CN1283898C - 确定油气层流体pvt性质的方法 - Google Patents

确定油气层流体pvt性质的方法 Download PDF

Info

Publication number
CN1283898C
CN1283898C CNB028038908A CN02803890A CN1283898C CN 1283898 C CN1283898 C CN 1283898C CN B028038908 A CNB028038908 A CN B028038908A CN 02803890 A CN02803890 A CN 02803890A CN 1283898 C CN1283898 C CN 1283898C
Authority
CN
China
Prior art keywords
fluid
pressure
oil
central tube
gas layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028038908A
Other languages
English (en)
Other versions
CN1488031A (zh
Inventor
M·N·哈希姆
G·A·乌格托
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN1488031A publication Critical patent/CN1488031A/zh
Application granted granted Critical
Publication of CN1283898C publication Critical patent/CN1283898C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/087Well testing, e.g. testing for reservoir productivity or formation parameters
    • E21B49/088Well testing, e.g. testing for reservoir productivity or formation parameters combined with sampling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/087Well testing, e.g. testing for reservoir productivity or formation parameters
    • E21B49/0875Well testing, e.g. testing for reservoir productivity or formation parameters determining specific fluid parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Pathology (AREA)
  • Measuring Fluid Pressure (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

确定油气层流体原位PVT性质的方法,其中所述油气层流体存在于被钻孔贯穿的油气层中,所述方法包括以下步骤:a)计算沿着油气层的压力梯度;以及b)利用经验关联由压力梯度确定原位PVT性质,而所述关联是作为压力梯度的函数拟合曲线(11)得到的,所述曲线(11)通过以前所得到的数据点(12、13、14),这些数据点包括测量的PVT性质。

Description

确定油气层流体PVT性质的方法
技术领域
本发明涉及确定油气层流体的PVT性质,其中PVT为首字母的缩写,指压力、体积和温度。PVT性质是气-油比、API重度、粘度、饱和压力、地层体积因子、分子量、密度及油压缩系数。
背景技术
为了测量油气层流体的PVT性质,在贮存压力和温度下对油气层流体取样并进行分析。在书藉《石油地质工程文集》(Contributions inPetroleum Geology and Engineering)的第五卷,第三节:油和天然气的性质(Properties of Oils and Natural Gases)K.S.Pederson等,1989中给出了进行PVT分析的方法的简要描述。这种分析可以非常准确,但需要很长的时间来完成。
尽快知道油气层流体的PVT性质是非常重要的,优选的是当油井钻好后即刻得知。因为这以后仍有可能考虑实际PVT性质而调节生产和地面设备的设计。
申请人已经发现在贮油的PVT性质和压力梯度(dp/dz)之间存在经验关联,其中p为贮油中的流体压力,z为实际的垂直深度。由于压力梯度可以在钻井完成后直接确定,因此可能尽早得到PVT性质。
发明内容
因此,按照本发明,提供了一种确定油气层流体原位PVT性质中至少一项的方法,所述油气层流体存在于被钻孔贯穿的油气层(formation layer)中,所述方法包括以下步骤:
a)计算沿着油气层的压力梯度;以及
b)利用经验关联由压力梯度确定原位PVT性质,而所述关联是作为压力梯度的函数拟合通过以前所得到的数据点的曲线得到的,这些数据点包括测量的PVT性质。
附图说明
下面将参照附图通过实施例更详细地描述本方法,其中,
图1给出了y-轴上以标准立方英尺/标准桶为单位的气-油比作为x-轴上以磅/平方英寸/英尺为单位的压力梯度(在原位压力和温度下)的函数;
图2给出了y-轴上以°API为单位的API重度作为x-轴上以磅/平方英寸/英尺为单位的压力梯度(在原位压力和温度下)的函数;
图3给出了y-轴上以厘泊为单位的粘度(在原位压力和温度下)作为x-轴上以磅/平方英寸/英尺为单位的压力梯度(在原位压力和温度下)的函数;
图4给出了y-轴上以磅/平方英寸为单位的饱和压力绝对值作为x-轴上以磅/平方英寸/英尺为单位的压力梯度(在原位压力和温度下)的函数;
图5给出了y-轴上的地层体积因子、油作为x-轴上以磅/平方英寸/英尺为单位的压力梯度(在原位压力和温度下)的函数;以及
图6给出了y-轴上的分子量作为x-轴上以磅/平方英寸/英尺为单位的压力梯度(在原位压力和温度下)的函数。
具体实施方式
参照附图,我们以相反的顺序讨论本发明确定原位PVT性质中至少一项的方法,其中我们最开始讨论经验关联是如何得到的。
图1-6所示的曲线给出了拟合数据点i2、i3和i4得到的经验关联即线i1,其中i为图的编号(i=1-6),这些数据点由同一地理区域的贮油中取样得到。为了更清楚,并不是所有的数据点都标上了参考标记。
数据点按如下过程得到。首先对含有油气层流体的地层钻井。然后利用测井电缆将一个工具降低到该地层中一组位置中的第一个。所述工具包括一个中心管道和一个流体接收器,所述中心管道具有入口并配有压力探头,所述流体接收器具有对着中心管道打开的入口。在该位置将一个带有出口的探针延伸进入地层中,所述探针的出口与中心管道的入口直接流体连通,从而使地层和中心管道入口之间形成专门的流体连通。然后使地层流体进入流体接收器,并测量压力积累值。所需要的流体压力是针对该位置压力积累结束时的压力。
然后将所述工具移动到下一个位置,再次测量流体压力积累,从而得到所述位置的流体压力,如此重复直到所有位置的全部流体压力均已确定为止。利用这些确定压力梯度。
然后对油气层流体采样,在实验室内在贮烃条件下测量样品的PVT性质。这些测量值给出图1-6中的数据点。
为了得到所有的数据点,在同一地理区域针对多个井收集并分析这些数据。
然后针对各项PVT性质通过这些数据拟合曲线,令人惊奇地,这些数据拟合得相当精确,吻合度R2大于0.9,其中
R 2 = ( Σ i = 1 n ( x i - x ) ( y i - y ) ) 2 Σ i = 1 n ( x i - x ) 2 Σ i = 1 n ( y i - y ) 2
其中n为数据点的个数,(x1,...,xn)为一组压力梯度,x为平均压力梯度,(y1,...,yn)为一组PVT性质的测量值,y为平均PVT性质。R2为相关系数的平方。
下表给出了曲线拟合的结果。
  PVT性质   曲线   R2
  气油比   (8.6)(dp/dz)-4.2   0.98
  API重度   65-(117)(dp/dz)   0.91
  粘度   (0.0005)exp(24dp/dz)   0.96
  饱和压力   (16980)exp(-3.6dp/dz)   0.72
  地层体积因子   (0.10)(dp/dz)-2.3   0.97
  分子量   (5.2)exp(8.9dp/dz)   0.98
对于其它PVT性质如密度和油压缩系数,也可以得到关联。
下面我们将讨论如何原位确定未知油气层流体的PVT性质,所述油气层流体存在于被钻孔贯穿的油气层中。适当地,所述油气层处于同一地理区域。
首先将一个工具降低到该地层中一组位置中的第一个。所述工具包括一个中心管道和一个流体接收器,所述中心管道具有入口并配有压力探头,所述流体接收器具有一个对着中心管道打开的入口。在该位置将一个带有出口的探针延伸进入地层中,所述探针的出口与中心管道的入口直接流体连通,从而使地层和中心管道入口之间形成专门的流体连通。然后使地层流体进入流体接收器,并测量压力积累值。所需要的流体压力是针对该位置压力积累结束时的压力。
然后将所述工具移动到下一个位置,再次测量压力积累,从而得到所述位置的流体压力,如此重复直到所有位置的全部流体压力均已确定为止。利用这些计算压力梯度。
然后利用压力梯度通过经验关联得到所需要的PVT性质。
这表明利用本发明的方法可以达到好的精度。
当油气层流体为所谓的重油即相当粘时,获得油气层流体的代表性样品将会很难。为了获得具有代表性的样品,形成专门的流体连通的步骤进一步包括启动设置在探针附近的加热设备以加热地层流体。
适当地,将探针与一个组件中的封隔器(packer)垫相连,并且加热设备就设置在该封隔器垫中。另外可将加热设备设置在所述工具上。所述加热设备可以是产生微波、光波或红外波的设备。所述加热设备也可以是电加热器、化学加热器或核加热器。
尽管已经参照一个开孔讨论了本发明,但本发明也可以用于套管孔。在这种情况下,计算沿着油气层的压力梯度从形成多组孔开始,这些孔穿过套管壁进入地层中。然后在套管钻孔中将所述工具降低到第一组孔处。所述工具进一步配有在中心管道入口的任一侧设置的上部和下部封隔器,其中上部和下部封隔器之间的距离大于孔组的高度,并且其中相邻孔组之间的间隔至少等于最长封隔器的长度。设置封隔器从而使孔组跨在封隔器之间。然后使地层流体进入流体接收器,测量压力累积值,并确定流体压力。然后在下一组孔附近设置所述工具,并测量流体压力,如此重复直到预先确定的位置个数的流体压力均已测量为止。由这些流体压力及套管组实际的垂直深度计算压力梯度。

Claims (5)

1.一种确定油气层流体原位PVT性质中至少一项的方法,所述油气层流体存在于被钻孔贯穿的油气层中,所述方法包括以下步骤:
a)计算沿着油气层的压力梯度;以及
b)利用经验关联由压力梯度确定原位PVT性质,而所述关联是作为压力梯度的函数拟合通过以前所得到的数据点的曲线得到的,这些数据点包括测量的PVT性质。
2.权利要求1的方法,其中按步骤a)计算沿着油气层的压力梯度的步骤包括如下步骤:
a1)将一个工具降低到地层中一组位置中的第一个,所述工具包括一个中心管道和一个流体接收器,所述中心管道具有入口并配有压力探头,所述流体接收器具有一个对着中心管道打开的入口;
a2)在地层和中心管道入口之间形成专门的流体连通;
a3)使地层流体进入流体接收器,并测量压力积累值,直到所测得的压力不再变化为止,从而得到流体压力;
a4)将所述工具移动到下一个位置,并测量所述位置的流体压力,如此重复直到所有位置的全部流体压力均已测量为止;以及
a5)计算压力梯度。
3.权利要求2的方法,其中在地层和中心管道入口之间形成专门的流体连通包括将一个探针延伸入地层中,所述探针的出口与所述工具的中心管道的入口直接流体连通。
4.权利要求3的方法,其中形成专门的流体连通进一步包括启动设置在探针附近的加热设备以加热地层流体。
5.权利要求2的方法,其中所述钻孔是套管的,并且其中按步骤a)计算沿着油气层的压力梯度的步骤包括如下步骤:
a1)形成穿透套管壁进入地层中的多组孔;
a2)在套管钻孔中将所述工具降低至第一组孔处,所述工具进一步配有在中心管道入口的任一侧设置的上部和下部封隔器,其中在上部和下部封隔器之间的距离大于孔组的高度,并且其中相邻孔组之间的间隔至少等于最长的封隔器的长度;
a3)设置封隔器从而使孔组跨在封隔器之间,使地层流体进入流体接收器,测量压力累积值,并确定流体压力;
a4)在下一组孔附近设置所述工具,重复步骤a3)直到预先确定的位置个数的流体压力均已测量为止;以及
a5)计算压力梯度。
CNB028038908A 2001-01-18 2002-01-17 确定油气层流体pvt性质的方法 Expired - Fee Related CN1283898C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01200180.6 2001-01-18
EP01200180 2001-01-18
US30298201P 2001-07-03 2001-07-03
US60/302,982 2001-07-03

Publications (2)

Publication Number Publication Date
CN1488031A CN1488031A (zh) 2004-04-07
CN1283898C true CN1283898C (zh) 2006-11-08

Family

ID=26076817

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028038908A Expired - Fee Related CN1283898C (zh) 2001-01-18 2002-01-17 确定油气层流体pvt性质的方法

Country Status (10)

Country Link
US (1) US6941804B2 (zh)
EP (1) EP1352154B1 (zh)
CN (1) CN1283898C (zh)
AU (1) AU2002225027B2 (zh)
BR (1) BR0206483A (zh)
CA (1) CA2434657C (zh)
EA (1) EA004669B1 (zh)
MY (1) MY127805A (zh)
NO (1) NO324150B1 (zh)
WO (1) WO2002057596A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006634A1 (en) * 2000-07-19 2002-01-24 Schlumberger Technology B.V. A method of determining properties relating to an underbalanced well
US7249009B2 (en) * 2002-03-19 2007-07-24 Baker Geomark Llc Method and apparatus for simulating PVT parameters
US7346460B2 (en) * 2003-06-20 2008-03-18 Baker Hughes Incorporated Downhole PV tests for bubble point pressure
US7377169B2 (en) 2004-04-09 2008-05-27 Shell Oil Company Apparatus and methods for acoustically determining fluid properties while sampling
CA2627310A1 (en) * 2005-10-28 2007-05-18 Exxonmobil Upstream Research Company Method for mechanical and capillary seal analysis of a hydrocarbon trap
US7253617B1 (en) * 2006-03-15 2007-08-07 Baker Hughes Incorporated Method and apparatus for characterizing heavy oil components in petroleum reservoirs
US7886825B2 (en) 2006-09-18 2011-02-15 Schlumberger Technology Corporation Formation fluid sampling tools and methods utilizing chemical heating
US7711488B2 (en) 2006-12-28 2010-05-04 Schlumberger Technology Corporation Methods and apparatus to monitor contamination levels in a formation fluid
CA2687372C (en) * 2007-05-30 2014-03-04 Schlumberger Canada Limited Methods and apparatus to sample heavy oil from a subteranean formation
US7717172B2 (en) 2007-05-30 2010-05-18 Schlumberger Technology Corporation Methods and apparatus to sample heavy oil from a subteranean formation
US7774141B2 (en) 2008-01-17 2010-08-10 Baker Hughes Incorporated Methods for the identification of bubble point pressure
CA2713995C (en) 2008-01-28 2013-10-01 Schlumberger Canada Limited Method for evaluating subterranean formation fluid
US20120089335A1 (en) * 2010-10-11 2012-04-12 Baker Hughes Incorporated Fluid pressure-viscosity analyzer for downhole fluid sampling pressure drop rate setting
CN103498661B (zh) * 2013-10-21 2016-09-07 郑海金 一种确定油藏高压物性参数的方法
US9689245B2 (en) 2014-01-24 2017-06-27 King Fahd University Of Petroleum And Minerals Quantification of skin in hydraulic fracturing of low and tight reservoirs
GB2555962A (en) * 2015-06-17 2018-05-16 Landmark Graphics Corp Automated PVT characterization and flow metering
FR3038408B1 (fr) * 2015-06-30 2017-08-25 Services Petroliers Schlumrberger Modelisation de la saturation et permeabilite de reservoir de champ petrolifere
CN109359420B (zh) * 2018-11-14 2021-02-02 中国石油大学(北京) 不同工况下射孔对封隔器冲击压力预测方法及装置
CN109869144A (zh) * 2019-01-30 2019-06-11 扬州江苏油田瑞达石油工程技术开发有限公司 一种辨别油藏高压物性参数真伪的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079085A (en) * 1959-10-21 1963-02-26 Clark Apparatus for analyzing the production and drainage of petroleum reservoirs, and the like
FR2434923A1 (fr) * 1978-08-30 1980-03-28 Schlumberger Prospection Procede d'essais de puits
US4413512A (en) * 1982-01-04 1983-11-08 Mobil Oil Corporation Method of locating potential low water cut hydrocarbon reservoirs
US4903207A (en) * 1986-05-15 1990-02-20 Restech, Inc. Method for determining reservoir bulk volume of hydrocarbons from reservoir porosity and distance to oil-water contact level
US4831530A (en) * 1987-06-26 1989-05-16 Amoco Corporation Method for determining in-situ formation properties
CA2034444C (en) * 1991-01-17 1995-10-10 Gregg Peterson Method and apparatus for the determination of formation fluid flow rates and reservoir deliverability
US5287741A (en) * 1992-08-31 1994-02-22 Halliburton Company Methods of perforating and testing wells using coiled tubing
US5778154A (en) * 1993-11-01 1998-07-07 Atlantic Richfield Company Advisor system and method for determining reservoir properties
US5828981A (en) * 1995-05-11 1998-10-27 Texaco Inc. Generating pore types and synthetic capillary pressure curves from wireline logs using neural networks
US6070662A (en) * 1998-08-18 2000-06-06 Schlumberger Technology Corporation Formation pressure measurement with remote sensors in cased boreholes
US6101447A (en) * 1998-02-12 2000-08-08 Schlumberger Technology Corporation Oil and gas reservoir production analysis apparatus and method
US6393906B1 (en) * 2001-01-31 2002-05-28 Exxonmobil Upstream Research Company Method to evaluate the hydrocarbon potential of sedimentary basins from fluid inclusions
WO2003016826A2 (en) * 2001-08-17 2003-02-27 Baker Hughes Incorporated In-situ heavy-oil reservoir evaluation with artificial temperature elevation
US7249009B2 (en) * 2002-03-19 2007-07-24 Baker Geomark Llc Method and apparatus for simulating PVT parameters

Also Published As

Publication number Publication date
CA2434657A1 (en) 2002-07-25
NO20033249D0 (no) 2003-07-17
AU2002225027B2 (en) 2006-09-21
CN1488031A (zh) 2004-04-07
BR0206483A (pt) 2004-02-25
CA2434657C (en) 2012-02-21
EP1352154A1 (en) 2003-10-15
US20040029739A1 (en) 2004-02-12
NO20033249L (no) 2003-09-16
US6941804B2 (en) 2005-09-13
EP1352154B1 (en) 2004-05-12
NO324150B1 (no) 2007-09-03
MY127805A (en) 2006-12-29
EA004669B1 (ru) 2004-06-24
WO2002057596A1 (en) 2002-07-25
EA200300799A1 (ru) 2003-12-25

Similar Documents

Publication Publication Date Title
CN1283898C (zh) 确定油气层流体pvt性质的方法
Ahmed et al. Permeability estimation: the various sources and their interrelationships
Ramey Jr Interference Analysis for Anisotropic Formations-A Case History (includes associated paper 6406)
Quinn et al. Using constant head step tests to determine hydraulic apertures in fractured rock
EP0520903B1 (en) Determining horizontal and/or vertical permeability of an earth formation
US7249009B2 (en) Method and apparatus for simulating PVT parameters
Meyer et al. Detailed hydraulic head profiles as essential data for defining hydrogeologic units in layered fractured sedimentary rock
US8781747B2 (en) Method of determining parameters of a layered reservoir
US6691037B1 (en) Log permeability model calibration using reservoir fluid flow measurements
CN1041419A (zh) 用于测定地层性质的井下仪
Bomana et al. Borehole flowmeter application in fluvial sediments: Methodology, results, and assessment
AU2002225027A1 (en) Determining the PVT properties of a hydrocarbon reservoir fluid
CN110043254B (zh) 一种基于电缆地层测试资料地层有效渗透率的获取方法
WO2010077748A1 (en) Method of determining end member concentrations
CN112145165B (zh) 一种微裂缝-孔隙型储层动静态渗透率转换方法
CN1280523C (zh) 确定贮烃流体粘度的方法
AU2002246041A1 (en) Determining the viscosity of a hydrocarbon reservoir fluid
CN109138986A (zh) 单位体积岩石含气率定量解释评价方法
CN113449408A (zh) 用于页岩气井的地层压力计算方法及装置
CN110965992B (zh) 一种确定地层含气原油粘度的方法
Xiao et al. New methods for the analysis of closed-chamber tests
Lee et al. Pressure test analysis of gas bearing formations
CN117993300A (zh) 气井产能劈分模型的构建方法及应用
Maier Recent developments in the interpretation and application of DST data

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061108

Termination date: 20100220