CN1285840C - Permanent magnetism biased radial magnetic bearing in external rotor - Google Patents
Permanent magnetism biased radial magnetic bearing in external rotor Download PDFInfo
- Publication number
- CN1285840C CN1285840C CNB2005100116901A CN200510011690A CN1285840C CN 1285840 C CN1285840 C CN 1285840C CN B2005100116901 A CNB2005100116901 A CN B2005100116901A CN 200510011690 A CN200510011690 A CN 200510011690A CN 1285840 C CN1285840 C CN 1285840C
- Authority
- CN
- China
- Prior art keywords
- magnetic
- permanent magnet
- stator
- magnet
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005389 magnetism Effects 0.000 title 1
- 230000005284 excitation Effects 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims description 6
- 239000000696 magnetic material Substances 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 2
- 150000002910 rare earth metals Chemical class 0.000 claims description 2
- 229910000859 α-Fe Inorganic materials 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 1
- 230000002349 favourable effect Effects 0.000 abstract 1
- 125000006850 spacer group Chemical group 0.000 description 7
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000004323 axial length Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2300/00—Application independent of particular apparatuses
- F16C2300/20—Application independent of particular apparatuses related to type of movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0459—Details of the magnetic circuit
- F16C32/0461—Details of the magnetic circuit of stationary parts of the magnetic circuit
- F16C32/0465—Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0474—Active magnetic bearings for rotary movement
- F16C32/0487—Active magnetic bearings for rotary movement with active support of four degrees of freedom
Landscapes
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Description
所属技术领域Technical field
本发明涉及一种非接触磁悬浮轴承,特别是一种永磁偏置外转子径向磁轴承,可作为电机、机床等机械设备中旋转部件的无接触支撑。The invention relates to a non-contact magnetic suspension bearing, in particular to a permanent magnetic bias outer rotor radial magnetic bearing, which can be used as a non-contact support for rotating parts in mechanical equipment such as motors and machine tools.
背景技术Background technique
磁悬浮轴承分纯电磁式和永磁偏置加电磁控制的混合式磁悬浮轴承,前者使用电流大、功耗大,永磁偏置加电磁控制的混合式磁悬浮轴承,永磁体产生的磁场承担主要的承载力,电磁磁场提供辅助的调节承载力,因而这种轴承可大大减小控制电流,降低损耗。但目前的永磁偏置外转子径向磁轴承结构主要有以下几种:其一是在普通径向电磁轴承的基础上,在电磁磁路上放置永磁体,这样控制线圈所产生的磁通要穿过永磁体内部,由于永磁体磁阻很大,因而控制线圈要产生一定的电磁磁通需要较大的激磁电流,其二是将永磁体直接与定子叠片铁心相连,这样永磁磁路在穿过定子铁心时会损失过多的磁动势,因而会大大削弱永磁体对转子轴的吸力,其三是一个定子铁心组成4个磁极,2个定子铁心组成磁轴承左右两端8个磁极,每个定子铁心上绕制有线圈,转子铁心通过外导磁环相连,转子铁心内部为定子铁心,转子铁心内表面与定子铁心外表面留有一定的空气隙,内导磁环安装在定子铁心内部,永磁体位于两个内导磁环中间,两个内导磁环将左右两端定子铁心连接起来,形成磁通路,这种结构可以使得电励磁磁路不经过永磁体,而且避免了永磁体直接与叠片的定子铁心相连,但是由于电励磁磁路在X方向和Y方向上存在着严重的耦合,因而会使磁轴承的控制难度增大。鉴于上述原因,现有的永磁偏置外转子径向磁轴承存在X方向和Y方向耦合严重的缺点。Magnetic suspension bearings are divided into pure electromagnetic bearings and hybrid magnetic suspension bearings with permanent magnetic bias and electromagnetic control. The former uses large current and consumes a lot of power, and the hybrid magnetic suspension bearings with permanent magnetic bias and electromagnetic control. The magnetic field generated by the permanent magnet bears the main load. Bearing capacity, the electromagnetic field provides auxiliary adjustment bearing capacity, so this kind of bearing can greatly reduce the control current and reduce the loss. However, the current permanent magnet bias external rotor radial magnetic bearing structure mainly has the following types: one is to place permanent magnets on the electromagnetic magnetic circuit on the basis of ordinary radial electromagnetic bearings, so that the magnetic flux generated by the control coil needs to be Through the interior of the permanent magnet, because the permanent magnet has a large reluctance, the control coil needs a large excitation current to generate a certain electromagnetic flux. The second is to connect the permanent magnet directly to the stator laminated core, so that the permanent magnetic circuit Excessive magnetomotive force will be lost when passing through the stator core, which will greatly weaken the attraction force of the permanent magnet to the rotor shaft. The third is that a stator core forms 4 magnetic poles, and 2 stator cores form 8 magnetic bearings at the left and right ends. Magnetic poles, each stator core is wound with a coil, the rotor core is connected through the outer magnetic ring, the inside of the rotor core is the stator core, and there is a certain air gap between the inner surface of the rotor core and the outer surface of the stator core, and the inner magnetic ring is installed on the Inside the stator core, the permanent magnet is located in the middle of the two inner magnetic rings, and the two inner magnetic rings connect the left and right ends of the stator core to form a magnetic path. This structure can make the electric excitation magnetic circuit not pass through the permanent magnet, and avoid The permanent magnet is directly connected to the laminated stator core, but due to the serious coupling of the electric excitation magnetic circuit in the X direction and the Y direction, it will make the control of the magnetic bearing more difficult. In view of the above reasons, the existing permanent magnet bias external rotor radial magnetic bearing has the disadvantage of severe coupling in the X direction and the Y direction.
发明内容Contents of the invention
本发明的技术解决问题是:克服现有技术的不足,提供一种X方向和Y方向耦合小、易于控制、性能可靠的永磁偏置外转子径向磁轴承。The technical problem of the present invention is: to overcome the deficiencies of the prior art, to provide a radial magnetic bearing with permanent magnet bias outer rotor with small coupling in X direction and Y direction, easy to control and reliable performance.
本发明的技术解决方案为:永磁偏置外转子径向磁轴承,由外导磁环、永磁体、定子铁心、激磁线圈、内导磁体、转子铁心组成,其特征在于:4个定子铁心组成了轴端径向平面内X、Y正负方向上的4个定子磁极,它们之间通过内导磁体和内隔磁体连接,8个定子铁心组成磁轴承左右两端8个磁极,每个定子磁极绕制有激磁线圈,定子铁心外部为转子铁心,转子铁心外部为外导磁环,转子铁心内表面与定子铁心外表面留有一定的间隙,形成空气隙,永磁体位于内导磁体的轴向之间,在位于永磁体轴向两侧的内导磁体之间形成第二气隙,其长度应大于2倍空气隙的长度,用以构成电励磁磁路。The technical solution of the present invention is: permanent magnet bias outer rotor radial magnetic bearing, which is composed of an outer magnetic ring, a permanent magnet, a stator core, an excitation coil, an inner magnetic body, and a rotor core, and is characterized in that: 4
上述方案的原理是:永磁体通过内导磁体、定子铁心、气隙、转子铁心、外导磁环构成磁路,用以给磁轴承提供永磁偏置磁场,承担磁轴承所受的径向力;由于第二气隙的存在,使得电励磁磁路通过内导磁体、定子铁心、气隙、转子铁心、外导磁环和第二气隙构成回路;其中第二气隙的长度应稍大于2倍空气隙的长度,这是为了减少永磁体通过第二气隙构成磁路产生的磁通损失。由于定子铁心之间用内隔磁体隔开,可以使得电励磁磁路不会在X方向和Y方向上产生耦合,使得对磁轴承的控制更加容易。以Y轴正向磁路为例,本发明的永磁磁路为:磁通从永磁体N极出发,通过一端内导磁体、定子铁心、气隙、转子铁心、外导磁环到另一端的转子铁心、气隙、定子铁心、内导磁体回到永磁体S极,形成磁悬浮轴承的主磁路,如图1实线所示。电磁磁路为:一端的定子铁心、气隙、转子铁心、外导磁环、另一端的转子铁心、气隙、定子铁心、内导磁体以及第二气隙构成闭合回路,如图1虚线所示。这种结构不仅保证了电励磁磁路不通过永磁体内部,减小了电励磁磁路的磁阻,降低了励磁电流,同时又保证了永磁体磁路不直接通过叠片的定子铁心,减小了永磁磁动势的损失,又由于内隔磁体将各个定子磁极隔开,因而消除了电励磁磁路X方向和Y方向的耦合,这样可以使得控制更加简单。The principle of the above scheme is: the permanent magnet forms a magnetic circuit through the inner conductive magnet, the stator core, the air gap, the rotor core, and the outer magnetic ring, which are used to provide the permanent magnetic bias magnetic field for the magnetic bearing, and bear the radial force of the magnetic bearing. Due to the existence of the second air gap, the electric excitation magnetic circuit constitutes a loop through the inner conductive magnet, stator core, air gap, rotor core, outer magnetic ring and second air gap; the length of the second air gap should be slightly It is longer than twice the length of the air gap, in order to reduce the magnetic flux loss generated by the permanent magnet passing through the second air gap to form a magnetic circuit. Since the stator cores are separated by inner spacer magnets, the electric excitation magnetic circuit will not be coupled in the X direction and the Y direction, making it easier to control the magnetic bearing. Taking the Y-axis positive magnetic circuit as an example, the permanent magnet magnetic circuit of the present invention is as follows: the magnetic flux starts from the N pole of the permanent magnet, passes through the inner magnet at one end, the stator core, the air gap, the rotor core, and the outer magnetic ring to the other end The rotor core, air gap, stator core, and inner conductor return to the S pole of the permanent magnet to form the main magnetic circuit of the magnetic suspension bearing, as shown by the solid line in Figure 1. The electromagnetic magnetic circuit is: the stator core at one end, the air gap, the rotor core, the outer magnetic ring, the rotor core at the other end, the air gap, the stator core, the inner magnetic body and the second air gap to form a closed loop, as shown by the dotted line in Figure 1 Show. This structure not only ensures that the electric excitation magnetic circuit does not pass through the interior of the permanent magnet, reduces the reluctance of the electric excitation magnetic circuit, reduces the excitation current, but also ensures that the permanent magnet magnetic circuit does not directly pass through the laminated stator core, reducing the The loss of the permanent magnet magnetomotive force is reduced, and because the inner spacer magnet separates the stator poles, the coupling of the electric excitation magnetic circuit in the X direction and the Y direction is eliminated, which can make the control simpler.
本发明与现有技术相比的优点在于:本发明由于利用内导磁体和永磁体之间的第二气隙,使得电励磁磁路通过定子铁心、气隙、转子铁心、外导磁环、内导磁体和第二气隙闭合,从而避免电励磁磁路经过永磁体内部,由于该结构使得永磁磁路不直接穿过叠片的定子铁心,因而不会在定子铁心中损失永磁磁动势,又由于内隔磁体将各个定子铁心隔开,从而消除了电励磁磁路X方向和Y方向的耦合,这可以使得控制更加简单。Compared with the prior art, the present invention has the advantages that the electric excitation magnetic circuit passes through the stator core, the air gap, the rotor core, the outer magnetic ring, The inner conductive magnet and the second air gap are closed, so as to prevent the electric excitation magnetic circuit from passing through the interior of the permanent magnet. Because of this structure, the permanent magnetic circuit does not directly pass through the laminated stator core, so the permanent magnet will not be lost in the stator core. Motive force, and since the inner spacer magnets separate the stator cores, the coupling of the electric excitation magnetic circuit in the X direction and the Y direction is eliminated, which can make the control easier.
本发明的另一个优点是:在一个机械设备中,如果轴向长度较短,为适应安装尺寸的要求,所述的永磁偏置外转子径向磁轴承两端的激磁线圈可单独控制,这样本发明可作为两个轴承使用,以减小轴向尺寸;如果设备的轴向长度较长,为更好的保证设备的运转稳定性,可成对使用所述的永磁偏置外转子径向磁轴承,并使两轴承的距离尽量拉大,这时一个轴承左右两端的激磁线圈可进行串、并联联结,节省控制电路。Another advantage of the present invention is: in a mechanical device, if the axial length is shorter, in order to meet the requirements of the installation size, the excitation coils at both ends of the radial magnetic bearing of the permanent magnet bias outer rotor can be controlled separately, so that The present invention can be used as two bearings to reduce the axial dimension; if the axial length of the equipment is longer, in order to better ensure the operation stability of the equipment, the permanent magnet bias outer rotor diameter can be used in pairs Orientation magnetic bearings, and make the distance between the two bearings as large as possible, at this time, the excitation coils at the left and right ends of a bearing can be connected in series or parallel to save the control circuit.
附图说明Description of drawings
图1为本发明的永磁偏置外转子径向磁轴承轴向截面图;Fig. 1 is the axial sectional view of the permanent magnet bias outer rotor radial magnetic bearing of the present invention;
图2为本发明的永磁偏置外转子径向磁轴承轴向端面图;Fig. 2 is the axial end view of the permanent magnet bias outer rotor radial magnetic bearing of the present invention;
具体实施方式Detailed ways
如图1、2所示,本发明的由1个外导磁环1、1个永磁体2、8个定子铁心3、8个内隔磁体9、8个激磁线圈4、8个内导磁体5、2个转子铁心6组成,4个定子铁心3组成了X、Y方向上的4个定子磁极,8个定子铁心3组成了磁轴承左右两端X、Y方向上的定子磁极,8个内隔磁体9连接磁轴承左右两端X、Y方向上的定子铁心3,每个定子磁极绕制有激磁线圈4,定子铁心3外部为转子铁心6,转子铁心6外部为外导磁环1,转子铁心6内表面与定子铁心3外表面留有一定的间隙,形成空气隙7,永磁体2位于内导磁体5之间,内导磁体5与永磁体2之间形成第二气隙8,用以构成电励磁磁路,第二气隙的长度应稍大于2倍空气隙的长度。As shown in Figures 1 and 2, the present invention consists of 1 outer
上述本发明技术方案所用的外导磁环1、内导磁体5均用导磁性能良好的材料制成,如电工纯铁、各种碳钢、铸铁、铸钢、合金钢、1J50和1J79等磁性材料等。定子铁心3、转子铁心6可用导磁性能良好的电工薄钢板如电工纯铁、电工硅钢板DR510、DR470、DW350、1J50和1J79等磁性材料冲压迭制而成。永磁体2的材料为磁性能良好的稀土永磁体或铁氧体永磁体,永磁体2为一轴向圆环,沿轴向充磁。内隔磁体9的材料为铜、铝、钛合金等金属。激磁线圈4用导电良好的电磁线绕制后浸漆烘干而成。The outer
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100116901A CN1285840C (en) | 2005-05-09 | 2005-05-09 | Permanent magnetism biased radial magnetic bearing in external rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100116901A CN1285840C (en) | 2005-05-09 | 2005-05-09 | Permanent magnetism biased radial magnetic bearing in external rotor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1687607A CN1687607A (en) | 2005-10-26 |
CN1285840C true CN1285840C (en) | 2006-11-22 |
Family
ID=35305649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100116901A Expired - Fee Related CN1285840C (en) | 2005-05-09 | 2005-05-09 | Permanent magnetism biased radial magnetic bearing in external rotor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1285840C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100441892C (en) * | 2007-04-02 | 2008-12-10 | 北京航空航天大学 | A Permanent Magnet Bias Outer Rotor Radial Magnetic Bearing |
CN101881302A (en) * | 2010-07-09 | 2010-11-10 | 北京奇峰聚能科技有限公司 | Two-air-gap outer rotor radial hybrid magnetic bearing with fault-tolerant function |
CN101886669A (en) * | 2010-07-09 | 2010-11-17 | 北京奇峰聚能科技有限公司 | Permanent-magnetic bias outer rotor radial magnetic bearing |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1314908C (en) * | 2005-11-10 | 2007-05-09 | 北京航空航天大学 | A Small Volume and Low Power Consumption Permanent Magnetic Bias Outer Rotor Radial Magnetic Bearing |
CN1307375C (en) * | 2005-11-10 | 2007-03-28 | 北京航空航天大学 | Low watt consumption permanent magnet offset external rotor hybrid radial magnetic bearing |
CN100451362C (en) * | 2007-01-05 | 2009-01-14 | 北京航空航天大学 | PM offset external rotor radial magnetic bearing with redundant structure |
CN100455832C (en) * | 2007-06-25 | 2009-01-28 | 江苏大学 | Three-degree-of-freedom dual-lamellar three-phase AC hybrid magnetic bearing |
CN103769932B (en) * | 2013-12-31 | 2017-03-01 | 冯建国 | High-speed rotation organisation of working |
CN108869541B (en) * | 2018-01-12 | 2024-04-02 | 刘慕华 | Radial bearing, rotor system and control method of radial bearing |
CN113285558B (en) * | 2021-04-22 | 2022-04-29 | 东南大学 | Bias magnetic field adjustable force balance type stator permanent magnet motor magnetic bearing |
-
2005
- 2005-05-09 CN CNB2005100116901A patent/CN1285840C/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100441892C (en) * | 2007-04-02 | 2008-12-10 | 北京航空航天大学 | A Permanent Magnet Bias Outer Rotor Radial Magnetic Bearing |
CN101881302A (en) * | 2010-07-09 | 2010-11-10 | 北京奇峰聚能科技有限公司 | Two-air-gap outer rotor radial hybrid magnetic bearing with fault-tolerant function |
CN101886669A (en) * | 2010-07-09 | 2010-11-17 | 北京奇峰聚能科技有限公司 | Permanent-magnetic bias outer rotor radial magnetic bearing |
Also Published As
Publication number | Publication date |
---|---|
CN1687607A (en) | 2005-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1279291C (en) | Permanent magnet biased inner rotor radial magnetic bearing | |
CN102306995B (en) | Permanent magnet biased bearingless switched reluctance motor | |
CN102042327B (en) | Low-power consumption large-bearing capacity permanent-magnet bias mixed radial magnetic bearing | |
CN103715945B (en) | A kind of 12/14 bearing-free permanent magnet biased witch reluctance motor | |
CN100487257C (en) | Permanent-magnetic biased axial magnetic bearing | |
CN201696489U (en) | A permanent magnet biased conical inner rotor hybrid adjustable magnetic bearing | |
CN105090245B (en) | A kind of asymmetric permanent-magnetic biased axial magnetic bearing | |
CN1277060C (en) | A Low Power Consumption Permanent Magnet Bias Inner Rotor Radial Magnetic Bearing | |
CN101025199A (en) | Permanent magnet polarized internal rotor radial magnetic bearing | |
CN102072249B (en) | Large-bearing-capacity radial magnetic bearing | |
CN106981966B (en) | A kind of permanent magnet bias bearing-free switch magnetic-resistance starting/generator | |
CN102315739B (en) | A hybrid excitation generator | |
CN106337876B (en) | Heteropolar formula permanent magnetic offset mixed radial magnetic bearing | |
CN101696713A (en) | Radial magnetic bearing of low-power consumption inner rotor of permanent-magnetic up-attracting and down-repelling structure | |
CN1293319C (en) | Low-consumption permanent-magnet offset external rotor radial magnetic bearing | |
CN102032270B (en) | Permanent magnetic and electromagnetic mixed radial bearing | |
CN1285840C (en) | Permanent magnetism biased radial magnetic bearing in external rotor | |
CN109412370A (en) | Magnetic flux suitching type Linear-rotation permanent-magnet actuator | |
CN1307373C (en) | A low power consumption permanent magnet bias hybrid radial magnetic bearing | |
CN201925346U (en) | Permanent magnet biased radial hybrid magnetic bearing with low power consumption and large bearing capacity | |
CN1307374C (en) | Passive axial magnetic bearing with damping | |
CN110838779A (en) | A hybrid excitation wound rotor and hybrid excitation wound synchronous motor | |
CN102537048A (en) | Axial magnetic bearing capable of controlling radial twisting | |
CN1314907C (en) | Permanent magnet biased external rotor radial magnetic bearing | |
CN1752471A (en) | A Hybrid Radial Magnetic Bearing with Low Power Consumption Permanent Magnet Bias Outer Rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20061122 Termination date: 20180509 |