CN1290763C - Process for preparing nano-carbon tubes - Google Patents
Process for preparing nano-carbon tubes Download PDFInfo
- Publication number
- CN1290763C CN1290763C CNB021521093A CN02152109A CN1290763C CN 1290763 C CN1290763 C CN 1290763C CN B021521093 A CNB021521093 A CN B021521093A CN 02152109 A CN02152109 A CN 02152109A CN 1290763 C CN1290763 C CN 1290763C
- Authority
- CN
- China
- Prior art keywords
- carbon nanotubes
- catalyst
- substrate
- method
- step
- Prior art date
Links
- 229910052799 carbon Inorganic materials 0 title 1
- 238000000034 methods Methods 0 title 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/174—Derivatisation; Solubilisation; Dispersion in solvents
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
- D01F9/1271—Alkanes or cycloalkanes
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
- D01F9/1271—Alkanes or cycloalkanes
- D01F9/1272—Methane
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
- D01F9/1273—Alkenes, alkynes
- D01F9/1275—Acetylene
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/08—Aligned nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/34—Length
Abstract
Description
【技术领域】本发明是关于一种生产碳纳米管的方法。 TECHNICAL FIELD The present invention relates to a method for producing carbon nanotubes.
【背景技术】碳纳米管具有奇异的物理化学性能,如独特的金属或半导体导电性、极高的机械强度、储氢能力、吸附能力和较强的微波吸收能力等,90年代初一经发现即刻受到物理、化学和材料科学界以及高新技术产业部门的极大重视。 BACKGROUND nanotube having novel physical and chemical properties, such as a metal or a semiconductor unique conductivity, high mechanical strength, hydrogen storage capacity, the adsorption ability and strong microwave absorption capacity, by the 1990s found immediately started great attention by physics, chemistry and materials science and high-tech industrial sectors. 碳纳米管要实现工业应用,首先必须解决碳纳米管的低成本大量制备问题。 To achieve industrial applications of carbon nanotubes, we must first solve the problem of mass production of low-cost carbon nanotubes. 碳纳米管自1991年被发现以来,其制备工艺得到了广泛研究。 Since carbon nanotubes were discovered in 1991, its preparation process has been widely studied. 目前,有三种主要的制备方法,即电弧放电法、激光烧蚀法和化学气相沉积法。 Currently, there are three main methods of preparation, i.e., an arc discharge method, laser ablation, and chemical vapor deposition. 电弧放电法和激光烧蚀法制得的产物中,碳纳米管均与其它形态的碳产物共存,分离纯化困难,收率较低,且难以规模化。 Arc discharge and laser ablation of the product obtained legal, the carbon nanotubes are to coexist with other forms of carbon products, difficult separation and purification, yield is low, and difficult to scale. 第三种化学气相沉积法,由天然气制备的碳纳米管具有工艺简便、成本低、纳米管规模易控制、长度大、收率较高等优点,有重要的研究价值。 The third chemical vapor deposition method, carbon nanotubes by a gas having a simple process, low cost, easy to control the size of nanotubes, a large length, the advantages of higher yield, important research value. 可应用在场发射显示器件、电真空器件、纳米电子学、以及高强度复合材料等方面。 Aspect can be applied to the field emission display devices, vacuum devices, nanoelectronics, high strength composite materials and the like.
但目前任何一种大量制备的方法都不能控制产物中碳纳米管的长度,且生产出的碳纳米管往往纠结成团,难于分散,不利于碳纳米管在场发射、复合增强材料等领域的实际应用。 But the method of preparation of any of a number of products can not control the length of the carbon nanotubes, and carbon nanotubes are produced often tangled group, difficult to disperse, the carbon nanotube is not conducive to field emission, the actual field of composite reinforcement materials application. 因此,提供一种生产长度一致,长度可控,无纠结容易分散的碳纳米管的方法实为必要。 Accordingly, there is provided a process for producing the same length as the length of a controllable, non-tangled easy method of dispersing carbon nanotubes actually necessary.
【发明内容】为了解决现有技术中不能控制碳纳米管的长度,且生产出的碳纳米管纠结成团,难于分散的问题,本发明提供了一种生产长度一致,长度可控,无纠结容易分散的碳纳米管的方法。 SUMMARY OF THE INVENTION In order to solve the prior art can not control the length of carbon nanotubes, and carbon nanotubes are produced in a tangled group, difficult to disperse problems, the present invention provides a process for producing the same length as the length of a controllable, non-tangled the method of dispersing the carbon nanotubes easier.
