CN1284625C - Catalyst for producing gasoline by aromatizing and alkylating of liquefied gas and its preparation process and application - Google Patents

Catalyst for producing gasoline by aromatizing and alkylating of liquefied gas and its preparation process and application Download PDF

Info

Publication number
CN1284625C
CN1284625C CN 03158971 CN03158971A CN1284625C CN 1284625 C CN1284625 C CN 1284625C CN 03158971 CN03158971 CN 03158971 CN 03158971 A CN03158971 A CN 03158971A CN 1284625 C CN1284625 C CN 1284625C
Authority
CN
China
Prior art keywords
catalyst
molecular sieve
gasoline
liquefied gas
zsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 03158971
Other languages
Chinese (zh)
Other versions
CN1597867A (en
Inventor
徐龙伢
宋月芹
王清遐
谢素娟
安杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN 03158971 priority Critical patent/CN1284625C/en
Publication of CN1597867A publication Critical patent/CN1597867A/en
Application granted granted Critical
Publication of CN1284625C publication Critical patent/CN1284625C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a catalyst used for producing clean gasoline with a high octane value by the reaction of olefin aromatization and alkylation in a liquefied gas. One or a plurality of kinds of molecular sieves, such as SiO2 /Al2 O3 with the mole ratio as 20 to 80 of ZSM-5, ZSM-11, MCM-22, ZSM-35 are mixed with molecular sieves, a rare earth elements and inert constituents, wherein the weight range of the molecular sieves is from 15 % to 70%; the weight range of the rare earth elements is from 0 to 5%; the rest is the inert constituents in process of shaping of the catalyst. The catalyst is used for the process that olefin aromatization produces clean gasoline with the high octane value in refineries, the obtained gasoline has the high octane value, high content of non benzene arene (larger than 50%), low benzene content (smaller than 1%), low olefinic content (smaller than 15%) and reachable performance of reforming the gasoline.

