CN1286126C - Iron-cobalt alloy nano linear array permanent-magnetic film material and its preparation - Google Patents
Iron-cobalt alloy nano linear array permanent-magnetic film material and its preparation Download PDFInfo
- Publication number
- CN1286126C CN1286126C CN03158372.5A CN03158372A CN1286126C CN 1286126 C CN1286126 C CN 1286126C CN 03158372 A CN03158372 A CN 03158372A CN 1286126 C CN1286126 C CN 1286126C
- Authority
- CN
- China
- Prior art keywords
- iron
- cobalt alloy
- cobalt
- film material
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 239000000463 material Substances 0.000 title claims abstract description 25
- 229910000531 Co alloy Inorganic materials 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title description 2
- 239000002070 nanowire Substances 0.000 claims abstract description 49
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 14
- 239000000956 alloy Substances 0.000 claims abstract description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 13
- 230000003647 oxidation Effects 0.000 claims abstract description 13
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 13
- 238000004070 electrodeposition Methods 0.000 claims description 8
- 239000011148 porous material Substances 0.000 claims description 6
- RIVZIMVWRDTIOQ-UHFFFAOYSA-N cobalt iron Chemical compound [Fe].[Co].[Co].[Co] RIVZIMVWRDTIOQ-UHFFFAOYSA-N 0.000 claims 2
- 238000009415 formwork Methods 0.000 claims 1
- 239000010409 thin film Substances 0.000 abstract description 19
- 238000000137 annealing Methods 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 5
- 238000000151 deposition Methods 0.000 abstract description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 abstract description 4
- 229910017052 cobalt Inorganic materials 0.000 abstract description 3
- 239000010941 cobalt Substances 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 230000005415 magnetization Effects 0.000 description 9
- 238000003491 array Methods 0.000 description 7
- 238000005234 chemical deposition Methods 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- -1 iron ions Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910001429 cobalt ion Inorganic materials 0.000 description 3
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 229910017061 Fe Co Inorganic materials 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 150000001868 cobalt Chemical class 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910002546 FeCo Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Hard Magnetic Materials (AREA)
- Thin Magnetic Films (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
铁-钴合金纳米线阵列永磁薄膜材料,在电化学阳极氧化的氧化铝纳米孔洞模板中电化学沉积的铁钴合金纳米线阵列,铁钴合金纳米线的直径在10nm~50nm,铁-钴合金的组成为CoxFe1-x,0.20≤x≤0.60。本发明利用电化学阳极氧化的方法制备氧化铝纳米孔洞模板,用电化学沉积铁钴合金纳米线阵列和低温退火的方法,获得了高性能的铁钴合金纳米线阵列永磁薄膜材料。尤其是在钴的含量为30%~40%,纳米线直径为10nm~22nm时,性能最好。Iron-cobalt alloy nanowire array permanent magnet thin film material, iron-cobalt alloy nanowire array electrochemically deposited in the electrochemical anodized alumina nanohole template, the diameter of the iron-cobalt alloy nanowire is 10nm to 50nm, iron-cobalt The composition of the alloy is Co x Fe 1-x , 0.20≤x≤0.60. The invention utilizes an electrochemical anodic oxidation method to prepare aluminum oxide nano hole templates, and obtains a high-performance iron-cobalt alloy nanowire array permanent magnetic thin film material by electrochemically depositing an iron-cobalt alloy nanowire array and low-temperature annealing. Especially when the content of cobalt is 30%-40% and the diameter of the nanowire is 10nm-22nm, the performance is the best.
Description
一、技术领域1. Technical field
本发明涉及一种铁-钴合金纳米线阵列永磁薄膜材料的组成。The invention relates to the composition of an iron-cobalt alloy nano wire array permanent magnet thin film material.