为解决此技术问题,本发明提供一种生产碳纳米管的方法,其包括步骤:(1)提供一基底;(2)在基底上沉积4~10nm厚的催化剂,然后在温度300℃~500℃下,并对催化剂进行8~12小时的退火处理,使其收缩为分立的纳米级颗粒;(3)在预定温度下,使催化剂与碳源气接触一定时间使得特定长度的碳纳米管阵列基本垂直于基底长出; To solve this technical problem, the present invention provides a method for producing carbon nanotubes, comprising the steps of: (1) providing a substrate; (2) depositing a thickness of 4 ~ 10nm catalyst on the substrate, and then at a temperature of 300 ℃ ~ 500 at ℃, and the catalyst for 8 to 12 hours of annealing, shrunk as discrete nano-sized particles; (3) at a predetermined temperature, carbon source gas contacting the catalyst with a predetermined time so that a specific length of the carbon nanotube array grow substantially perpendicular to the substrate;
(4)将所得的碳纳米管从基底取下。 (4) The resultant substrate is removed from the carbon nanotubes.
本发明的进一步改进在于于上述步骤(4)后将所得碳纳米管置于分散溶液中进行超声分散。 The present invention is a further improvement in the above step (4) placed in the carbon nanotube dispersion obtained after ultrasonic dispersion solution.
与现有技术相比本发明利用化学气相沉积方法,以碳纳米管阵列的方式实现了制备长度一致,长度可控,无纠结容易分散的碳纳米管。 Compared with the prior art the present invention using a chemical vapor deposition method, so as to achieve a uniform carbon nanotube array prepared length, the length of a controllable, non-tangled easily dispersed carbon nanotubes.
【附图说明】图1是本发明沉积催化剂在基底的示意图;图2是本发明的催化剂经退火处理后的示意图;图3是本发明将带有催化剂的基底置于反应炉中通入反应气体生长碳纳米管的示意图;图4是本发明将碳纳米管从基底刮下的示意图;图5是本发明的碳纳米管阵列在分散溶液中超声作用后的透射电子显微镜照片;图6是本发明的碳纳米管阵列在分散溶液中超声作用后的透射电子显微镜照片,其中碳纳米管被分散成为单根的碳纳米管;图7、8、9和10分别是本发明不同高度的碳纳米管阵列。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of the present invention is a catalyst deposited on a substrate; FIG. 2 is a schematic view of the catalyst according to the present invention annealed processing; FIG. 3 is a substrate of the present invention having the catalyst placed in the reactor into the reaction a schematic view of a carbon nanotube growth gas; FIG. 4 is a schematic view of the substrate of the present invention will be scraped from a carbon nanotube; FIG. 5 is a carbon nanotube array in the dispersion of the present invention is a transmission electron micrograph solution after sonication; FIG. 6 is carbon nanotube array according to the present invention in the dispersion solution after the ultrasound transmission electron microscope photographs in which carbon nanotubes are dispersed to a single carbon nanotube; FIGS. 8, 9 and 10 are different from the present invention, the height of the carbon nanotube array.
【具体实施方式】本发明利用化学气相沉积法,以碳纳米管阵列的方式实现生产长度一致,长度可控,无纠结容易分散的碳纳米管。 DETAILED DESCRIPTION The present invention utilizes a chemical vapor deposition method, so as to achieve a consistent production of carbon nanotube array length, the length of a controllable, non-tangled easily dispersed carbon nanotubes. 制备过程如下:(1)请参阅图1,提供一硅片或石英片作为可反复使用的基底3;(2)用电子束蒸镀、溅射或液体涂敷的方法将催化剂1沉积在基底3的单面或双面,使其形成4~10nm厚的金属催化剂薄膜11,催化剂1可选择铁、镍、钴等;(3)请参阅图2,在温度300℃~500℃,空气气氛下,对催化剂薄膜11进行8~12小时的退火处理,使其收缩为分立的纳米级颗粒12;(4)请参阅图3,将带有催化剂颗粒12的多片基底3同时放进反应炉4;(5)通入保护气体(未标示),同时将反应炉4加热至600~1000℃;(6)然后通入保护气体与碳源气(未标示),保护气体可为氩、氮或氦等,碳源气可为乙炔、甲烷、乙烯等;(7)约15秒~40分钟后,高度一定的碳纳米管阵列在基底表面长出;(8)将反应炉4冷却至室温; Prepared as follows: (1) Referring to FIG. 1, a silicon wafer or a quartz plate 3 as a reusable base; (2) electron beam evaporation, sputtering, or a liquid coating deposited on the substrate 1 catalyst 3, one or both sides, so that the metal catalyst 4 ~ 10nm thick film 11 is formed, optionally a catalyst