Description

Catalyst and the method for making and the application of gasoline produced in liquefied gas through aromatization and alkylation
Technical field
The present invention relates to alkene aromatisation and alkylated reaction in a kind of liquefied gas and produce the catalyst of high-octane rating clean gasoline, be particularly suitable for C in the liquefied gas 3-C 5Alkene carries out the process that the high-octane rating clean gasoline of non-benzene aromatic hydrocarbons is rich in aromatisation and alkylated reaction production at low temperatures.
The invention still further relates to above-mentioned Preparation of catalysts method.
The invention still further relates to above-mentioned catalyst and produce application in the high-knock rating gasoline at liquefied gas through aromatization and alkylated reaction.
Background technology
Enhancing and WTO competition with environmental consciousness, requirement to gasoline standard is more and more stricter, implement " motor petrol harmful substance control criterion " from January 1st, 2000 in China part city, banned use of since doped fuel and No. 70 gasoline, The Surroundings in Cities obtains very big change, improve constantly automobile-used gasoline standard simultaneously, China's main cities will be carried out new gasoline standard the second half year in 2003: 1) sulfur content is not more than 0.08%; 2) olefin(e) centent is not more than 35%; 3) benzene content is not more than 2.5%; 4) arene content is not more than 40%, on this basis, further reduces in 2005 that olefin(e) centent is less than 20% in the gasoline, and benzene content is not more than 1.5%.At the catalytically cracked gasoline of China more than 80%, olefin(e) centent is up to 50-55%, arene content has only about 10%, main adding gasoline alkylate (isooctane) or reformation gasoline high-octane rating, the eco-friendly clean gasoline components such as (being rich in aromatic fraction) of adopting is in harmonious proportion, and wherein gasoline alkylate is to pass through H 2SO 4Or HF liquid acid catalyzing iso-butane alkane and butene alkylation production, the production of reformation gasoline is to adopt noble metal catalyst and moving bed reaction technology, because equipment corrosion and environmental pollution that gasoline alkylate causes are quite serious, the production cost costliness of reformation gasoline, at present, the process units of the gasoline alkylate of many petroleum chemical enterprises and reformation gasoline does not go into operation so far.For improving olefin(e) centent height, catalytically cracked gasoline quality that arene content is low, petroleum chemical enterprise is seeking to develop new technology always and is producing the high-knock rating gasoline blender.
On the other hand, the enforcement of China's " western gas east is sent " plan and civil natural gas pipeline engineering, make original just superfluous oil refinery liquefied gas, further overstock, urgent need finds new outlets, especially wherein contained C 4 olefin consumption more than 50% is littler, and the existence of high-load alkene in refinery's liquefied gas, have influence on the production (the QJ/DSH712-1999 standard-required olefin(e) centent of motor liquified gas LPG is less than 5%) of motor liquified gas LPG, thereby, how to optimize that to utilize these oil refinery liquefied gas resources be that China's oil and petrochemical industry face one of difficult problem.
Chinese patent CN98116429 discloses with solid superacid as catalyst iso-butane and butene alkylated production clean gasoline, use solid heteropoly acid catalyzing iso-butane alkane and butene alkylated production clean gasoline among CN94120022, the CN94120018, utilization has certain meaning for liquefied gas in these patented inventions, but because production technology and cost problem, be difficult to realize suitability for industrialized production, this problem also is a global problem simultaneously.
Chinese patent CN87103258 is a catalyst with the ZSM-5 zeolite, and polymerization of low-carbon olefin is produced gasoline, at 980KPa, and 361 ℃ of reaction temperatures, air speed 1.80h -1, oily yield is 52.7%, and the research octane number (RON) of oil is 91.9, and same owing to production technology and cost problem, utilizing the alkene in the liquefied gas by this technology also is to be difficult to realize suitability for industrialized production.