二、背景技术2. Background technology
永磁薄膜可广泛应用于微电机系统、集成电子器件、磁头等领域,利用永磁薄膜组成微型电机、制动装置、微型泵和其他一些装置。随着电子器件的微型化,永磁薄膜的研究受到广泛关注和迅速发展。对永磁薄膜选择标准是1)好的磁学性能:大的磁能积、高的居里温度、Hc和Br具有低的温度系数。2)可以通过溅射沉积和化学沉积的办法获得,最后可采用化学沉积的办法获得。3)具有好的环境稳定性:良好的机械性能和抗氧化性能。目前,研究的永磁薄膜材料主要包括稀土永磁、过渡金属永磁和铁氧体永磁。稀土永磁具有好的永磁性能,但Hc和Br的温度系数高,抗氧化性能差,而且不能采用化学沉积的办法获得。铁氧体永磁虽然具有好的抗氧化性能,但磁能积偏低(低于5MGOe),Hc和Br的温度系数高,而且难以采用化学沉积的办法获得。过渡金属永磁具有良好的抗氧化性能,可采用化学沉积和溅射沉积的办法获得,但永磁性能大都偏低(低于4MGOe),只是近年在Pt-Fe和Pt-Co合金溅射膜研究中获得了大的磁能积(接近40MGOe),在永磁薄膜中具有良好的应用前景。但这种永磁薄膜需要大量的贵金属Pt,价格昂贵,而且Hc和Br温度系数偏高,这类永磁薄膜材料只能在某些特定场合使用。Permanent magnetic thin films can be widely used in micro-motor systems, integrated electronic devices, magnetic heads and other fields, and use permanent magnetic thin films to form micro-motors, braking devices, micro-pumps and other devices. With the miniaturization of electronic devices, research on permanent magnetic thin films has received widespread attention and developed rapidly. The selection criteria for permanent magnetic films are 1) good magnetic properties: large magnetic energy product, high Curie temperature, Hc and Br have low temperature coefficients. 2) It can be obtained by sputtering deposition and chemical deposition, and finally can be obtained by chemical deposition. 3) It has good environmental stability: good mechanical properties and oxidation resistance. At present, the researched permanent magnet thin film materials mainly include rare earth permanent magnets, transition metal permanent magnets and ferrite permanent magnets. Rare earth permanent magnets have good permanent magnetic properties, but have high temperature coefficients of Hc and Br , poor oxidation resistance, and cannot be obtained by chemical deposition. Although ferrite permanent magnets have good oxidation resistance, their magnetic energy product is low (less than 5MGOe), the temperature coefficients of Hc and Br are high, and it is difficult to obtain them by chemical deposition. Transition metal permanent magnets have good oxidation resistance, which can be obtained by chemical deposition and sputtering deposition, but most of the permanent magnet properties are low (less than 4MGOe). A large magnetic energy product (close to 40MGOe) has been obtained in the research, and it has a good application prospect in permanent magnetic thin films. However, this kind of permanent magnetic thin film needs a large amount of noble metal Pt, which is expensive, and the temperature coefficient of Hc and Br is relatively high. This kind of permanent magnetic thin film material can only be used in some specific occasions.