of iron, nickel, cobalt and the like; (3) see Figure 2, at a temperature of 300 ℃ ~ 500 ℃, air atmosphere next, the catalyst film 11 for 8 to 12 hours of annealing, shrunk as discrete nanoparticles 12; (4), please refer to FIG. 3, the base sheet with a plurality of catalyst particles 12 into the reactor 3, while 4; (5) through the protective gas (not shown), while the reaction furnace 4 is heated to 600 ~ 1000 ℃; (6) with protective gas is then passed into the carbon source gas (not shown), the protective gas can be argon, nitrogen or helium, carbon source gas may be acetylene, methane, ethylene and the like; (7) for about 15 seconds to 40 minutes, the height of a certain surface of the substrate to grow the carbon nanotube array; (8) the reactor was cooled to room temperature 4 ;
(9)请参阅图4,取出基底3,碳纳米管5可用刀片6刮下,同样亦可用细丝或高压气体吹下,基底3则直接再次生长或清洗、再次镀膜备用。 (9) Referring to FIG. 4, remove the base 3, the carbon nanotubes can be used blade 6 scraped off 5, the same or filaments can also be used under a high-pressure gas blowing, the substrate 3 directly or grown again washed, re-plated standby.
视需要可将所得的碳纳米管5放在乙醇、1-2二氯乙烷等分散溶液中超声分散。 Optionally 5 carbon nanotubes can be obtained in ethanol, 1-2 dichloroethane and the like dispersed in an ultrasonic dispersing solution.
由于阵列中的碳纳米管5基本为平行排列,无纠结,可轻易得到分散极好的单根碳纳米管。 Since the array are arranged substantially parallel carbon nanotubes 5, tangle-free, excellent dispersibility can be easily obtained single carbon nanotube. 如图5、6所示,本发明的碳纳米管5已基本无纠结,可超声分散成为单根的碳纳米管或小直径管束。 5 and 6, the carbon nanotubes 5 has almost no tangle invention, an ultrasonic dispersion may be a carbon nanotube or a single bundle of small diameter.
另外,通过控制生长条件:如反应时间与反应温度,可以生长所需要的特定高度的碳纳米管阵列,由此得到的碳纳米管5将具有所需要的精确长度,如图7、8、9和10所示。 Further, by controlling the growth conditions: The reaction temperature and reaction time may be grown certain height required for the carbon nanotube array, to thereby obtain carbon nanotubes 5 will have the exact desired length, 7,8,9 FIG. 10 and FIG.
实施例一:生长长度为10μm的碳纳米管阵列:于一多孔硅基底上沉积上5nm厚的铁催化剂膜,然后将沉积有铁的基底在空气中400℃退火10小时,然后将基底放在石英反应舟里送入石英管反应炉的中央反应室中,在氩气的保护下,将反应炉加热到690℃后,通入乙烯气,反应15秒,然后将反应炉冷却到室温,得长度为10μm的碳纳米管阵列。 Example a: growth length of the carbon nanotube array 10μm: iron catalyst film on a porous silicon substrate is deposited a thickness of 5nm, and then the deposited iron substrate annealing at 400 ℃ in air for 10 hours and then discharge the substrate central chamber into a quartz tube furnace in a quartz boat in the reaction medium, under the protection of argon, the reactor was heated to 690 deg.] C, ethylene gas into the reaction for 15 seconds, and then the reactor was cooled to room temperature, a length of 10μm to give a carbon nanotube array.
实施例二:生长长度为100μm的碳纳米管阵列:于一多孔硅基底上沉积上5nm厚的铁催化剂膜,然后将沉积有铁的基底在空气中400℃退火10小时,然后将基底放在石英反应舟里送入石英管反应炉的中央反应室中,在氩气的保护下,将反应炉加热到690℃后,通入乙烯气,反应5分钟,然后将反应炉冷却到室温,得长度为100μm的碳纳米管阵列。 Example two: growth length of the carbon nanotube array 100μm: iron catalyst film on a porous silicon substrate is deposited a thickness of 5nm, and then the deposited iron substrate annealing at 400 ℃ in air for 10 hours and then discharge the substrate central chamber into a quartz tube furnace in a quartz boat in the reaction medium, under the protection of argon, the reactor was heated to 690 deg.] C, ethylene gas into the reaction for 5 minutes, then the reactor was cooled to room temperature, have a length of 100μm carbon nanotube array.