For this reason, chemists have proposed the light-hydrocarbon aromatized technology of liquefied gas again and have produced benzene, toluene and dimethylbenzene, generally adopt the ZSM-5 sieve peg-raking catalyst of ZSM-5 or modification, and reaction temperature generally adopts pyroreaction.Wherein typical light-hydrocarbon aromatized technology, it is the representative cyclar technical process of developing jointly by BP, Uop Inc. (USP4642402), with the hydrocarbon mixture is that raw material carries out aromatization generation aromatic hydrocarbons, use the ZSM-5 molecular sieve catalyst of Ga modification, this technology and catalyst need very high reaction temperature (480-560 ℃), the mixture of butane and C 4 olefin is fed beds generation aromatization, because reaction temperature height, C greatly 4Cut generation cracking, aromatization reaction products liquid are received has only 60%, and the content of benzene up to 45-50% about.The HZSM-5 catalyst after Ga, Zn, Pt, Cd, Ni etc. are metal-modified has also been studied by domestic many R﹠D institutions, adopt low-carbon alkanes and alkene mixture under very high reaction temperature, to carry out aromatization, because higher reaction temperature, aromatization reaction products liquid is received has only 60% equally, and because carbon distribution is serious in the course of reaction, make the catalyst runs mission very short, be difficult to realize industrial applications.
In order to reduce the carbon distribution of catalyst, Chinese patent CN1062100A discloses a kind of aromatizing catalyst for light hydrocarbon that contains noble metal, and active component is platinum, zinc or gallium, and carrier is ZSM-5 zeolite and/or ZSM-11 and SiO 2And/or Al 2O 3Mixture on fixed bed reactors, under 500 ℃, normal pressure, under 2.0 air speeds, carries out the reaction of lighter hydrocarbons aromatization, but the catalyst one way life-span still have only 200 hours, aromatics yield also has only 50% simultaneously.
Chinese patent CN1070847A then discloses a kind of HZSM-5 catalyst with gallium, zinc, platinum modification, this activity of such catalysts constituent content is gallium 0.5-2.0%, zinc 0.5-2.0, platinum 0.1-0.5%, all the other are the HZSM-5 of 40-100 for silica alumina ratio, and the ratio of active component and bonding agent is 70: 30.The preparation method is flooded gallium at HZSM-5 earlier, and extruded moulding is being handled 3h, final impregnating zinc and platinum with 15-20% water vapour air stream under 600-700 then.Normal pressure, fixed bed reactors, 500 ℃, air speed 0.5h -1Carry out C down, 5-C 8Aromatisation, the catalyst one way life-span can extend to 240 hours, and aromatics yield does not have breakthrough raising yet.
And add noble metal in the catalyst, though can reduce carbon distribution, the cost of catalyst can increase greatly, and very responsive to the sulphur in the raw material, and sulfur poisoning easily takes place.Chinese patent CN1063121A discloses a kind of with Al and/or rare earth modified aromatized catalyst, with La (NO 3) 3Or Ce (NO 3) 2Solution direct impregnation H-ZSM-5.Chinese patent CN1058284C then discloses a kind of with Zn and rare earth modified H-ZSM-5 aromatizing catalyst for light hydrocarbon, and the introducing of Zn is with (Zn (NH 3) 4) 2+Complex ion solution is maceration extract, catalyst is carried out high-temperature water vapor handle, and at 520-550 ℃, weight space velocity is 0.6-1.5 hour -1Condition under, to mixed C 4Aromatization, aromatics yield reaches 300-450 hour greater than 40% one way life-span.
In a word, although very big improvement has been arranged on the above aromatization of low carbon hydrocarbon activity of such catalysts, owing to adopt fixed bed, reaction can only be carried out semicontinuous semibatch continued operation, because reaction is at high temperature carried out, inevitably produces a large amount of methane and ethane, reduced the economic benefit of aromatisation, thereby, so far, all do not cause the attention of petroleum chemical enterprise at home or abroad.
Summary of the invention
The object of the present invention is to provide a kind of liquefied gas through aromatization and alkylation to produce the catalyst of gasoline.
The process of liquefied gas through aromatization of the present invention and alkylated reaction system high-knock rating gasoline and catalyst all are different from the cyclar technical process of BP, Uop Inc.'s joint development, and the key of this invention is the C in the liquefied gas 3-C 5Olefine selective ground, carry out aromatization at low temperatures, course of reaction is only produced and is rich in non-benzene aromatic hydrocarbons, the generation of control benzene, C in the liquefied gas 3-C 5Alkene carries out aromatization when producing non-benzene aromatic hydrocarbons, part alkene and butane generation alkylated reaction generate high-quality clean gasoline cuts such as isooctane, thereby obtain colory, as to be rich in non-benzene aromatic hydrocarbons and isooctane high-octane rating clean gasoline, gasoline products octane number (RON) is up to 98-102.Thereby, will produce new process of high-octane rating clean gasoline and catalyst by liquefied gas low temperature aromatisation and alkylated reaction, have very strong novelty and practicality.And because reaction temperature is low, reaction liquid yield height, olefin conversion is up to 95% in the liquefied gas, reaction end gas be olefin(e) centent less than 5% butane, be the motor liquified gas LPG of high-quality, that is to say, can be in the high-octane rating clean gasoline of producing by this new process, the motor liquified gas LPG of by-product high-quality, thereby, be a process route that has potentiality and economic benefit, it applies directly industry Ji benefit and social benefit.
Alkene aromatisation and alkylated reaction are produced the catalyst of high-octane rating clean gasoline in the liquefied gas that the present invention relates to, by ZSM-5 (SiO 2/ Al 2O 3Mol ratio is 20~80), ZSM-11 (SiO 2/ Al 2O 3Mol ratio is 20~80), MCM-22 (SiO 2/ Al 2O 3Mol ratio is 20~80), ZSM-35 (SiO 2/ Al 2O 3Mol ratio is 20~80) one or more mixed molecular sieves of molecular sieve, rare earth element and inert component form, and wherein the molecular sieve weight range is 15-70%; The weight range of rare earth element is 0.5-5%, is used to improve the performance of catalyst; All the other are inert component, are used to improve the catalyst mechanical strength.
Another object of the present invention is to provide a kind of method for preparing above-mentioned catalyst, its preparation method is: at first get SiO 2/ Al 2O 3Mol ratio is one or more mixed molecular sieves of 20~80 NaZSM-5, NaZSM-11, NaMCM-22, NaZSM-35 molecular sieve, after proportionally mixing with inert material, add 2-5 water doubly that is equivalent to molecular sieve and inert material gross weight and the 0.1-1.0 that is equivalent to molecular sieve and inert material gross weight aluminium colloidal sol or Ludox doubly, fully behind stirring and the elimination slag, at 0.1-2.5MPa pressure, 250-450 ℃ following spray drying forming.The gained article shaped 80-90 ℃ of exchange 2~5 times, was washed with deionized water, to Na with ammonium salt solution then in 400-600 ℃ of following roasting 2-8 hour 2O content is less than 0.05% (weight), after the 100-140 ℃ of oven dry; 400-600 ℃ roasting 2-6 hour, promptly get the molecular sieve molded thing of Hydrogen.The molecular sieve catalyst of the Hydrogen that makes can be used to realize purpose of the present invention, in order further to improve the active and stable of this molecular sieve catalyst, can also introduce rare earth element in catalyst, and its weight range is 0.5-5%.
When introducing rare earth element, then the above-mentioned molecular sieve for preparing is passed through the dipping rare earth nitrate solution, introduce the rare earth element (as in lanthanum, cerium, neodymium, the praseodymium one or more) of 0-5% weight at catalyst, through 200-600 ℃ steam treatment 2-10 hour, make finished catalyst.
In catalyst preparation process, the adding of rare earth can be before molecular sieve molded, after at first molecular sieve being carried out ion-exchange and becomes the ammonium type with ammonium salt solution, by the dipping rare earth nitrate solution, introduce rare earth element, and then, make finished catalyst by said method spray drying forming, oven dry, roasting and steam treatment.
Catalyst provided by the present invention can be used for liquefied gas low temperature aromatization and produces high-knock rating gasoline, and its reaction condition is: reaction pressure 0.1-5.0MPa, reaction temperature 250-450 ℃, raw material weight air speed 0.1-3.0h -1Can be applied to various types of reactors such as fixed fluidized bed, riser fluid bed, ebullated bed, slurry attitude bed.
The specific embodiment
Need to prove that just preferred embodiment given below is not the claim that is used for limiting the present patent application.
Embodiment 1: get SiO 2/ Al 2O 3Mol ratio is 40 NaZSM-5 molecular sieve and clay, its ratio is 30: 70 (in a butt weight), the aluminium colloidal sol aqueous solution that input prepares, stir and the elimination slag after, in 1.8MPa pressure, 450 ℃ of following spray-dryings, the gained article shaped exchanges 3 times at 80-90 ℃ with ammonium salt solution then in 530 ℃ of following roastings 4 hours, with deionized water washing 4 times, to Na 2O content is less than 0.05% (weight), after the 120-140 ℃ of oven dry, after 520 ℃ of roastings 3 hours, promptly gets the molecular sieve molded thing of Hydrogen.Method by the dipping lanthanum nitrate hexahydrate is introduced 0.5% lanthanum element, 120-130 ℃ of drying 2 hours, 525 ℃ roasting 1-5 hour, 520 ℃ of steam treatment 2 hours make catalyst A.