获得好的永磁性能的材料可以通过两种方法。一是具有大的磁晶各向异性的材料,另一种是具有大的形状各向异性的材料。目前,对上面提到的稀土永磁、过渡金属永磁和铁氧体永磁等永磁薄膜材料的研究都是利用这些材料具有大的磁晶各向异性,而忽略了利用形状各向异性获得好的永磁薄膜材料。由于纳米线有天然的形状各向异性,其易磁化方向一般都沿着纳米线,如果我们做成磁性纳米线阵列薄膜,就很容易得到垂直于膜面方向的磁化。我们知道对于具有大的形状各向异性的永磁材料其矫顽力与饱和磁化强度成正比。也就是说,饱和磁化强度越大,矫顽力也越大,永磁性能也越好。根据Slater-Pauling曲线,铁钴合金的饱和磁化强度Ms随钴原子增加而增加,在钴原子约为30%时磁化强度最大(这是目前发现的过渡金属及合金中具有最大饱和强度的材料),然后随钴的增加而减小。而且在Co含量在大约30%的Fe-Co合金具有良好的抗氧化性能、高的居里温度和低的Hc、Br温度系数。因此,我们利用形状各向异性寻找既具有高饱和磁化强度又具有高矫顽力的Fe-Co合金纳米线阵列,通过调整磁性纳米线所占的面积与整个膜面积的比例,研究纳米线之间的静磁相互作用,我们可以获得最佳的永磁性能,发展一种新型的永磁薄膜材料。Materials with good permanent magnetic properties can be obtained through two methods. One is a material with large magnetocrystalline anisotropy, and the other is a material with large shape anisotropy. At present, the research on permanent magnet thin film materials such as rare earth permanent magnets, transition metal permanent magnets and ferrite permanent magnets mentioned above are all based on the large magnetocrystalline anisotropy of these materials, while ignoring the use of shape anisotropy Obtain good permanent magnet thin film materials. Due to the natural shape anisotropy of nanowires, the easy magnetization direction is generally along the nanowires. If we make a magnetic nanowire array thin film, it is easy to obtain magnetization perpendicular to the film surface. We know that for permanent magnet materials with large shape anisotropy, the coercive force is proportional to the saturation magnetization. In other words, the greater the saturation magnetization, the greater the coercive force and the better the permanent magnetic properties. According to the Slater-Pauling curve, the saturation magnetization M s of iron-cobalt alloys increases with the increase of cobalt atoms, and the magnetization is the highest when the cobalt atoms are about 30% (this is the material with the maximum saturation intensity among the transition metals and alloys found so far ), and then decreases with the increase of cobalt. Moreover, the Fe-Co alloy with a Co content of about 30% has good oxidation resistance, high Curie temperature and low Hc and Br temperature coefficients. Therefore, we use shape anisotropy to find Fe-Co alloy nanowire arrays with both high saturation magnetization and high coercive force, and study the relationship between nanowires by adjusting the ratio of the area occupied by magnetic nanowires to the entire film area. Through the static and magnetic interaction between them, we can obtain the best permanent magnetic performance and develop a new type of permanent magnetic thin film material.
三、发明内容3. Contents of the invention
本发明的目的是:提供一种新型的永磁薄膜材料,从而发展一种永磁性能优良、居里温度高、抗氧化性能好、价格便宜的新型永磁薄膜材料。本发明的目的尤其是提供一种在氧化铝纳米孔洞模板中电化学沉积铁钴纳米线阵列和随后退火制造高性能永磁薄膜材料的方法。The purpose of the present invention is to provide a new type of permanent magnet thin film material, so as to develop a new type of permanent magnet thin film material with excellent permanent magnetic performance, high Curie temperature, good oxidation resistance and low price. The purpose of the present invention is to provide a method for electrochemically depositing iron-cobalt nanowire arrays in alumina nano-hole templates and then annealing to produce high-performance permanent magnetic thin film materials.
本发明的目的是这样实现的:利用电化学阳极氧化的方法制备氧化铝纳米孔洞模板,控制氧化电压的大小,采用磷酸扩孔,获得所需的纳米孔径大小和孔间距。用电化学沉积铁钴合金纳米线阵列,退火后获得性能优良的永磁薄膜材料。铁-钴合金纳米线阵列永磁薄膜材料,具有如下组成的合金CoxFe1-x(0.20≤x≤0.60)。其制备方法是:先以电化学沉积方法将铁钴合金纳米线阵列沉积在氧化铝纳米孔洞模板内,然后在低温(低于600℃)退火,得到高性能的铁钴合金纳米线阵列永磁薄膜材料。铁钴合金纳米线的直径在10nm~50nm,铁钴合金纳米线之间的间距一般在30nm~70nm。The object of the present invention is achieved as follows: the aluminum oxide nano hole template is prepared by electrochemical anodic oxidation, the size of the oxidation voltage is controlled, and phosphoric acid is used to expand the holes to obtain the required nano hole size and hole spacing. Electrochemical deposition of iron-cobalt alloy nanowire arrays is used to obtain permanent magnetic film materials with excellent properties after annealing. The iron-cobalt alloy nanowire array permanent magnet thin film material has the following composition of alloy Co x Fe 1-x (0.20≤x≤0.60). The preparation method is: first deposit the iron-cobalt alloy nanowire array in the alumina nanohole template by electrochemical deposition method, and then anneal at a low temperature (less than 600°C) to obtain a high-performance iron-cobalt alloy nanowire array permanent magnet. film material. The diameter of the iron-cobalt alloy nanowires is 10nm-50nm, and the distance between the iron-cobalt alloy nanowires is generally 30nm-70nm.
本发明的特点是:利用电化学阳极氧化的方法制备氧化铝纳米孔洞模板,用电化学沉积铁钴合金纳米线阵列和低温退火的方法,获得了高性能的铁钴合金纳米线阵列永磁薄膜材料。尤其是在钴的含量为30%~40%,纳米线直径为10nm~22nm时,纳米线有序阵列可获得大的垂直膜面的矫顽力,Hc(⊥)=2.7kOe~2.9kOe,在300℃~600℃退火后,矫顽力Hc增加到3.3kOe~3.8kOe。调节膜面上纳米线与氧化铝所占面积的比例,永磁薄膜材料的磁能积可达6MGOe以上。退火的时间没有特别约定,一般取15-60分。The characteristics of the present invention are: using the electrochemical anodic oxidation method to prepare aluminum oxide nano hole templates, and using the method of electrochemical deposition of iron-cobalt alloy nanowire arrays and low-temperature annealing to obtain high-performance iron-cobalt alloy nanowire array permanent magnet films Material. Especially when the content of cobalt is 30%-40%, and the diameter of nanowires is 10nm-22nm, the ordered array of nanowires can obtain a large coercive force perpendicular to the film surface, H c (⊥)=2.7kOe-2.9kOe , after annealing at 300°C to 600°C, the coercive force H c increases to 3.3kOe to 3.8kOe. By adjusting the ratio of the area occupied by nanowires and alumina on the film surface, the magnetic energy product of the permanent magnetic film material can reach more than 6MGOe. There is no special agreement on the annealing time, generally 15-60 minutes.
用X射线衍射仪分析相结构。采用振动样品磁强计测定磁学性能。扫描电镜进行纳米线成分分析,透射电镜进行纳米线形貌观察。作为例子,Fe0.69Co0.31合金纳米线阵列测量结果如图所示。The phase structure was analyzed by X-ray diffractometer. Magnetic properties were measured using a vibrating sample magnetometer. SEM was used to analyze the composition of the nanowires, and a transmission electron microscope was used to observe the morphology of the nanowires. As an example, the measurement results of Fe 0.69 Co 0.31 alloy nanowire arrays are shown in the figure.
四、附图说明4. Description of drawings
图1为15V阳极氧化的氧化铝模板的透射电镜照片。孔间距约为40nm,孔径约为20nm。Figure 1 is a transmission electron micrograph of a 15V anodized alumina template. The pore spacing is about 40nm, and the pore diameter is about 20nm.
图2为Fe0.69Co0.31合金纳米线阵列的X射线衍射谱,(a)电沉积态,(b)电沉积后在550℃退火20分钟。Figure 2 is the X-ray diffraction spectrum of the Fe 0.69 Co 0.31 alloy nanowire array, (a) electrodeposited state, (b) annealed at 550° C. for 20 minutes after electrodeposition.
图3溶解掉氧化铝后Fe0.69Co0.31合金纳米线的透射电镜照片,纳米线直径约为20nm。Fig. 3 is a transmission electron micrograph of Fe 0.69 Co 0.31 alloy nanowires after dissolving alumina, and the diameter of the nanowires is about 20nm.
图4Fe0.69Co0.31合金纳米线阵列在550℃退火20分钟后的磁滞回线,(a)外加磁场垂直膜面,其矫顽力和剩磁比为垂直膜面的矫顽力和垂直膜面的剩磁比,(b)外加磁场平行膜面,其矫顽力和剩磁比为平行膜面的矫顽力和平行膜面的剩磁比。Figure 4 Hysteresis loops of Fe 0.69 Co 0.31 alloy nanowire arrays annealed at 550℃ for 20 minutes, (a) Applied magnetic field perpendicular to the film surface, the ratio of coercive force and remanence is the coercive force perpendicular to the film surface and the vertical film The remanence ratio of the surface, (b) the external magnetic field is parallel to the film surface, and its coercivity and remanence ratio are the coercive force of the parallel film surface and the remanence ratio of the parallel film surface.
五、具体实施方式5. Specific implementation
以下结合附图并通过实施例对本发明作进一步说明:Below in conjunction with accompanying drawing and by embodiment the present invention will be further described:
铁-钴合金CoxFe1-x(0.20≤x≤0.60)配方有一定范围,本发明尤其以0.25≤x≤0.40的范围配制,这个比例的性能和成本之比最经济,性能上无显著区别。The formula of iron-cobalt alloy Co x Fe 1-x (0.20≤x≤0.60) has a certain range, and the present invention is especially prepared in the range of 0.25≤x≤0.40. The ratio of performance and cost of this ratio is the most economical, and there is no significant performance the difference.
本发明以下述方法制造:用电化学阳极氧化的方法制备氧化铝纳米孔洞模板,电解液为2%-15%的硫酸水溶液,电压为10V~27V,采用磷酸扩孔。用纳米孔洞的氧化铝作为模板,电沉积溶液为含铁离子和钴离子的水溶液,通过交流电化学沉积获得CoxFe1-x(0.20≤x≤0.60)合金纳米线阵列,随后退火。电沉积溶液为含铁离子和钴离子的硫酸水溶液,铁-钴合金CoxFe1-x(0.20≤x≤0.60)配方通过铁和钴的酸盐的摩尔比来实现,实际上合金组成会略有变化。铁离子和钴离子的溶液一般为无机盐溶液,如硫酸盐(亚铁)等,当然也可以是有机酸铁盐或钴盐,可以配制成溶液。均在室温条件或略为加温均可。然后在低温(低于600℃)退火铁-钴合金纳米线阵列,获得高性能的铁钴合金纳米线永磁薄膜材料。现有技术可以提供不同的纳米孔洞的氧化铝模板,纳米孔洞的直径不同得到的纳米线直径亦不同,当然与电化学过程的时间亦有差别,一般取纳米线直径在15nm~25nm较优。The invention is manufactured by the following method: the aluminum oxide nano hole template is prepared by electrochemical anodic oxidation, the electrolytic solution is 2%-15% sulfuric acid aqueous solution, the voltage is 10V-27V, and phosphoric acid is used to expand the pores. Using nanoporous alumina as a template, the electrodeposition solution is an aqueous solution containing iron ions and cobalt ions, and the Co x Fe 1-x (0.20≤x≤0.60) alloy nanowire array is obtained by alternating current electrochemical deposition, followed by annealing. The electrodeposition solution is a sulfuric acid aqueous solution containing iron ions and cobalt ions. The formula of the iron-cobalt alloy Co x Fe 1-x (0.20≤x≤0.60) is realized by the molar ratio of iron and cobalt salts. In fact, the composition of the alloy will vary. Slight changes. The solution of iron ions and cobalt ions is generally an inorganic salt solution, such as sulfate (ferrous), and of course it can also be an organic acid iron salt or cobalt salt, which can be prepared into a solution. All can be at room temperature or slightly heated. Then anneal the iron-cobalt alloy nanowire array at a low temperature (below 600° C.), to obtain a high-performance iron-cobalt alloy nanowire permanent magnetic thin film material. The existing technology can provide alumina templates with different nanoholes. The diameters of nanowires obtained with different diameters of nanoholes are also different. Of course, there are also differences with the time of the electrochemical process. Generally, the diameter of nanowires is 15nm-25nm is better.