实施例三:生长长度为500μm的碳纳米管阵列:于一多孔硅基底上沉积上5nm厚的铁催化剂膜,然后将沉积有铁的基底在空气中400℃退火10小时,然后将基底放在石英反应舟里送入石英管反应炉的中央反应室中,在氩气的保护下,将反应炉加热到710℃后,通入乙烯气,反应10分钟,然后将反应炉冷却到室温,得长度为500μm的碳纳米管阵列。 Example Three: growth length of the carbon nanotube array 500μm: iron catalyst film on a porous silicon substrate is deposited on a thickness of 5nm, and then the deposited iron substrate annealing at 400 ℃ in air for 10 hours and then discharge the substrate central chamber into a quartz tube furnace in a quartz boat in the reaction medium, under the protection of argon, the reactor was heated to 710 deg.] C, ethylene gas into the reaction for 10 minutes, then the reactor was cooled to room temperature, carbon nanotube array have a length of 500μm.
经过实验确证,碳纳米管阵列的密度可达0.1g/cm3。 After experiments confirmed that the density of the carbon nanotube array up to 0.1g / cm3. 以生长100μm高度的阵列计算,能够同时放置30片4-inch(25.4mm)硅片基底(单面镀催化剂)的反应炉可一次生产约2.4克的100μm长碳纳米管,一次生长过程耗时约5分钟左右。 In calculating the height of the array Growth 100μm, can be simultaneously placed 30 4-inch (25.4mm) from silicon substrate (single-sided plating catalyst) can be a reaction furnace 100μm long nanotubes produced about 2.4 g of a growth process takes about 5 minutes.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021521093A CN1290763C (en) | 2002-11-29 | 2002-11-29 | Process for preparing nano-carbon tubes |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021521093A CN1290763C (en) | 2002-11-29 | 2002-11-29 | Process for preparing nano-carbon tubes |
US10/410,069 US20040105807A1 (en) | 2002-11-29 | 2003-04-08 | Method for manufacturing carbon nanotubes |
JP2003168328A JP2004182581A (en) | 2002-11-29 | 2003-06-12 | Method for producing carbon nanotube |
JP2006234173A JP2006347878A (en) | 2002-11-29 | 2006-08-30 | Method for manufacturing carbon nanotube |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1504407A CN1504407A (en) | 2004-06-16 |
CN1290763C true CN1290763C (en) | 2006-12-20 |
Family
ID=32331914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021521093A CN1290763C (en) | 2002-11-29 | 2002-11-29 | Process for preparing nano-carbon tubes |
Country Status (3)
Country | Link |
---|---|
US (1) | US20040105807A1 (en) |
JP (2) | JP2004182581A (en) |
CN (1) | CN1290763C (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102207574A (en) * | 2007-03-30 | 2011-10-05 | 清华大学 | Polarization element and manufacturing method thereof |
CN102207575A (en) * | 2007-03-30 | 2011-10-05 | 清华大学 | Polarizing element and manufacturing method thereof |
US8533945B2 (en) | 2007-03-29 | 2013-09-17 | Fujitsu Semiconductor Limited | Wiring structure and method of forming the same |
TWI667835B (en) * | 2017-04-24 | 2019-08-01 | 鴻海精密工業股份有限公司 | Method for making lithium-ion battery anode |
Families Citing this family (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7302829B2 (en) * | 2003-12-01 | 2007-12-04 | General Electric Company | Contactless humidity/chemical vapor sensor device and associated method of fabrication |
KR100626016B1 (en) | 2004-09-20 | 2006-09-20 | 삼성에스디아이 주식회사 | Method for preparing carbon nanocages |
AU2005302978A1 (en) * | 2004-11-10 | 2006-05-18 | Nikon Corporation | Carbon nanotube aggregate and process for producing the same |
JP4765584B2 (en) * | 2004-12-01 | 2011-09-07 | 日新電機株式会社 | Carbon nanotube formation method and apparatus |
CN100337909C (en) * | 2005-03-16 | 2007-09-19 | 清华大学 | Growth method carbon nanotube array |
CN100376477C (en) * | 2005-03-18 | 2008-03-26 | 清华大学;鸿富锦精密工业(深圳)有限公司 | Growth apparatus of carson nanotube array and growth method of multi-wall carbon nanotube array |
CN100344532C (en) * | 2005-03-25 | 2007-10-24 | 清华大学 | Carbon nanotube array growing device |
CN100337910C (en) * | 2005-03-31 | 2007-09-19 | 清华大学 | Carbon nanotube array growing method |
CN1959896B (en) * | 2005-11-04 | 2011-03-30 | 鸿富锦精密工业(深圳)有限公司 | Field emission of Nano carbon tube, and preparation method |
CN100462301C (en) | 2005-12-09 | 2009-02-18 | 清华大学;鸿富锦精密工业(深圳)有限公司 | Method for preparing carbon nano tube array |
FR2895393B1 (en) | 2005-12-23 | 2008-03-07 | Arkema Sa | Process for the synthesis of carbon nanotubes |
JP4817296B2 (en) | 2006-01-06 | 2011-11-16 | 独立行政法人産業技術総合研究所 | Aligned carbon nanotube bulk aggregate and method for producing the same |
WO2007117503A2 (en) * | 2006-04-07 | 2007-10-18 | The Trustees Of Columbia University In The City Of New York | Preparing nanoparticles and carbon nanotubes |
WO2007136755A2 (en) * | 2006-05-19 | 2007-11-29 | Massachusetts Institute Of Technology | Continuous process for the production of nanostructures including nanotubes |
US8337979B2 (en) | 2006-05-19 | 2012-12-25 | Massachusetts Institute Of Technology | Nanostructure-reinforced composite articles and methods |
US9005755B2 (en) | 2007-01-03 | 2015-04-14 | Applied Nanostructured Solutions, Llc | CNS-infused carbon nanomaterials and process therefor |
US20120189846A1 (en) * | 2007-01-03 | 2012-07-26 | Lockheed Martin Corporation | Cnt-infused ceramic fiber materials and process therefor |
US8951632B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
US8158217B2 (en) * | 2007-01-03 | 2012-04-17 | Applied Nanostructured Solutions, Llc | CNT-infused fiber and method therefor |
US8951631B2 (en) * | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
CN101239712B (en) * | 2007-02-09 | 2010-05-26 | 清华大学;鸿富锦精密工业(深圳)有限公司 | Carbon nano-tube thin film structure and preparation method thereof |
CN101276012B (en) * | 2007-03-30 | 2016-04-27 | 清华大学 | Polarization element and preparation method thereof |
CN101284661B (en) * | 2007-04-13 | 2011-03-23 | 鸿富锦精密工业(深圳)有限公司 | Preparing process for carbon nano-tube sheets |
CN101290857B (en) * | 2007-04-20 | 2011-06-22 | 清华大学 | Field emitted cathode and preparing method thereof |
CN101315974B (en) * | 2007-06-01 | 2010-05-26 | 清华大学;鸿富锦精密工业(深圳)有限公司 | Lithium ionic cell cathode and method for producing the same |
US8367506B2 (en) | 2007-06-04 | 2013-02-05 | Micron Technology, Inc. | High-k dielectrics with gold nano-particles |
CN101338452B (en) | 2007-07-04 | 2011-06-22 | 清华大学 | High-density carbon nanotube array and method for preparing same |
CN101353785B (en) * | 2007-07-25 | 2010-09-29 | 清华大学;鸿富锦精密工业(深圳)有限公司 | Preparation of high-density carbon nano-tube array composite material |
CN101372614B (en) | 2007-08-24 | 2011-06-08 | 清华大学 | Carbon nano-tube array composite heat-conducting fin and manufacturing method thereof |
US20090081441A1 (en) * | 2007-09-20 | 2009-03-26 | Lockheed Martin Corporation | Fiber Tow Comprising Carbon-Nanotube-Infused Fibers |
CN101425583B (en) * | 2007-11-02 | 2011-06-08 | 清华大学 | Fuel cell membrane electrode and preparation thereof |
JP4581146B2 (en) | 2008-04-16 | 2010-11-17 | 日本ゼオン株式会社 | Manufacturing apparatus and manufacturing method of aligned carbon nanotube assembly |
CN101591015B (en) | 2008-05-28 | 2013-02-13 | 清华大学 | Preparation method of banded carbon nano tube film |
TWI412491B (en) * | 2008-06-13 | 2013-10-21 | Hon Hai Prec Ind Co Ltd | Method for making carbon nanotube strip-shaped film |
US20100210456A1 (en) * | 2009-02-13 | 2010-08-19 | Babcock & Wilcox Technical Services Y-12, Llc | Catalytic Materials for Fabricating Nanostructures |
US8318250B2 (en) | 2009-02-13 | 2012-11-27 | Babcock & Wilcox Technical Services Y-12, Llc | Anchored nanostructure materials and method of fabrication |
WO2010093932A2 (en) * | 2009-02-13 | 2010-08-19 | Babcock & Wilcox Technical Services Y-12, Llc | Anchored nanostructure materials and ball milling method of fabrication |
WO2010093926A2 (en) | 2009-02-13 | 2010-08-19 | Babcock & Wilcox Technical Services Y-12, Llc | Composite materials formed with anchored nanostructures |
WO2010141113A2 (en) * | 2009-02-13 | 2010-12-09 | Babcock & Wilcox Technical Services Y-12, Llc | Nano-material and method of fabrication |
EP2398955A4 (en) | 2009-02-17 | 2014-03-05 | Applied Nanostructured Sols | Composites comprising carbon nanotubes on fiber |
CA2752525C (en) | 2009-02-27 | 2017-05-16 | Applied Nanostructured Solutions, Llc | Low temperature cnt growth using gas-preheat method |
US20100227134A1 (en) | 2009-03-03 | 2010-09-09 | Lockheed Martin Corporation | Method for the prevention of nanoparticle agglomeration at high temperatures |
US20100260998A1 (en) * | 2009-04-10 | 2010-10-14 | Lockheed Martin Corporation | Fiber sizing comprising nanoparticles |
BRPI1013704A2 (en) | 2009-04-17 | 2016-04-05 | Seerstone Llc | method to produce solid carbon by reducing carbon oxides |
WO2010124260A1 (en) | 2009-04-24 | 2010-10-28 | Lockheed Martin Corporation | Cnt-infused emi shielding composite and coating |
US9111658B2 (en) | 2009-04-24 | 2015-08-18 | Applied Nanostructured Solutions, Llc | CNS-shielded wires |
BRPI1014711A2 (en) | 2009-04-27 | 2016-04-12 | Applied Nanostrctured Solutions Llc | cnt-based resistance heating to defrost composite structures |
KR20120036890A (en) | 2009-08-03 | 2012-04-18 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | Incorporation of nanoparticles in composite fibers |
CA2779489A1 (en) * | 2009-11-02 | 2011-05-05 | Applied Nanostructured Solutions, Llc | Cnt-infused aramid fiber materials and process therefor |
CA2775619A1 (en) | 2009-11-23 | 2011-05-26 | Applied Nanostructured Solutions, Llc | Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof |
EP2504226A4 (en) | 2009-11-23 | 2014-10-15 | Applied Nanostructured Sols | Cnt-tailored composite air-based structures |
WO2011142785A2 (en) | 2009-12-14 | 2011-11-17 | Applied Nanostructured Solutions, Llc | Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials |
EP2619767A2 (en) | 2010-09-23 | 2013-07-31 | Applied NanoStructured Solutions, LLC | Cnt-infused fiber as a self shielding wire for enhanced power transmission line |
US9167736B2 (en) | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
WO2011146151A2 (en) | 2010-02-02 | 2011-11-24 | Applied Nanostructured Solutions, Llc | Fiber containing parallel-aligned carbon nanotubes |
US8665581B2 (en) | 2010-03-02 | 2014-03-04 | Applied Nanostructured Solutions, Llc | Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof |
AU2011223743A1 (en) | 2010-03-02 | 2012-08-30 | Applied Nanostructured Solutions,Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
US8780526B2 (en) | 2010-06-15 | 2014-07-15 | Applied Nanostructured Solutions, Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
CA2712051A1 (en) * | 2010-08-12 | 2012-02-12 | The Governors Of The University Of Alberta | Method of fabricating a carbon nanotube array |
US9017854B2 (en) | 2010-08-30 | 2015-04-28 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
EP2616189A4 (en) | 2010-09-14 | 2016-08-31 | Applied Nanostructured Sols | Glass substrates having carbon nanotubes grown thereon and methods for production thereof |
CA2809285A1 (en) | 2010-09-22 | 2012-03-29 | Applied Nanostructured Solutions, Llc | Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof |
CN102249216A (en) * | 2011-06-10 | 2011-11-23 | 电子科技大学 | Method for affecting growth morphology of carbon nanotubes by controlling hydrolysis degree |
US8609189B2 (en) | 2011-09-28 | 2013-12-17 | King Abdulaziz University | Method of forming carbon nanotubes from carbon-rich fly ash |
CN102530828A (en) * | 2012-01-09 | 2012-07-04 | 重庆大学 | Surface-enhanced Raman scattering active substrate based on carbon nanometer pipe arrays and metal nanometer particles |
US9085464B2 (en) | 2012-03-07 | 2015-07-21 | Applied Nanostructured Solutions, Llc | Resistance measurement system and method of using the same |