Embodiment 2: get SiO 2/ Al 2O 3Mol ratio is 35 NaZSM-5/NaZSM-11 cocrystallization molecular sieve and alchlor, its ratio is 30: 70 (in a butt weight), the aluminium colloidal sol aqueous solution that input prepares, stir and the elimination slag after, in 1.8MPa pressure, 450 ℃ of following spray-dryings, the gained article shaped exchanges 3 times at 80-90 ℃ with ammonium salt solution then in 530 ℃ of following roastings 4 hours, with deionized water washing 4 times, to Na 2O content is less than 0.05% (weight), after the 120-140 ℃ of oven dry, after 520 ℃ of roastings 3 hours, promptly gets the molecular sieve molded thing of Hydrogen.Method by the dipping lanthanum nitrate hexahydrate is introduced 1.6% lanthanum element, 120-130 ℃ of drying 2 hours, and 525 ℃ of roastings 1 hour, 510 ℃ of steam treatment 2 hours make catalyst B.
Embodiment 3: get SiO 2/ Al 2O 3Mol ratio is 32 NaZSM-5 molecular sieve and SiO 2/ Al 2O 3Mol ratio is 38 NaZSM-11 molecular sieve and kaolin, its ratio is 23: 17: 60 (in a butt weight), the aluminium colloidal sol aqueous solution that input prepares, stir and the elimination slag after, in 2.5MPa pressure, 250 ℃ of following spray-dryings, the gained article shaped exchanges 3 times at 80-90 ℃ with ammonium salt solution then in 530 ℃ of following roastings 4 hours, with deionized water washing 4 times, to Na 2O content is less than 0.05% (weight), after the 120-140 ℃ of oven dry, after 520 ℃ of roastings 3 hours, promptly gets the molecular sieve molded thing of Hydrogen.Method by the dipping cerous nitrate solution is introduced 2.1% Ce elements, 120-130 ℃ of drying 2 hours, 525 ℃ roasting 1-5 hour, 510 ℃ of steam treatment 2 hours make catalyst C.
Embodiment 4: get SiO 2/ Al 2O 3Mol ratio is 55 NaZSM-5 molecular sieve and SiO 2/ Al 2O 3Mol ratio is 45 NaZSM-11 molecular sieve and clay, its ratio is 15: 25: 60 (in a butt weight), the aluminium colloidal sol aqueous solution that input prepares, stir and the elimination slag after, in 0.1MPa pressure, 450 ℃ of following spray-dryings, the gained article shaped exchanges 3 times at 80-90 ℃ with ammonium salt solution then in 530 ℃ of following roastings 4 hours, with deionized water washing 4 times, to Na 2O content is less than 0.05% (weight), after the 120-140 ℃ of oven dry, after 520 ℃ of roastings 3 hours, promptly gets the molecular sieve molded thing of Hydrogen.Make catalyst D.
Embodiment 5: get SiO 2/ Al 2O 3Mol ratio is 33 NaMCM-22 molecular sieve and diatomite, its ratio is 30: 70 (in a butt weight), the aluminium colloidal sol aqueous solution that input prepares, stir and the elimination slag after, in 1.8MPa pressure, 350 ℃ of following spray-dryings, the gained article shaped exchanges 3 times at 80-90 ℃ with ammonium salt solution then in 530 ℃ of following roastings 4 hours, with deionized water washing 4 times, to Na 2O content is less than 0.05% (weight), after the 120-140 ℃ of oven dry, after 520 ℃ of roastings 3 hours, promptly gets the molecular sieve molded thing of Hydrogen.Method by the dipping cerous nitrate solution is introduced 1.2% Ce elements, 120-130 ℃ of drying 2 hours, and 525 ℃ of roastings 5 hours, 520 ℃ of steam treatment 2 hours make catalyst E.
Embodiment 6: get SiO 2/ Al 2O 3Mol ratio is 35 NaMCM-22/NaZSM-35 cocrystallization molecular sieve and clay, its ratio is 30: 70 (in a butt weight), the aluminium colloidal sol aqueous solution that input prepares, stir and the elimination slag after, in 1.8MPa pressure, 450 ℃ of following spray-dryings, the gained article shaped exchanges 3 times at 80~90 ℃ with ammonium salt solution then in 530 ℃ of following roastings 4 hours, with deionized water washing 4 times, to Na 2O content is less than 0.05% (weight), after the 120-140 ℃ of oven dry, after 520 ℃ of roastings 3 hours, promptly gets the molecular sieve molded thing of Hydrogen.Method by dipping neodymium nitrate solution is introduced 3.1% neodymium element, 120-130 ℃ of drying 2 hours, and 525 ℃ of roastings 1 hour, 510 ℃ of steam treatment 2 hours make catalyst F.
Embodiment 7: get SiO 2/ Al 2O 3Mol ratio is 45 NaZSM-5 molecular sieve and SiO 2/ Al 2O 3Mol ratio is 37 NaMCM-22 molecular sieve and silica, its ratio is 20: 15: 65 (in a butt weight), the aluminium colloidal sol aqueous solution that input prepares, stir and the elimination slag after, in 2.0MPa pressure, 450 ℃ of following spray-dryings, the gained article shaped exchanges 3 times at 80-90 ℃ with ammonium salt solution then in 530 ℃ of following roastings 4 hours, with deionized water washing 4 times, to Na 2O content is less than 0.05% (weight), after the 120-140 ℃ of oven dry, after 520 ℃ of roastings 3 hours, promptly gets the molecular sieve molded thing of Hydrogen.Method by the dipping lanthanum nitrate hexahydrate is introduced 2.0% lanthanum element, 120-130 ℃ of drying 2 hours, and 525 ℃ of roastings 1 hour, 510 ℃ of steam treatment 6 hours make catalyst G.
