306B (en) * | 2019-01-31 | 2020-12-25 | 中国工程物理研究院激光聚变研究中心 | Wavefront control method for overcoming thermal lens effect |
CN113432837A (en) * | 2021-06-07 | 2021-09-24 | 中国科学院上海光学精密机械研究所 | Device and method for measuring focal length of crystal thermal lens |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1981002224A1 (en) * | 1980-01-21 | 1981-08-06 | Australia Dept Ind Comm | Birefringence coupled high average power laser |
US5001718A (en) * | 1989-06-02 | 1991-03-19 | Lumonics, Ltd. | Telescopic thermal lens compensating laser |
US5093838A (en) * | 1990-05-23 | 1992-03-03 | Sony Corporation | Laser apparatus |
JP2001320114A (en) * | 2000-05-10 | 2001-11-16 | Inst Of Physical & Chemical Res | Laser resonator |
JP2002043661A (en) * | 2000-06-23 | 2002-02-08 | Univ Bern | Compensation of thermo-optic effect |
CN2482750Y (en) * | 2001-05-31 | 2002-03-20 | 北京工业大学 | Large power semi-conductor laser longitudinal pumping solid laser |
CN2569375Y (en) * | 2002-08-08 | 2003-08-27 | 上海市激光技术研究所 | New thermal stable chamber |
-
2004
- 2004-06-25 CN CNB2004100257055A patent/CN1295823C/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1981002224A1 (en) * | 1980-01-21 | 1981-08-06 | Australia Dept Ind Comm | Birefringence coupled high average power laser |
US5001718A (en) * | 1989-06-02 | 1991-03-19 | Lumonics, Ltd. | Telescopic thermal lens compensating laser |
US5093838A (en) * | 1990-05-23 | 1992-03-03 | Sony Corporation | Laser apparatus |
JP2001320114A (en) * | 2000-05-10 | 2001-11-16 | Inst Of Physical & Chemical Res | Laser resonator |
JP2002043661A (en) * | 2000-06-23 | 2002-02-08 | Univ Bern | Compensation of thermo-optic effect |
CN2482750Y (en) * | 2001-05-31 | 2002-03-20 | 北京工业大学 | Large power semi-conductor laser longitudinal pumping solid laser |
CN2569375Y (en) * | 2002-08-08 | 2003-08-27 | 上海市激光技术研究所 | New thermal stable chamber |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101414727B (en) * | 2008-12-05 | 2010-06-02 | 长春理工大学 | Self-adaptive equalization thermal lens laser resonant cavity for crystal lens |
Also Published As
Publication number | Publication date |
---|---|
CN1595737A (en) | 2005-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050157382A1 (en) | Industrial directly diode-pumped ultrafast amplifier system | |
CN100468888C (en) | A Compensation Method for Laser Rod Thermal Lens Effect | |
Shang et al. | Research progress on thermal effect of LD pumped solid state laser | |
WO2019028679A1 (en) | Frequency-doubling laser and harmonic laser light generating method | |
CN211276517U (en) | A blue-green laser micro-melting molding device for highly reflective materials | |
CN110987379B (en) | Method and device for measuring focal length of laser crystal thermal lens by knife edge method | |
CN104953455A (en) | Kerr-lens mode-locked solid sheet laser device | |
CN104104006A (en) | Device and method for generating high-power vacuum ultraviolet laser by direct frequency doubling | |
CN102522685A (en) | Compensation device for thermal lens effect of laser | |
JP2001077449A (en) | Mode-locked solid-state laser | |
CN1295823C (en) | A laser rod thermal lens effect compensation apparatus and compensation method | |
CN1905290B (en) | A solid-state laser with adaptive thermal lens focal length variation | |
CN107196181A (en) | A kind of C mount encapsulation semiconductor laser pumping Low threshold micro-slice lasers and its control method without coupled system | |
CN106058632A (en) | Pulse-energy-adjustable passive Q-switched Raman laser system based on bonding crystals | |
CN114927926A (en) | High-power mid-infrared laser generation device and method for multiple transverse modes | |
CN106602391A (en) | Slab laser module with wave-front distortion self-correction ability | |
CN115473116A (en) | Pulse laser space shaping device and method based on non-uniform saturable absorber | |
CN101599612A (en) | A Pulsed Ti:Sapphire Laser with High Beam Quality | |
CN209929677U (en) | Pulse width adjustable short pulse laser | |
CN102684042B (en) | Compensation device for thermal lens effect of slab laser | |
CN113381276A (en) | Laser crystal thermal lens effect self-compensating device | |
CN101924325A (en) | In-Band Pumped Thermally Sensitive Cavity 808nm Triggered Self-Q-Switching Laser | |
CN102842848A (en) | Electronically controlled wide-area thermally insensitive solid-state laser | |
Roth et al. | End-pumped Nd: YAG laser with self-adaptive compensation of the thermal lens | |
CN212725943U (en) | High-coupling-efficiency kilowatt-level optical fiber output nanosecond laser with arbitrarily adjustable power |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070117 Termination date: 20160625 |