WO2013158158A1 (en) | 2012-04-16 | 2013-10-24 | Seerstone Llc | Methods for treating an offgas containing carbon oxides |
JP2015514669A (en) | 2012-04-16 | 2015-05-21 | シーアストーン リミテッド ライアビリティ カンパニー | Method for producing solid carbon by reducing carbon dioxide |
EP2838838A4 (en) | 2012-04-16 | 2015-10-21 | Seerstone Llc | Methods and systems for capturing and sequestering carbon and for reducing the mass of carbon oxides in a waste gas stream |
NO2749379T3 (en) | 2012-04-16 | 2018-07-28 | ||
WO2013158156A1 (en) | 2012-04-16 | 2013-10-24 | Seerstone Llc | Methods and structures for reducing carbon oxides with non-ferrous catalysts |
US9896341B2 (en) | 2012-04-23 | 2018-02-20 | Seerstone Llc | Methods of forming carbon nanotubes having a bimodal size distribution |
US9656246B2 (en) * | 2012-07-11 | 2017-05-23 | Carbice Corporation | Vertically aligned arrays of carbon nanotubes formed on multilayer substrates |
WO2014011631A1 (en) | 2012-07-12 | 2014-01-16 | Seerstone Llc | Solid carbon products comprising carbon nanotubes and methods of forming same |
CN107215882A (en) | 2012-07-13 | 2017-09-29 | 赛尔斯通股份有限公司 | Method and system for forming ammonia and solid carbon product |
US9779845B2 (en) | 2012-07-18 | 2017-10-03 | Seerstone Llc | Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same |
US9650251B2 (en) | 2012-11-29 | 2017-05-16 | Seerstone Llc | Reactors and methods for producing solid carbon materials |
ES2663666T3 (en) | 2013-02-28 | 2018-04-16 | N12 Technologies, Inc. | Nanostructure film cartridge based dispensing |
EP3129321A4 (en) | 2013-03-15 | 2017-12-20 | Seerstone LLC | Electrodes comprising nanostructured carbon |
US10086349B2 (en) | 2013-03-15 | 2018-10-02 | Seerstone Llc | Reactors, systems, and methods for forming solid products |
US9783416B2 (en) | 2013-03-15 | 2017-10-10 | Seerstone Llc | Methods of producing hydrogen and solid carbon |
US9783421B2 (en) | 2013-03-15 | 2017-10-10 | Seerstone Llc | Carbon oxide reduction with intermetallic and carbide catalysts |
EP3129133A4 (en) | 2013-03-15 | 2018-01-10 | Seerstone LLC | Systems for producing solid carbon by reducing carbon oxides |
CN104071767A (en) * | 2013-03-25 | 2014-10-01 | 苏州捷迪纳米科技有限公司 | Treating method for carbon nanotube growth substrate |
JP2015145317A (en) * | 2014-01-31 | 2015-08-13 | ヤマハ株式会社 | Device for producing carbon nanotube |
JP2015160747A (en) * | 2014-02-25 | 2015-09-07 | ヤマハ株式会社 | Carbon nano-tube production apparatus |
JP2015174775A (en) * | 2014-03-12 | 2015-10-05 | ヤマハ株式会社 | Production apparatus of carbon nanotube |
BR112018072800A2 (en) | 2016-05-31 | 2019-03-12 | Massachusetts Inst Technology | Nonlinear composite articles comprising elongated nanostructures and methods associated |
CN106211528A (en) * | 2016-06-20 | 2016-12-07 | 青岛科技大学 | A kind of method preparing CNT antistatic film |
TW201834960A (en) | 2017-03-06 | 2018-10-01 | 美商卡爾拜斯有限公司 | Carbon nanotube-based thermal interface materials and methods of making and using thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5872422A (en) * | 1995-12-20 | 1999-02-16 | Advanced Technology Materials, Inc. | Carbon fiber-based field emission devices |
EP0904195B1 (en) * | 1996-05-15 | 2004-02-18 | Hyperion Catalysis International, Inc. | Rigid porous carbon structures, methods of making, methods of using and products containing same |
US6129901A (en) * | 1997-11-18 | 2000-10-10 | Martin Moskovits | Controlled synthesis and metal-filling of aligned carbon nanotubes |
US6863942B2 (en) * | 1998-06-19 | 2005-03-08 | The Research Foundation Of State University Of New York | Free-standing and aligned carbon nanotubes and synthesis thereof |
US6232706B1 (en) * | 1998-11-12 | 2001-05-15 | The Board Of Trustees Of The Leland Stanford Junior University | Self-oriented bundles of carbon nanotubes and method of making same |
US6599961B1 (en) * | 2000-02-01 | 2003-07-29 | University Of Kentucky Research Foundation | Polymethylmethacrylate augmented with carbon nanotubes |
JP4483152B2 (en) * | 2001-11-27 | 2010-06-16 | 富士ゼロックス株式会社 | Hollow graphene sheet structure, electrode structure, manufacturing method thereof, and device |
-
2002
- 2002-11-29 CN CNB021521093A patent/CN1290763C/en active IP Right Grant
-
2003
- 2003-04-08 US US10/410,069 patent/US20040105807A1/en not_active Abandoned
- 2003-06-12 JP JP2003168328A patent/JP2004182581A/en active Pending
-
2006
- 2006-08-30 JP JP2006234173A patent/JP2006347878A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8533945B2 (en) | 2007-03-29 | 2013-09-17 | Fujitsu Semiconductor Limited | Wiring structure and method of forming the same |
CN102207574A (en) * | 2007-03-30 | 2011-10-05 | 清华大学 | Polarization element and manufacturing method thereof |
CN102207575A (en) * | 2007-03-30 | 2011-10-05 | 清华大学 | Polarizing element and manufacturing method thereof |
CN102207574B (en) | 2007-03-30 | 2013-04-10 | 清华大学 | Polarization element and manufacturing method thereof |
TWI667835B (en) * | 2017-04-24 | 2019-08-01 | 鴻海精密工業股份有限公司 | Method for making lithium-ion battery anode |
Also Published As
Publication number | Publication date |
---|---|
US20040105807A1 (en) | 2004-06-03 |
JP2004182581A (en) | 2004-07-02 |
JP2006347878A (en) | 2006-12-28 |
CN1504407A (en) | 2004-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cantoro et al. | Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures | |
US7854991B2 (en) | Single-walled carbon nanotube and aligned single-walled carbon nanotube bulk structure, and their production process, production apparatus and application use | |
Öncel et al. | Carbon nanotube synthesis via the catalytic CVD method: a review on the effect of reaction parameters | |
KR101622306B1 (en) | Graphene sheet, substrate comprising graphene sheet and process for preparing these materials | |
KR101289256B1 (en) | Methods for growing and harvesting carbon nanotubes | |
US9534312B2 (en) | Single crystalline graphene sheet and process of preparing the same | |
JP5470610B2 (en) | Graphene sheet manufacturing method | |
Teo et al. | Catalytic synthesis of carbon nanotubes and nanofibers | |
CN101365650B (en) | Bulk assembly of oriented carbon nanotube | |
TWI299320B (en) | Production of carbon nanotubes | |
Zheng et al. | Plasma‐Assisted Approaches in Inorganic Nanostructure Fabrication | |
Vander Wal et al. | Carbon nanotube synthesis upon stainless steel meshes | |
KR20120007998A (en) | Low-temperature forming method of graphene, and direct transfer of graphene and graphene sheet using the same | |
JP3363759B2 (en) | Carbon nanotube device and manufacturing method thereof | |
US8124503B2 (en) | Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces | |
JP3850380B2 (en) | Carbon nanotube matrix growth method | |
US8153240B2 (en) | Carbon nanostructures and methods of making and using the same | |
CN100482580C (en) | Preparation device of carbon nano-tube and its method | |
US7235159B2 (en) | Methods for producing and using catalytic substrates for carbon nanotube growth | |
KR100376197B1 (en) | Low temperature synthesis of carbon nanotubes using metal catalyst layer for decompsing carbon source gas | |
US20070009421A1 (en) | Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip | |
US20110244210A1 (en) | Graphene sheet and method of preparing the same | |
JP3491747B2 (en) | Manufacturing process and catalyst of carbon nano coils | |
JP4811712B2 (en) | Carbon nanotube bulk structure and manufacturing method thereof | |
JP5700606B2 (en) | Powdered single-walled carbon nanotube aligned assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
C10 | Entry into substantive examination | ||
C14 | Grant of patent or utility model |