Embodiment 8: get SiO 2/ Al 2O 3Mol ratio is 36 NaZSM-35 molecular sieve and SiO 2/ Al 2O 3Mol ratio is 37 NaMCM-22 molecular sieve and clay, its ratio is 15: 25: 60 (in a butt weight), the aluminium colloidal sol aqueous solution that input prepares, stir and the elimination slag after, in 2.0MPa pressure, 450 ℃ of following spray-dryings, the gained article shaped exchanges 3 times at 80-90 ℃ with ammonium salt solution then in 530 ℃ of following roastings 4 hours, with deionized water washing 4 times, to Na 2O content is less than 0.05% (weight), after the 120-140 ℃ of oven dry, after 600 ℃ of roastings 2 hours, promptly gets the molecular sieve molded thing of Hydrogen.Method by dipping praseodymium nitrate solution is introduced 0.8% praseodymium element, 120-130 ℃ of drying 2 hours, and 525 ℃ of roastings 5 hours, 400 ℃ of steam treatment 10 hours make catalyst H.
Embodiment 9: get SiO 2/ Al 2O 3Mol ratio is 50 NaZSM-11 molecular sieve and clay, its ratio is 30: 70 (in a butt weight), the aluminium colloidal sol aqueous solution that input prepares, stir and the elimination slag after, in 1.8MPa pressure, 450 ℃ of following spray-dryings, the gained article shaped exchanges 3 times at 80-90 ℃ with ammonium salt solution then in 400 ℃ of following roastings 8 hours, with deionized water washing 4 times, to Na 2O content is less than 0.05% (weight), after the 120-140 ℃ of oven dry, after 520 ℃ of roastings 3 hours, promptly gets the molecular sieve molded thing of Hydrogen.Method by the dipping cerous nitrate solution is introduced 4.8% Ce elements, 120-130 ℃ of drying 2 hours, and 525 ℃ of roastings 5 hours, 600 ℃ of steam treatment 2 hours make catalyst I.
Embodiment 10: with 100 milliliters of 150-300 purpose catalyst fluidized-bed reactor of packing into, at N 2Lower the temperature behind the activation 1h under atmosphere, 0.2MPa and the 500 ℃ of conditions, when reaction bed temperature is lower than predetermined 10 ℃ of left and right sides of reaction temperature, the liquefied gas raw material begins to enter reactor, regulate feed rate by mass flowmenter, liquefied gas contacts with catalyst in fluid bed, carry out reactions such as aromatisation and alkylation, reaction condition and the results are shown in Table 1 and table 2.
Embodiment 11: with 1 liter of scale continous way slurry attitude bed is liquefied gas through aromatization and alkylation reactor, 500 milliliters of catalyst of prepackage and a certain amount of liquefied gas in reactor, and 500 rev/mins of mixing speeds are used N 2Make reaction system be raised to predetermined pressure and be warmed up to required reaction temperature, react, experimental result sees Table 3.
Liquefied gas aromatisation and alkylated reaction result on different catalysts in table 1 fluidized bed reaction
Catalyst Catalyst A Catalyst B Catalyst C Catalyst D Catalyst E
Reaction pressure (MPa) 0.10 0.15 0.10 0.20 0.15
Reaction temperature (℃) 360 370 370 380 350
Raw material weight air speed (h -1) 0.6 0.6 0.8 0.7 0.9
Liquid yield % 96.7 95.1 97.2 95.7 95.8
Arene content in the gasoline (heavy %) 50.5 55.3 54.8 51.9 47.2
Isoparaffin content in the gasoline (heavy %) 22.5 23.3 25.8 24.9 23.2
Olefin(e) centent in the gasoline (heavy %) 15.5 12.3 11.8 15.9 18.2
The Study of Gasoline octane number 98.3 99.6 99.3 98.6 98.1
Liquefied gas aromatisation and alkylated reaction result on different catalysts in table 2 fluidized bed reaction
Catalyst Catalyst F Catalyst G Catalyst H Catalyst I
Reaction pressure (MPa) 0.10 0.15 0.10 0.20
Reaction temperature (℃) 370 360 370 380
Raw material weight air speed (h -1) 0.4 1.0 0.8 0.6
Liquid yield % 94.5 95.1 94.2 95.5
Arene content in the gasoline (heavy %) 51.5 45.3 46.8 53.9
Isoparaffin content in the gasoline (heavy %) 23.6 24.2 25.8 24.9
Olefin(e) centent in the gasoline (heavy %) 17.6 21.1 23.3 13.8
The Study of Gasoline octane number 98.6 97.0 97.2 99.5
Liquefied gas aromatisation and alkylated reaction result on different catalysts in the table 3 slurry attitude bed reaction device
Catalyst Catalyst A Catalyst C Catalyst E Catalyst I
Reaction pressure (MPa) 2.0 2.5 1.0 0.5
Reaction temperature (℃) 380 370 370 380
Raw material weight air speed (h -1) 1.5 2.0 1.8 1.2
Liquid yield % 94.9 95.1 94.2 95.0
Arene content in the gasoline (heavy %) 52.5 50.1 48.8 53.6
Isoparaffin content in the gasoline (heavy %) 22.1 24.2 24.3 23.9
Olefin(e) centent in the gasoline (heavy %) 13.3 14.2 15.9 13.8
The Study of Gasoline octane number 98.8 98.6 98.3 98.9

Claims (4)

1, the catalyst of gasoline is produced in a kind of liquefied gas through aromatization and alkylation, form by one or more mixed molecular sieves, rare earth element and the inert component of ZSM-5, ZSM-11, MCM-22 and ZSM-35 molecular sieve, wherein:
The SiO of molecular sieve 2/ Al 2O 3Mol ratio is 20~80, and the weight range of molecular sieve in catalyst is 15~70%;
The weight range of rare earth element is 0.5-5%;
All the other are inert component, described inert component be alchlor, silica, kaolin and diatomaceous one or more.
2, according to the described catalyst of claim 1, it is characterized in that: rare earth is one or more of lanthanum, cerium, didymum.
3, a kind of method for preparing the described catalyst of claim 1 the steps include:
After molecular sieve and inert material mixed in proportion, add 2-5 water doubly that is equivalent to molecular sieve and inert material gross weight and the 0.1-1.0 that is equivalent to molecular sieve and inert material gross weight aluminium colloidal sol or Ludox doubly, stir and the elimination slag, at 0.1-2.5MPa pressure, 250-450 ℃ following spray drying forming;
The gained article shaped 80-90 ℃ of exchange, was washed with deionized water, to Na with ammonium salt solution then in 400-600 ℃ of following roasting 2-8 hour 2O content is less than 0.05% weight, 100-140 ℃ of oven dry, 400-600 ℃ roasting 2-6 hour; Flood rare earth nitrate solution again, in 200-600 ℃ of steam treatment 2-10 hour.
4, produce application in the high-knock rating gasoline according to claim 1 or 2 described catalyst at liquefied gas through aromatization and alkylated reaction.
CN 03158971 2003-09-17 2003-09-17 Catalyst for producing gasoline by aromatizing and alkylating of liquefied gas and its preparation process and application Expired - Fee Related CN1284625C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03158971 CN1284625C (en) 2003-09-17 2003-09-17 Catalyst for producing gasoline by aromatizing and alkylating of liquefied gas and its preparation process and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03158971 CN1284625C (en) 2003-09-17 2003-09-17 Catalyst for producing gasoline by aromatizing and alkylating of liquefied gas and its preparation process and application

Publications (2)

Publication Number Publication Date
CN1597867A CN1597867A (en) 2005-03-23
CN1284625C true CN1284625C (en) 2006-11-15

Family

ID=34660559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03158971 Expired - Fee Related CN1284625C (en) 2003-09-17 2003-09-17 Catalyst for producing gasoline by aromatizing and alkylating of liquefied gas and its preparation process and application

Country Status (1)

Country Link
CN (1) CN1284625C (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100443176C (en) * 2005-08-15 2008-12-17 中国石油化工股份有限公司 Catalyst for alkylation of toluene methanol
CN101538479B (en) * 2008-03-19 2012-10-17 中国石油天然气股份有限公司 Method for producing alkylate oil by low-temperature hydroalkylation of C-C
CN101898150B (en) * 2009-05-25 2012-05-30 中国石油化工股份有限公司 Aromatization catalyst and preparation method thereof
US8436221B2 (en) * 2010-12-22 2013-05-07 Chevron U.S.A. Inc. Processes for upgrading fischer-tropsch condensate olefins by alkylation of hydrocrackate
CN102343279A (en) * 2011-07-18 2012-02-08 天津市福生染料厂 Method for preparing catalyst used in preparation of clean gasoline from C4 olefin
CN103102235B (en) * 2011-11-09 2014-12-31 中国石油化工股份有限公司 Method for isobutene production and co-production of gasoline with high octane value by n-butene isomerization
CN107930676B (en) * 2016-10-12 2021-05-14 中国科学院大连化学物理研究所 ZSM-11 catalyst for olefin aromatization and preparation method thereof
CN108114738B (en) * 2016-11-26 2021-06-01 中国科学院大连化学物理研究所 Zn modified ZSM-11 catalyst, and preparation method and application thereof
CN107413375A (en) * 2017-04-12 2017-12-01 兰州理工大学 Benzene alkylation prepares the method for preparing catalyst of toluene
CN108752156A (en) * 2018-04-25 2018-11-06 陈久仓 A kind of preparation method of BTX aromatics
CN112441865B (en) * 2019-09-04 2022-08-09 中国石油化工股份有限公司 Method for preparing butene-2 from isobutene
CN113198527B (en) * 2021-04-25 2022-05-17 西南化工研究设计院有限公司 Composite hierarchical pore molecular sieve catalyst for preparing aromatic hydrocarbon from low-carbon alkane and preparation method thereof

Also Published As

Publication number Publication date
CN1597867A (en) 2005-03-23

Similar Documents

Publication Publication Date Title
CN1284625C (en) Catalyst for producing gasoline by aromatizing and alkylating of liquefied gas and its preparation process and application
CN103623860B (en) For catalyst and the Synthesis and applications of the oligomerisation of Fischer-Tropsch synthetic low-carbon alkene
AU2012357512B2 (en) Catalyst for preparing paraxylene by mutual conversion of methyl alcohol and/or dimethyl ether and C4 liquefied gas, and preparation method and application therefor
WO1996013331A1 (en) Hydrocarbon conversion catalyst and method of catalytic conversion therewith
CN103361114A (en) Process for producing high-octane gasoline from carbon-rich four-carbon five-carbon hexaalkane raw material
CN101429452A (en) Method for producing high-octane gasoline
CN102596864B (en) Propane and conversion of butane are the method for aromatic hydrocarbon
CN103313959B (en) Mixing lower alkanes becomes the method for aromatic hydrocarbons
CN1103805C (en) Process for conversion of hydrocarbons to olefins and aromatics
CN103361113B (en) Process for producing high-octane gasoline by using raw material rich in carbon, four carbon, five carbon and six alkane
EP2690157B1 (en) Method for producing monocyclic aromatic hydrocarbon
CN102806100B (en) Catalyst for producing propane and high octane number gasoline by using butane, and preparation method thereof
CN101724432B (en) Method for producing high-octane gasoline by light hydrocarbon non-hydrogenation modification
CN103509601A (en) Technological process for co-production of propane by aromatization of carbon tetrad-hydrocarbon
EP2690082A1 (en) Method for producing single-ring aromatic hydrocarbons
JP2014513152A (en) Method for reducing the benzene content of gasoline
CN103361115A (en) Method for producing high-octane gasoline by using raw material rich in C4, C5 and C6 alkanes
CN110947417B (en) Catalyst for producing propane and gasoline from alkane, preparation method and application
CN102807465A (en) Method for producing propane and gasoline by using butane
CN101580737A (en) Preparation method of molecular sieve catalyst for milling aromatization reaction of distilled gasoline and liquefied gas
CN1211458C (en) Process for preparing isooctane and liquefied petroleum gas for vehicle by oligomerizing and hydrogenating mixed C4
Huseynova et al. Zeolite-containing catalysts in alkylation processes
Borutskii et al. Alkylation of benzene with higher olefins on heterogeneous catalysts
CN103361116B (en) Method for producing high-octane gasoline from carbon-rich four-carbon five-carbon hexaalkane raw material
JP2014513153A (en) Process for reducing gasoline benzene content

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061115

Termination date: 20180917