以实际得到Co0.31Fe0.69电压为15V阳极氧化,在550℃温度下退火20分钟为例讨论:Take the actual Co 0.31 Fe 0.69 anodic oxidation at 15V and annealing at 550°C for 20 minutes as an example to discuss:
(1)氧化铝模板的结构:纳米孔间距为40nm,孔径为20nm,孔洞所占的面积为整个薄膜面积的19.6%。(1) The structure of the alumina template: the distance between the nanopores is 40nm, the diameter of the pores is 20nm, and the area occupied by the pores is 19.6% of the entire film area.
(2)铁-钴合金的晶体结构和微结构:铁-钴合金具有体心立方结构,平行纳米线方向具有<110>结构。纳米线直径平均约为20nm,长度平均约为2μm以上。孔洞被填进FeCo合金纳米线的填充率约为95%。(2) Crystal structure and microstructure of iron-cobalt alloy: iron-cobalt alloy has a body-centered cubic structure, and a <110> structure parallel to the nanowire direction. The average diameter of the nanowires is about 20 nm, and the average length is about 2 μm or more. The holes are filled into FeCo alloy nanowires with a filling rate of about 95%.
(3)磁性:(3) Magnetic:
(i)纳米线易磁化方向垂直膜面(即平行纳米线),垂直膜面方向的剩磁比(Mr/Ms)高于90%以上,退火后剩磁比(Mr/Ms)为95%。(i) The easy magnetization direction of the nanowire is perpendicular to the film surface (i.e. parallel to the nanowire), the remanence ratio (M r /M s ) in the direction perpendicular to the film surface is higher than 90%, and the remanence ratio (M r /M s ) after annealing ) is 95%.
(ii)纳米线有序阵列垂直膜面的矫顽力Hc(⊥)=2.7kOe,退火后,矫顽力Hc(⊥)增加到3.6kOe,Mr/Ms为95%。按照填充的磁性纳米线在整个膜面上所占面积的比例和块体Co31Fe69合金的饱和磁化强度,可得到纳米线有序阵列薄膜的磁能积高于6MGOe。(ii) The coercive force H c (⊥) of the nanowire ordered array perpendicular to the film plane is 2.7kOe, after annealing, the coercive force H c (⊥) increases to 3.6kOe, and the M r /M s is 95%. According to the ratio of the area occupied by the filled magnetic nanowires on the entire film surface and the saturation magnetization of the bulk Co 31 Fe 69 alloy, the magnetic energy product of the nanowire ordered array film is higher than 6MGOe.
(iii)Co0.20Fe0.8和Co0.6Fe0.4纳米线有序阵列的磁性能低于上述实施例。(iii) The magnetic properties of the Co 0.20 Fe 0.8 and Co 0.6 Fe 0.4 nanowire ordered arrays are lower than those of the above examples.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN03158372.5A CN1286126C (en) | 2003-09-29 | 2003-09-29 | Iron-cobalt alloy nano linear array permanent-magnetic film material and its preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN03158372.5A CN1286126C (en) | 2003-09-29 | 2003-09-29 | Iron-cobalt alloy nano linear array permanent-magnetic film material and its preparation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1529330A CN1529330A (en) | 2004-09-15 |
CN1286126C true CN1286126C (en) | 2006-11-22 |
Family
ID=34287275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN03158372.5A Expired - Fee Related CN1286126C (en) | 2003-09-29 | 2003-09-29 | Iron-cobalt alloy nano linear array permanent-magnetic film material and its preparation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1286126C (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100428376C (en) * | 2005-08-23 | 2008-10-22 | 兰州大学 | Method and material for controlling temperature stability of magnetic parameters of magnetic materials |
CN100369703C (en) * | 2006-03-28 | 2008-02-20 | 华中师范大学 | A kind of iron nanowire and preparation method thereof |
CN101692364B (en) * | 2009-10-12 | 2012-09-05 | 钢铁研究总院 | One-dimensional permanent magnetic nano-material, in which hard magnetic tubes are coated with soft magnetic wires and preparation method thereof |
CN102732963B (en) * | 2011-04-15 | 2015-03-04 | 中国科学技术大学 | Preparation method of monocrystalline metal nanowire array based on alumina template |
CN102543357B (en) * | 2012-01-16 | 2013-05-29 | 兰州大学 | Material with giant magneto-impedance effect and preparation method |
CN103882489B (en) * | 2014-02-17 | 2017-01-18 | 瑞安市浙工大技术转移中心 | Preparation method of magnetic alloy nanowire with diameter gradient |
CN103882479B (en) * | 2014-02-17 | 2016-09-21 | 瑞安市浙工大技术转移中心 | Preparation method with the magnetic alloy nano wire of diameter gradient |
CN104846411B (en) * | 2015-04-27 | 2017-08-25 | 北京航空航天大学 | The method and its product of flower-like nanometer metal cobalt are prepared using anodic oxidation aluminium formwork |
CN108597710B (en) * | 2018-04-13 | 2019-08-30 | 中国计量大学 | A kind of preparation method of samarium iron nitrogen magnetic nano array |
-
2003
- 2003-09-29 CN CN03158372.5A patent/CN1286126C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1529330A (en) | 2004-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qin et al. | Differences in the magnetic properties of Co, Fe, and Ni 250− 300 nm wide nanowires electrodeposited in amorphous anodized alumina templates | |
Hua et al. | CoFe2O4 nanowire arrays prepared by template-electrodeposition method and further oxidization | |
Han et al. | Structural and magnetic properties of various ferromagnetic nanotubes | |
CN1286126C (en) | Iron-cobalt alloy nano linear array permanent-magnetic film material and its preparation | |
JP2018193607A (en) | Metal nano-spring and method for producing the same | |
Thanikaikarasan et al. | Role of substrate on film thickness, structural, compositional and magnetic properties of CoNi alloy thin films by low temperature electrodeposition technique | |
Neetzel et al. | Uniaxial magnetization performance of textured Fe nanowire arrays electrodeposited by a pulsed potential deposition technique | |
Chiriac et al. | Preparation and magnetic properties of electrodeposited magnetic nanowires | |
Irfan et al. | Magnetic investigations of post-annealed metallic Fe nanowires via electrodeposition method | |
Neetzel et al. | Uniaxial magnetization reversal process in electrodeposited high-density iron nanowire arrays with ultra-large aspect ratio | |
Li et al. | Fabrication and magnetic investigations of highly uniform CoNiGa alloy nanowires | |
Song et al. | Growth of single-crystalline Co7Fe3 nanowires via electrochemical deposition and their magnetic properties | |
Yang et al. | Electrochemical fabrication and magnetic properties of Fe 7 Co 3 alloy nanowire array | |
Li et al. | Fabrication and magnetic properties of amorphous Co0. 71Pt0. 29 nanowire arrays | |
Agarwal et al. | Effect of pH and boric acid on magnetic properties of electrodeposited Co nanowires | |
Gayen et al. | Diameter-dependent coercivity of cobalt nanowires | |
Shamaila et al. | Magnetic field annealing dependent magnetic properties of Co90Pt10 nanowire arrays | |
Saadinia et al. | Fabrication and magnetic properties of pulse electrodeposited FeSn nanowire arrays | |
CN1397932A (en) | Fe-Co alloy nanoline array as high-density magnetic perpendicualr recording material and its preparing process | |
Shaterabadi et al. | Modification of microstructure and magnetic properties of electrodeposited Co nanowire arrays: A study of the effect of external magnetic field, electrolyte acidity and annealing process | |
Xu et al. | Fabrication of FeCo and CoFe2O4 nanowire arrays and magnetic properties | |
Riva et al. | Low temperature ferromagnetism in Rh-rich Fe-Rh granular nanowires | |
Khan et al. | Structural, magnetic and electrical investigations of Fe1─ XMnX (0≤ x≤ 0.39) alloy nanowires via electrodeposition in AAO templates | |
Akhtarianfar et al. | The effect of barrier layer conditions on the electrodeposition efficiency and magnetic properties of Fe nanowire arrays | |
Agarwal et al. | Structure and magnetic properties of electrodeposited CoPtP/Pt multilayer nanowires |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |