CN1274588C - Method for synthesizing nano-size lanthanide metal hydride from lanthanide metal under nalohydrocarbon action - Google Patents
Method for synthesizing nano-size lanthanide metal hydride from lanthanide metal under nalohydrocarbon action Download PDFInfo
- Publication number
- CN1274588C CN1274588C CNB021582181A CN02158218A CN1274588C CN 1274588 C CN1274588 C CN 1274588C CN B021582181 A CNB021582181 A CN B021582181A CN 02158218 A CN02158218 A CN 02158218A CN 1274588 C CN1274588 C CN 1274588C
- Authority
- CN
- China
- Prior art keywords
- lanthanide metal
- sized
- action
- lanthanide
- hydride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- -1 lanthanide metal hydride Chemical class 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 21
- 229910052747 lanthanoid Inorganic materials 0.000 title claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 15
- 239000002184 metal Substances 0.000 title claims abstract description 15
- 229910052987 metal hydride Inorganic materials 0.000 title claims abstract description 14
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 7
- 150000002602 lanthanoids Chemical class 0.000 title claims description 3
- 150000008282 halocarbons Chemical class 0.000 claims abstract description 17
- 239000003960 organic solvent Substances 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims abstract description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 17
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- RDHPKYGYEGBMSE-UHFFFAOYSA-N bromoethane Chemical compound CCBr RDHPKYGYEGBMSE-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 claims description 2
- AQZGPSLYZOOYQP-UHFFFAOYSA-N Diisoamyl ether Chemical compound CC(C)CCOCCC(C)C AQZGPSLYZOOYQP-UHFFFAOYSA-N 0.000 claims description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 2
- 125000003944 tolyl group Chemical group 0.000 claims 1
- 239000002105 nanoparticle Substances 0.000 abstract description 11
- 239000000463 material Substances 0.000 abstract description 5
- 239000002086 nanomaterial Substances 0.000 abstract description 5
- 239000012190 activator Substances 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000005984 hydrogenation reaction Methods 0.000 description 6
- 229910052746 lanthanum Inorganic materials 0.000 description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 4
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 150000004681 metal hydrides Chemical class 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 239000003923 scrap metal Substances 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
材料是人类文明的物质基础,新材料产业是国民经济发展的新的生长点。纳米材料的研究已成为全世界关注的最重要的科技前沿之一。我们发明了一种在卤代烃作用下由镧系金属在有机溶剂中、常温常压条件合成纳米尺寸的各种镧系金属氢化物的新方法。透射电镜(TEM)测定结果表明该镧系金属氢化物的基本颗粒直径范围小于40nm。本方法的特点是在合成的纳米尺寸镧系金属氢化物过程中无需添加金属有机活化剂,因而产品中避免了极微量的金属杂质的存在。Materials are the material basis of human civilization, and the new material industry is a new growth point for national economic development. The research of nanomaterials has become one of the most important scientific and technological frontiers that the whole world pays attention to. We have invented a new method for synthesizing various nano-sized lanthanide metal hydrides from lanthanide metals in organic solvents under normal temperature and pressure conditions under the action of halogenated hydrocarbons. The measurement result of transmission electron microscope (TEM) shows that the basic particle diameter range of the lanthanide metal hydride is less than 40nm. The method is characterized in that no metal-organic activator is needed in the process of synthesizing the nanometer-sized lanthanide metal hydride, thus avoiding the existence of a very small amount of metal impurities in the product.
Description
技术领域technical field
本项发明涉及在卤代烃作用下、在有机溶剂中、常温常压条件下由镧系金属合成出纳米尺寸的镧系金属氢化物。The invention relates to synthesizing nanometer-sized lanthanide metal hydrides from lanthanide metals under the action of halogenated hydrocarbons in an organic solvent at normal temperature and pressure.
背景技术Background technique
纳米材料科学是一项正在迅速发展起来的新兴学科。纳米材料具有的尺寸效应和表面特性,既表现出极高的反应活性,又显示了聚结不稳定性,因此合成出晶粒小,比表面积大,反应活性高的纳米金属氢化物材料,是一项难度较大且具有挑战性的工作。纳米尺寸镧系金属氢化物在催化化学、合成化学、材料科学、能源和环境保护等领域中具有广泛的应用价值,并能产生直接的经济效益。Nanomaterials science is a new subject that is developing rapidly. The size effect and surface characteristics of nanomaterials not only show extremely high reactivity, but also show coalescence instability. Therefore, nanometer metal hydride materials with small grain size, large specific surface area and high reactivity are synthesized. A difficult and challenging job. Nanoscale lanthanide metal hydrides have a wide range of applications in the fields of catalytic chemistry, synthetic chemistry, materials science, energy and environmental protection, and can produce direct economic benefits.
纳米材料的制备方法通常分为物理法和化学法。化学法主要通过适当的化学反应(包括液相、气相和固相反应)来制备纳米材料。本项发明的方法即在卤代烃作用下由镧系金属合成纳米尺寸的镧系金属氢化物的方法目前尚未见文献报道。The preparation methods of nanomaterials are usually divided into physical methods and chemical methods. Chemical methods mainly prepare nanomaterials through appropriate chemical reactions (including liquid phase, gas phase and solid phase reactions). The method of the present invention, that is, the method for synthesizing nanometer-sized lanthanide metal hydrides from lanthanide metals under the action of halogenated hydrocarbons, has not been reported in the literature so far.
发明内容Contents of the invention
本项发明的目的是提供一种在0-60℃、常压,卤代烃作用下由镧系金属合成纳米尺寸镧系金属氢化物的新方法。The purpose of this invention is to provide a new method for synthesizing nano-sized lanthanide metal hydrides from lanthanide metals under the action of halogenated hydrocarbons at 0-60 DEG C and normal pressure.
本方法可用如下反应式表示为:This method can be expressed as following reaction formula:
金属粉未加到反应瓶中,有机溶剂,加卤代烃,油浴控温,磁力搅拌,进行加氢反应。The metal powder is not added to the reaction bottle, the organic solvent is added, the halogenated hydrocarbon is added, the temperature is controlled in an oil bath, and the hydrogenation reaction is carried out by magnetic stirring.
有机溶剂是甲苯、甲乙酮、吡啶、正丁醚、异戊醚、四氢呋喃、1,4-二氧六环中的任意一种,优选的是甲苯。The organic solvent is any one of toluene, methyl ethyl ketone, pyridine, n-butyl ether, isoamyl ether, tetrahydrofuran, and 1,4-dioxane, preferably toluene.
卤代烃是脂肪族卤代烃和芳香族卤代烃(R-X,Ar-X)中的任意一种,优选的是溴乙烷。The halogenated hydrocarbon is any one of aliphatic halogenated hydrocarbon and aromatic halogenated hydrocarbon (R-X, Ar-X), preferably bromoethane.
附图说明Description of drawings
图1为纳米氢化镧的电子透射电镜(TEM)。Figure 1 is a transmission electron microscope (TEM) of nanometer lanthanum hydride.
具体实施方式Detailed ways
通过下面实例对本项发明作进一步说明。The present invention is further illustrated by the following examples.
实例1 合成纳米尺寸的氢化镧Example 1 Synthesis of nano-sized lanthanum hydride
在与恒压氢气量管相连的反应瓶中加入3.47g(25mmol)屑状金属镧(北京有色金属研究总院生产,纯度>99.5%),15.0mL甲苯和0.015mL溴乙烷,油浴控制温度(45℃),打开磁力搅拌器,通入氢气。58小时后金属镧加氢反应停止,由恒压量管直接读出反应的吸氢量。分离出反应瓶中的有机相,固相用甲苯洗涤二次,真空油浴(80℃)干燥1小时后得到黑色固体粉末氢化镧。Add 3.47g (25mmol) scrap metal lanthanum (produced by Beijing General Research Institute for Nonferrous Metals, purity > 99.5%), 15.0mL toluene and 0.015mL bromoethane to the reaction flask connected to the constant pressure hydrogen gas volume tube, oil bath control temperature (45° C.), turn on the magnetic stirrer, and inject hydrogen. After 58 hours, the metal lanthanum hydrogenation reaction stopped, and the hydrogen absorption amount of the reaction was directly read from the constant pressure measuring tube. The organic phase in the reaction flask was separated, the solid phase was washed twice with toluene, and dried in a vacuum oil bath (80° C.) for 1 hour to obtain a black solid powder of lanthanum hydride.
卤代烃的作用在于它能使镧定量地转化成纳米尺寸的氢化镧。纳米尺寸的稀土金属氢化物的组成为非化学计量值,LnHm中m值在2-3之间。TEM测定结果表明利用新方法所合成的氢化镧基本颗粒尺寸小于40nm。XRD测试结果表明该氢化镧结构为立方晶体。The role of the halogenated hydrocarbon is that it can quantitatively convert lanthanum into nano-sized lanthanum hydride. The composition of nano-sized rare earth metal hydrides is non-stoichiometric, and the value of m in LnH m is between 2 and 3. The results of TEM measurement show that the primary particle size of lanthanum hydride synthesized by the new method is less than 40nm. XRD test results show that the structure of the lanthanum hydride is a cubic crystal.
实例2 卤代烃作用下合成纳米尺寸的氢化钕Example 2 Synthesis of nano-sized neodymium hydride under the action of halogenated hydrocarbons
按照实例1的方法合成纳米尺寸的氢化钕。68小时后金属钕加氢反应停止。TEM测定结果表明其基本颗粒尺寸小于40nm。Synthesize nanometer-sized neodymium hydride according to the method of example 1. Hydrogenation of neodymium metal ceased after 68 hours. TEM results show that the basic particle size is less than 40nm.
实例3 卤代烃作用下合成纳米尺寸的氢化钐Example 3 Synthesis of nano-sized samarium hydride under the action of halogenated hydrocarbons
按照实例1的方法合成纳米尺寸的氢化钐。120小时后金属钐加氢反应停止。TEM测定结果表明其基本颗粒尺寸小于40nm。Synthesize nanometer-sized samarium hydride according to the method of example 1. Hydrogenation of samarium metal ceased after 120 hours. TEM results show that the basic particle size is less than 40nm.
实例4 卤代烃作用下合成纳米尺寸的氢化镝Example 4 Synthesis of dysprosium hydride with nanometer size under the action of halogenated hydrocarbons
按照实例1的方法合成纳米尺寸的氢化镝。170小时后金属镝加氢反应停止。TEM测定结果表明其基本颗粒尺寸小于40nm。According to the method of example 1, nanometer-sized dysprosium hydride was synthesized. Dysprosium hydrogenation stopped after 170 hours. TEM results show that the basic particle size is less than 40nm.
实例5 卤代烃作用下合成纳米尺寸的氢化镱Example 5 Synthesis of nano-sized ytterbium hydride under the action of halogenated hydrocarbons
按照实例1的方法合成纳米尺寸的氢化镱。260小时后金属镱加氢反应停止。TEM测定结果表明其基本颗粒尺寸小于40nm。Nano-sized ytterbium hydride was synthesized according to the method of Example 1. Hydrogenation of ytterbium metal ceased after 260 hours. TEM results show that the basic particle size is less than 40nm.
实验结果表明,轻稀土镧、钕纳米氢化物的合成反应速度较快;重稀土纳米氢化镱合成反应相对较慢。在合成反应中卤代烃的用量(卤代烃:反应物质量摩尔比)最低可到0.1%。实验结果表明,当卤代烃的用量增加时,反应速度加快,反应时间明显缩短。The experimental results show that the synthesis reaction of light rare earth lanthanum and neodymium nano hydrides is faster; the synthesis reaction of heavy rare earth nano ytterbium hydride is relatively slow. The amount of halogenated hydrocarbon used in the synthesis reaction (halogenated hydrocarbon: mass molar ratio of reactants) can be as low as 0.1%. The experimental results show that when the amount of halogenated hydrocarbon increases, the reaction speed is accelerated and the reaction time is obviously shortened.
在该合成反应中,卤代烃的作用是使镧系金属能定量地转化成相应的纳米尺寸的金属氢化物。In this synthesis reaction, the halogenated hydrocarbon acts to quantitatively convert the lanthanide metal into the corresponding nano-sized metal hydride.
本方法的特点在于合成的纳米尺寸的镧系金属氢化物中无金属有机活化剂,因而避免了产品中可能引入极微量的金属杂质。The method is characterized in that there is no metal-organic activator in the synthesized nanometer-sized lanthanide metal hydride, thus avoiding the possible introduction of extremely small amounts of metal impurities in the product.
本项发明是合成纳米尺寸的镧系金属氢化物的一种有效的方法。The present invention is an efficient method for the synthesis of nano-sized lanthanide metal hydrides.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021582181A CN1274588C (en) | 2002-12-19 | 2002-12-19 | Method for synthesizing nano-size lanthanide metal hydride from lanthanide metal under nalohydrocarbon action |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021582181A CN1274588C (en) | 2002-12-19 | 2002-12-19 | Method for synthesizing nano-size lanthanide metal hydride from lanthanide metal under nalohydrocarbon action |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1508060A CN1508060A (en) | 2004-06-30 |
CN1274588C true CN1274588C (en) | 2006-09-13 |
Family
ID=34236918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021582181A Expired - Fee Related CN1274588C (en) | 2002-12-19 | 2002-12-19 | Method for synthesizing nano-size lanthanide metal hydride from lanthanide metal under nalohydrocarbon action |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1274588C (en) |
-
2002
- 2002-12-19 CN CNB021582181A patent/CN1274588C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1508060A (en) | 2004-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ayuk et al. | A review on synthetic methods of nanostructured materials | |
Ding et al. | Synthesis of HgS and PbS nanocrystals in a polyol solvent by microwave heating | |
CN104925784A (en) | Preparation method of graphene embedded with monodispersed metal atoms | |
CN1923415A (en) | Process for preparing nano granule with high shape anisotropic property | |
Ahmadzadi et al. | Structural and X-ray powder diffraction studies of nano-structured lead (II) coordination polymer with η2 Pb⋯ C interactions | |
WO2002057029A1 (en) | Method for making metal coated powders | |
Ríos et al. | Ferrocene-modified dendrimers as support of copper nanoparticles: evaluation of the catalytic activity for the decomposition of ammonium perchlorate | |
CN1289405C (en) | Wet chemical process of preparing low-dimensional nano nickel sulfide crystal | |
TW201226049A (en) | Dispersant and dispersion composition | |
Khanna et al. | Colloidal synthesis of indium nanoparticles by sodium reduction method | |
CN1834005A (en) | Growth method carbon nanotube array | |
JP2011184725A (en) | Method for synthesizing cobalt nanoparticle by hydrothermal reduction process | |
CN1274588C (en) | Method for synthesizing nano-size lanthanide metal hydride from lanthanide metal under nalohydrocarbon action | |
Tian et al. | Ionic‐Liquid‐Modified Porous Au/CeMnOx Nanorods for Methyl Methacrylate (MMA) Synthesis via Direct Oxidative Esterification | |
CN1317181C (en) | Method of synthesizing nanometer size lanthanum-series metal hydride by activating lanthanum metal and using solvent effect | |
Liu et al. | A Complex‐Based Soft Template Route to PbSe Nanowires | |
Xu et al. | In air liquid–solid phase synthesis of metal sulfide nanoparticles from metal acetates and thiourea | |
CN1762622A (en) | A method for preparing silver nano hollow spheres by displacement reaction | |
KR20040082950A (en) | Massive synthesis method of double-walled carbon nanotubes using the vapor phase growth | |
Wang et al. | Eutectic assisted synthesis of nanocrystalline NiO through chemical precipitation | |
CN1317285C (en) | Catalytic Synthesis of Lanthanide Organometallic Compounds and Their Thermal Decomposition to Prepare Nanosized Lanthanide Metal Powders | |
Liu et al. | Synthesis and characterization of MoO2/P (St-co-MMA-co-AA) microspheres via microemulsion by γ-ray radiation | |
CN100427249C (en) | A method for preparing nanometer lanthanide metal powders by vacuum pyrolysis of anthracene lanthanide metal organic compounds initiated and synthesized by halogenated hydrocarbons | |
Adam et al. | The synthesis of organic carbonates over nanocrystalline CaO prepared via microemulsion technique | |
CN1215980C (en) | Method of catalyst synthesis nanometer lanthanide metal hydride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |