CN1270783C - Degradable nanometer composite material for biological and medical use - Google Patents
Degradable nanometer composite material for biological and medical use Download PDFInfo
- Publication number
- CN1270783C CN1270783C CN 03142161 CN03142161A CN1270783C CN 1270783 C CN1270783 C CN 1270783C CN 03142161 CN03142161 CN 03142161 CN 03142161 A CN03142161 A CN 03142161A CN 1270783 C CN1270783 C CN 1270783C
- Authority
- CN
- China
- Prior art keywords
- calcium phosphate
- composite
- degradable
- composite powder
- phosphate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 82
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims abstract description 103
- 239000001506 calcium phosphate Substances 0.000 claims abstract description 101
- 229910000389 calcium phosphate Inorganic materials 0.000 claims abstract description 74
- 235000011010 calcium phosphates Nutrition 0.000 claims abstract description 74
- 239000000843 powder Substances 0.000 claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 38
- 229920006237 degradable polymer Polymers 0.000 claims abstract description 30
- 235000019731 tricalcium phosphate Nutrition 0.000 claims abstract description 27
- 229910000391 tricalcium phosphate Inorganic materials 0.000 claims abstract description 27
- 229940078499 tricalcium phosphate Drugs 0.000 claims abstract description 27
- 239000002114 nanocomposite Substances 0.000 claims abstract description 24
- 238000002360 preparation method Methods 0.000 claims abstract description 24
- 229910052586 apatite Inorganic materials 0.000 claims abstract description 18
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 claims abstract description 18
- 239000003960 organic solvent Substances 0.000 claims abstract description 17
- 239000002904 solvent Substances 0.000 claims abstract description 9
- 239000011575 calcium Substances 0.000 claims abstract description 7
- 238000005266 casting Methods 0.000 claims abstract description 6
- 238000001556 precipitation Methods 0.000 claims abstract description 6
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 claims abstract description 4
- 235000019700 dicalcium phosphate Nutrition 0.000 claims abstract description 4
- 229920000642 polymer Polymers 0.000 claims description 23
- 238000001746 injection moulding Methods 0.000 claims description 17
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 13
- 239000004626 polylactic acid Substances 0.000 claims description 13
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 239000011259 mixed solution Substances 0.000 claims description 12
- 239000000243 solution Substances 0.000 claims description 11
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 10
- 239000003995 emulsifying agent Substances 0.000 claims description 10
- 238000000465 moulding Methods 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 8
- 230000009471 action Effects 0.000 claims description 8
- 238000011049 filling Methods 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 239000004310 lactic acid Substances 0.000 claims description 6
- 239000000178 monomer Substances 0.000 claims description 6
- 239000011780 sodium chloride Substances 0.000 claims description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical group ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000010355 oscillation Effects 0.000 claims description 4
- 229920001610 polycaprolactone Polymers 0.000 claims description 4
- 239000004632 polycaprolactone Substances 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 3
- 229920002732 Polyanhydride Polymers 0.000 claims description 3
- 229920000954 Polyglycolide Polymers 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 229920001432 poly(L-lactide) Polymers 0.000 claims description 3
- 239000004633 polyglycolic acid Substances 0.000 claims description 3
- 238000000748 compression moulding Methods 0.000 claims description 2
- VPVXHAANQNHFSF-UHFFFAOYSA-N 1,4-dioxan-2-one Chemical compound O=C1COCCO1 VPVXHAANQNHFSF-UHFFFAOYSA-N 0.000 claims 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N Lactic Acid Natural products CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims 2
- 229920001710 Polyorthoester Polymers 0.000 claims 2
- 235000014655 lactic acid Nutrition 0.000 claims 2
- 210000000988 bone and bone Anatomy 0.000 abstract description 30
- 239000000203 mixture Substances 0.000 abstract description 9
- 238000006065 biodegradation reaction Methods 0.000 abstract description 7
- 239000002245 particle Substances 0.000 abstract description 6
- 238000001914 filtration Methods 0.000 abstract description 4
- 239000011159 matrix material Substances 0.000 abstract description 4
- 150000001875 compounds Chemical class 0.000 abstract 1
- 238000002425 crystallisation Methods 0.000 abstract 1
- 230000008025 crystallization Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000003760 magnetic stirring Methods 0.000 description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000001291 vacuum drying Methods 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 206010065687 Bone loss Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 239000011173 biocomposite Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000002639 bone cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229910003471 inorganic composite material Inorganic materials 0.000 description 1
- 238000010339 medical test Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 1
- 239000000622 polydioxanone Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
Abstract
本发明公开了一种可降解生物医用纳米复合材料及其制备方法,该复合材料通过无机相中不同Ca/P比、不同结晶状态以及不同无机相复合比调整其生物降解速率,与可降解聚合物复合,从而使整个复合材料生物降解速率可调;其中无机相的组成为无定形磷酸钙、α相磷酸三钙、β相磷酸三钙、磷灰石和磷酸氢钙中的一种或是由其中两相组成;该制备方法通过选择有机溶剂采用溶剂溶液一浇注或溶液-非溶剂沉淀将磷酸钙粉末均匀分散可降解聚合物基体中,从而使复合材料达到纳米级复合,更加充分地发挥复合材料的效能。另外,通过粒子滤除法可以获得多孔纳米复合材料。本发明制备的纳米复合材料可以广泛地用于骨螺钉、骨接板以及骨组织工程等生物医用材料领域。The invention discloses a degradable biomedical nanocomposite material and a preparation method thereof. The biodegradation rate of the composite material is adjusted through different Ca/P ratios in the inorganic phase, different crystallization states and different inorganic phase composite ratios. compound, so that the biodegradation rate of the entire composite material can be adjusted; the composition of the inorganic phase is one of amorphous calcium phosphate, α-phase tricalcium phosphate, β-phase tricalcium phosphate, apatite and calcium hydrogen phosphate or It consists of two phases; the preparation method uses solvent solution-casting or solution-non-solvent precipitation to uniformly disperse the calcium phosphate powder in the degradable polymer matrix by selecting an organic solvent, so that the composite material can achieve nano-scale composite and more fully play performance of composite materials. In addition, porous nanocomposites can be obtained by particle filtration. The nanocomposite material prepared by the invention can be widely used in the fields of biomedical materials such as bone screws, bone joint plates and bone tissue engineering.
Description
技术领域Technical field
本发明涉及一种可降解生物医用纳米复合材料及其制备方法,属于生物医用替代材料制备的技术领域。The invention relates to a degradable biomedical nanocomposite material and a preparation method thereof, belonging to the technical field of preparation of biomedical substitute materials.
背景技术 Background technique
由于疾病或外伤等原因,人的骨骼或牙齿等硬组织产生硬组织损伤或缺失,需要大量的人工合成替代材料进行修复和治疗。目前硬组织替代材料主要有金属、陶瓷和聚合物三类材料。它们各有特点。Due to diseases or trauma, hard tissues such as human bones or teeth are damaged or lost, and a large number of artificial synthetic substitute materials are needed for repair and treatment. At present, hard tissue replacement materials mainly include three types of materials: metals, ceramics, and polymers. They each have their own characteristics.
金属材料强度高,容易加工。但是价格昂贵,与骨应力不匹配,会产生骨组织吸收,生理腐蚀产生的金属离子对组织产生不良反应,而且组织愈合后这类材料需要二次手术取出。Metal materials have high strength and are easy to process. However, the price is expensive, and it does not match the bone stress, which will cause bone tissue resorption, and the metal ions produced by physiological corrosion will have adverse reactions to the tissue, and such materials need a second operation to remove after the tissue heals.
磷酸钙材料因其具有与骨骼中无机相相似的化学组成、良好的生物活性和骨传导性,是广泛地应用的陶瓷材料。但是其较差的力学性能限制了磷酸钙的应用范围,主要应用在非承重的领域(如骨缺失的填充和骨水泥等)。Calcium phosphate material is a widely used ceramic material because of its chemical composition similar to the inorganic phase in bone, good biological activity and osteoconductivity. However, its poor mechanical properties limit the scope of application of calcium phosphate, which is mainly used in non-load-bearing fields (such as filling of bone loss and bone cement, etc.).
聚合物材料主要有两种:生物不可降解材料和生物可降解材料。前者如聚乙烯、聚丙烯、聚四氟乙烯和聚甲基丙烯酸甲酯等。这些材料具有较好的力学性能和生物相容,但是它们不具备生物活性,而且不可以降解,需要二次手术取出。后者如α-聚酯类聚合物,具有良好的力学性能和生物相容性,其最大的特点是植入人体后可以发生降解,随着组织的愈合,植入体缓慢降解,组织愈合后,植入体降解完全,因而不要二次手术。但是这类可降解材料也存在着诸多的不足:材料植入体内后X射线不显影,无法有效的检测植入情况;这类材料随着降解时间的增加,力学性能下降太快;在降解过程中产生的酸性物质会导致组织产生无菌性炎症反应。There are two main types of polymer materials: non-biodegradable materials and biodegradable materials. The former such as polyethylene, polypropylene, polytetrafluoroethylene and polymethyl methacrylate. These materials have good mechanical properties and biocompatibility, but they are not bioactive and cannot be degraded, requiring secondary surgery to remove them. The latter, such as α-polyester polymers, has good mechanical properties and biocompatibility, and its biggest feature is that it can degrade after being implanted in the human body. As the tissue heals, the implant slowly degrades. , The implant degrades completely, so no secondary surgery is required. However, this type of degradable material also has many shortcomings: after the material is implanted in the body, X-rays do not develop, and the implantation cannot be effectively detected; as the degradation time increases, the mechanical properties of this type of material decrease too quickly; during the degradation process The acidic substances produced in the blood can cause a sterile inflammatory response in the tissue.
磷酸钙材料的生物降解速率是可以调节的。不同Ca/P比和结晶度的磷酸钙的降解速率不同,它们由大到小的顺序为:α-TCP>β-TCP>HA,无定形磷酸钙>低结晶度的磷酸钙>高结晶度的磷酸钙。如果将不同晶相的磷酸钙复合一起,即可以调节磷酸钙的降解速率。The biodegradation rate of the calcium phosphate material is adjustable. The degradation rates of calcium phosphate with different Ca/P ratios and crystallinity are different, and their order from large to small is: α-TCP>β-TCP>HA, amorphous calcium phosphate>low crystallinity calcium phosphate>high crystallinity of calcium phosphate. The degradation rate of calcium phosphate can be adjusted if calcium phosphate in different crystal phases is compounded together.
因此,人们从骨组织的结构角度出发,将磷酸钙加入到可降解的聚合物制备与骨组织结构相似的有机无机复合材料。将磷酸钙填充到聚合物制备可降解的生物医用生物复合材料具有单一组成成分无法比拟的优势:(1)在力学性能方面,可以改善磷酸钙本身力学性能的不足,提高了材料的韧性;(2)在生物活性方面,添加不同量的磷酸钙可以增强聚合物材料的生物性;(3)在生物降解方面,添加磷酸钙后聚合物产生的酸性物质可以得到有效地抑制,通过调节磷酸钙的晶相以及晶相组成或者聚合物的单体以及共聚物各单体的组成比例或磷酸钙和聚合物的组成比例可以调节复合材料的生物降解速率;(3)在医学检测方面,添加磷酸钙后,植入体可以X射线显影,检测植入情况更加容易;另外,聚合物产生的酸性物质可以促进磷酸钙的降解,更加有利于骨组织的愈合。Therefore, from the perspective of bone tissue structure, calcium phosphate is added to degradable polymers to prepare organic-inorganic composite materials similar to bone tissue structure. Filling calcium phosphate into polymers to prepare degradable biomedical biocomposites has incomparable advantages over a single component: (1) In terms of mechanical properties, it can improve the lack of mechanical properties of calcium phosphate itself and improve the toughness of the material; 2) In terms of biological activity, adding different amounts of calcium phosphate can enhance the biological properties of polymer materials; (3) In terms of biodegradation, the acidic substances produced by the polymer after adding calcium phosphate can be effectively inhibited, by adjusting the calcium phosphate The crystal phase and crystal phase composition or the composition ratio of polymer monomers and copolymer monomers or the composition ratio of calcium phosphate and polymer can adjust the biodegradation rate of composite materials; (3) in medical testing, adding phosphoric acid After adding calcium, the implant can be developed by X-ray, which makes it easier to detect the implantation; in addition, the acidic substance produced by the polymer can promote the degradation of calcium phosphate, which is more conducive to the healing of bone tissue.
中国专利(CN1403167)和美国专利(US5981619)公开了将磷酸钙加入了聚合物中获得了力学性能较好的复合材料。但这些复合材料结构与骨组织的结构相比,还存在着差异:主要是磷酸钙的颗粒尺寸比较大(骨骼中的磷酸钙为几十nm,而他们的磷酸钙为1~100μm),复合材料的降解性能不够好,还有无机物在聚合物基体分散不够均匀。上述发明不能有效地调节复合材料降解速率,以满足不同植入部位对植入体降解速率的要求。另外,骨组织工程的出现和发展,对多孔支架材料也提出了需生物降解速率可调的要求。Chinese patent (CN1403167) and U.S. patent (US5981619) disclosed that calcium phosphate was added to the polymer to obtain a composite material with better mechanical properties. However, there are still differences between the structure of these composite materials and the structure of bone tissue: the main reason is that the particle size of calcium phosphate is relatively large (the calcium phosphate in bones is tens of nanometers, while their calcium phosphate is 1-100 μm). The degradation performance of the material is not good enough, and the dispersion of inorganic substances in the polymer matrix is not uniform enough. The above invention cannot effectively adjust the degradation rate of the composite material to meet the requirements of different implantation sites on the degradation rate of the implant. In addition, the emergence and development of bone tissue engineering also put forward the requirement of adjustable biodegradation rate for porous scaffold materials.
发明内容Contents of Invention
本发明的目的在于提供一种磷酸钙颗粒细小、在聚合物基体中分散均匀的可降解生物医用纳米复合材料及其制备方法。The object of the present invention is to provide a degradable biomedical nanocomposite material with fine calcium phosphate particles uniformly dispersed in a polymer matrix and a preparation method thereof.
本发明的可降解生物医用纳米复合材料是由磷酸钙和可降解聚合物组成的复合薄膜或复合粉末或供制备生物医用替代品的复合材料,其中磷酸钙的含量(质量百分比)为5~50%,可降解聚合物的含量(质量百分比)为95~50%。The degradable biomedical nanocomposite material of the present invention is a composite film or composite powder composed of calcium phosphate and a degradable polymer or a composite material for preparing biomedical substitutes, wherein the content (mass percentage) of calcium phosphate is 5-50 %, the content (mass percentage) of the degradable polymer is 95-50%.
本发明可降解生物医用纳米复合材料的制备方法有:The preparation method of degradable biomedical nano composite material of the present invention has:
方案1plan 1
制备方法包括以下步骤:The preparation method comprises the following steps:
1)在超声波或者机械乳化机的作用下将磷酸钙分散在有机溶剂中,磷酸钙在有机溶剂中的含量(按质量/体积百分比)为0.1%~10%;1) Disperse calcium phosphate in an organic solvent under the action of an ultrasonic wave or a mechanical emulsifier, and the content of calcium phosphate in the organic solvent (by mass/volume percentage) is 0.1% to 10%;
2)在10℃~60℃下将可降解聚合物溶解在磷酸钙-有机溶剂混合溶液中,经过超声波或者机械乳化机的作用形成均匀混合溶液,聚合物溶液的质量/体积百分比浓度为1%~10%。2) Dissolve the degradable polymer in the calcium phosphate-organic solvent mixed solution at 10°C to 60°C, and form a uniform mixed solution through the action of ultrasonic waves or mechanical emulsifiers. The mass/volume concentration of the polymer solution is 1%. ~10%.
3)将均匀混合溶液采用常规的溶液浇铸法浇铸成磷酸钙/可降解聚合物复合薄膜,或采用常规的非溶剂沉淀方法沉淀出磷酸钙/可降解聚合物复合粉末,再进行干燥。3) The uniformly mixed solution is cast into a calcium phosphate/degradable polymer composite film by a conventional solution casting method, or a calcium phosphate/degradable polymer composite powder is precipitated by a conventional non-solvent precipitation method, and then dried.
进一步制备,可采用热压成型或注塑成型将所得的复合薄膜或复合粉末制成供制备生物医用替代品的复合材料,其热压成型步骤如下:将上述的复合薄膜或复合粉末放入模具里,填加量为模具的70%,先在室温下以0.5MPa~40MPa的压力预压,然后在温度为80~190℃、压力为0.5~100MPa的条件下,保压5~30分钟,冷却取出制品;For further preparation, the obtained composite film or composite powder can be made into a composite material for preparing biomedical substitutes by thermocompression molding or injection molding. The thermocompression molding steps are as follows: put the above composite film or composite powder into the mold , the filling amount is 70% of the mold, pre-press at room temperature with a pressure of 0.5MPa-40MPa, then hold the pressure for 5-30 minutes at a temperature of 80-190°C and a pressure of 0.5-100MPa, and cool take out the product;
注塑成型步骤如下:将上述的复合粉末或复合薄膜低温粉碎,添加到注塑机中热注塑成型,成型条件为:注射压力为0.1MPa~5Mpa,温度为100℃~250℃。The injection molding steps are as follows: the above-mentioned composite powder or composite film is crushed at low temperature, added to an injection molding machine for hot injection molding, and the molding conditions are as follows: injection pressure is 0.1MPa-5Mpa, and temperature is 100°C-250°C.
方案1制得的可降解生物医用纳米复合材料的弯曲强度为80~250MPa,弯曲模量为1~10Gpa。The bending strength of the biodegradable biomedical nanocomposite prepared in scheme 1 is 80-250 MPa, and the bending modulus is 1-10 Gpa.
方案2Scenario 2
制备方法包括以下步骤:The preparation method comprises the following steps:
1)在超声波或者机械乳化机的作用下将磷酸钙和造孔剂加入到有机溶剂中,磷酸钙在有机溶剂中的含量(按质量/体积百分比)为0.1%~10%;1) Add calcium phosphate and pore-forming agent to the organic solvent under the action of ultrasonic wave or mechanical emulsifier, the content of calcium phosphate in the organic solvent (by mass/volume percentage) is 0.1%~10%;
2)在10℃~60℃下将可降解聚合物溶解在上述的混合溶液中,经过超声波或者机械乳化机的作用形成均匀混合溶液,聚合物溶液的质量/体积百分比浓度为1%~10%。2) Dissolve the degradable polymer in the above mixed solution at 10°C-60°C, and form a uniform mixed solution through the action of ultrasonic waves or mechanical emulsifiers. The mass/volume concentration of the polymer solution is 1%-10% .
3)将均匀混合溶液采用常规的溶液浇铸法浇铸成磷酸钙/可降解聚合物复合薄膜,或采用常规的非溶剂沉淀方法沉淀出磷酸钙/可降解聚合物复合粉末、再进行干燥。3) The uniformly mixed solution is cast into a calcium phosphate/degradable polymer composite film by a conventional solution casting method, or a calcium phosphate/degradable polymer composite powder is precipitated by a conventional non-solvent precipitation method, and then dried.
进一步制备,可采用热压成型将所得的复合薄膜或复合粉末制成供制备生物医用替代品的复合材料,热压成型步骤如下:将上述的复合薄膜或复合粉末放入模具里,填加量为模具的70%,先在室温下以0.5~40MPa的压力预压,然后在温度为80~190℃、压力为0.5~100MPa的条件下,保压5~30分钟,冷却取出制品,将其浸泡在37℃的恒温水槽中,在100次/h的振荡频率下溶出造孔剂,获得多孔复合材料。For further preparation, the obtained composite film or composite powder can be made into a composite material for the preparation of biomedical substitutes by hot pressing. The steps of hot pressing are as follows: put the above composite film or composite powder into the mold, and 70% of the mould, pre-press at room temperature with a pressure of 0.5-40MPa, then hold the pressure for 5-30 minutes at a temperature of 80-190°C and a pressure of 0.5-100MPa, cool and take out the product, and Soak in a constant temperature water bath at 37°C, and dissolve the pore-forming agent at an oscillation frequency of 100 times/h to obtain a porous composite material.
方案2制得的可降解生物医用纳米复合材料的孔径为10μm~200μm,孔隙率为75%~95%,压缩强度为0.5MPa~3MPa。The degradable biomedical nano-composite material prepared in scheme 2 has a pore size of 10 μm to 200 μm, a porosity of 75% to 95%, and a compressive strength of 0.5 MPa to 3 MPa.
本发明中,所述的磷酸钙包括:无定形磷酸钙或α相磷酸三钙或β相磷酸三钙或磷灰石或磷酸氢钙或磷灰石/α相磷酸三钙复合粉末或磷灰石/β相磷酸三钙复合粉末或α相磷酸三钙复合粉末/β相磷酸三钙复合粉末,其中磷灰石为含氟羟基磷灰石或含碳酸根磷灰石。这些粉末的颗粒分布均匀,大小一般为40nm~500nm左右,其中磷酸钙复合粉末中的各个相的含量为0~100%可调节,(即调节Ca/P比)磷酸钙的降解速率可以通过改变磷酸钙的晶相或晶相组成来调节。In the present invention, the calcium phosphate includes: amorphous calcium phosphate or α-phase tricalcium phosphate or β-phase tricalcium phosphate or apatite or calcium hydrogen phosphate or apatite/α-phase tricalcium phosphate composite powder or apatite Stone/β-phase tricalcium phosphate composite powder or α-phase tricalcium phosphate composite powder/β-phase tricalcium phosphate composite powder, wherein the apatite is fluorine-containing hydroxyapatite or carbonate-containing apatite. The particles of these powders are evenly distributed, and the size is generally about 40nm to 500nm. The content of each phase in the calcium phosphate composite powder can be adjusted from 0 to 100%, and the degradation rate of calcium phosphate can be adjusted by changing the Ca/P ratio. The crystal phase or crystal phase composition of calcium phosphate is adjusted.
本发明中,所述的可降解聚合物包括:聚乳酸或聚羟基乙酸或聚羟基丁酸或聚己内脂或聚对二氧杂环己酮或聚酸酐或聚原酯或它们单体的共聚物,其中聚乳酸为聚-L-乳酸或聚-(D,L)-乳酸或聚-L-(D,L)-乳酸。聚合物的降解速率可以通过改变聚合物中的单体组成和比例来调节。In the present invention, the degradable polymer includes: polylactic acid or polyglycolic acid or polyhydroxybutyric acid or polycaprolactone or polydioxanone or polyanhydride or polyester or their monomers Copolymers, wherein the polylactic acid is poly-L-lactic acid or poly-(D,L)-lactic acid or poly-L-(D,L)-lactic acid. The degradation rate of a polymer can be adjusted by changing the composition and ratio of monomers in the polymer.
本发明制备过程中,所述的有机溶剂可以为二氯甲烷或氯仿或四氢呋喃或二甲基甲酰胺或二甲基亚砜或二氧六环。造孔剂可以用氯化钠或食糖。非溶剂为甲醇或是乙醇。In the preparation process of the present invention, the organic solvent may be dichloromethane or chloroform or tetrahydrofuran or dimethylformamide or dimethyl sulfoxide or dioxane. Pore-forming agent can use sodium chloride or sugar. The non-solvent is methanol or ethanol.
本发明采用的制备工艺条件简单易行,操作简单,成本低,易于产业化。该制备方法通过选择有机溶剂采用溶剂溶液-浇注或溶液-非溶剂沉淀将磷酸钙粉末均匀分散可降解聚合物基体中,从而使复合材料达到纳米级复合,更加充分地发挥复合材料的效能。另外,通过粒子滤除法可以获得多孔纳米复合材料。本发明的生物医用纳米复合材料,其生物降解速率可以通过改变磷酸钙的组成或是聚合物的组成或是磷酸钙和聚合物的组成比例得到有效地调节,从而可以满足不同组织工程的要求。该材料聚合物产生的酸性物质可以促进磷酸钙的降解,更加有利于骨组织的愈合。其力学性能与骨的力学性能相匹配。可以广泛地用于骨螺钉、骨接板以及骨组织工程等生物医用材料领域。The preparation technology adopted by the invention is simple and feasible, simple to operate, low in cost and easy to industrialize. The preparation method uniformly disperses the calcium phosphate powder in the degradable polymer matrix by selecting an organic solvent and adopting solvent solution-casting or solution-non-solvent precipitation, so that the composite material can be composited at the nanometer level, and the performance of the composite material can be fully exerted. In addition, porous nanocomposites can be obtained by particle filtration. The biodegradation rate of the biomedical nanocomposite material of the present invention can be effectively adjusted by changing the composition of calcium phosphate or polymer or the composition ratio of calcium phosphate and polymer, so as to meet the requirements of different tissue engineering. The acidic substance produced by the material polymer can promote the degradation of calcium phosphate, which is more conducive to the healing of bone tissue. Its mechanical properties match those of bone. The invention can be widely used in the fields of biomedical materials such as bone screws, bone plates and bone tissue engineering.
具体实施方式 Detailed ways
本发明的可降解生物医用纳米复合材料是由磷酸钙和可降解聚合物组成,其中磷酸钙的含量(质量百分比)为5~50%,可降解聚合物的含量(质量百分比)为95~50%。The degradable biomedical nanocomposite material of the present invention is made up of calcium phosphate and degradable polymer, wherein the content (mass percentage) of calcium phosphate is 5~50%, the content (mass percentage) of degradable polymer is 95~50% %.
采用方案1制备可降解生物医用纳米复合材料时,先将磷酸钙加入到有机溶剂中在超声波或是机械乳化机作用下形成均匀的磷酸钙悬浮溶液,再在10℃~60℃下将聚合物加入到磷酸钙悬浮溶液中,磁力搅拌下待聚合物完全溶解后超声波或是机械乳化机作用10~30分钟,再浇铸成磷酸钙/可降解聚合物薄膜或加入大量的乙醇或是甲醇沉淀出磷酸钙/可降解聚合物复合粉末。再将粉末或是薄膜在40~60℃下干燥24小时,再在40~60℃下真空干燥48小时,直到干燥物的质量不再减少为止,取出磷酸钙/可降解聚合物薄膜或粉末放入干燥器中5℃冷藏备用。When using Scheme 1 to prepare degradable biomedical nanocomposites, calcium phosphate is first added to the organic solvent to form a uniform calcium phosphate suspension under the action of ultrasonic waves or mechanical emulsifiers, and then the polymer is mixed at 10°C to 60°C. Add it into the calcium phosphate suspension solution, and after the polymer is completely dissolved under magnetic stirring, ultrasonic or mechanical emulsifier acts for 10-30 minutes, and then cast into a calcium phosphate/degradable polymer film or add a large amount of ethanol or methanol to precipitate out Calcium phosphate/degradable polymer composite powder. Then dry the powder or film at 40-60°C for 24 hours, and then vacuum-dry at 40-60°C for 48 hours until the quality of the dried product no longer decreases, take out the calcium phosphate/degradable polymer film or powder and put it in Refrigerate at 5°C in a desiccator for later use.
磷酸钙/可降解聚合物薄膜或粉末热成型有两种方式:热模压成型和热注塑成型。热模压成型路线:将上述的复合薄膜或复合粉末放入特制的模具里,填加量为模具的70%,先在室温下以0.5MPa~40MPa的压力预压,然后在温度为80~190℃、压力为0.5~100MPa的条件下,保压5~30分钟,冷却取出制品,然后在车床上加工成所需形状的骨螺钉、骨接板等样品。样品经过环氧乙烯或是γ-射线消毒后封存冷藏备用。There are two ways of thermoforming calcium phosphate/degradable polymer film or powder: thermo-compression molding and thermo-injection molding. Hot molding route: Put the above-mentioned composite film or composite powder into a special mold, the filling amount is 70% of the mold, first pre-press at room temperature with a pressure of 0.5MPa ~ 40MPa, and then at a temperature of 80 ~ 190 ℃, under the condition of 0.5-100MPa pressure, hold the pressure for 5-30 minutes, cool down and take out the product, and then process it into the desired shape of bone screw, bone plate and other samples on the lathe. The samples were sterilized by ethylene oxide or gamma-rays and then sealed and refrigerated for later use.
热注塑成型路线:将上述复合粉末或复合薄膜低温粉碎,添加到注塑机中热注塑成型。成型条件为:注射压力为0.1MPa~5MPa温度为100℃~250℃。注塑模具为所需的特制形状的骨螺钉骨接板模具等。注塑成型得到的样品经过修剪和环氧乙烯或是γ-射线消毒后即可得到所需的骨螺钉、骨接板等,样品封存冷藏备用。Hot injection molding route: The above-mentioned composite powder or composite film is crushed at low temperature, and added to the injection molding machine for hot injection molding. The molding conditions are as follows: the injection pressure is 0.1MPa-5MPa and the temperature is 100°C-250°C. The injection mold is a bone screw bone plate mold of the required special shape and the like. The samples obtained by injection molding can be trimmed and sterilized with ethylene oxide or γ-rays to obtain the required bone screws, bone plates, etc., and the samples are sealed and refrigerated for future use.
采用方案2可制备多孔可降解生物医用纳米复合材料,先将磷酸钙和造孔剂(氯化钠或食糖)加入到有机溶剂中在超声波或是机械乳化机作用的情况下形成均匀的悬浮溶液,再将聚合物加入到磷酸钙悬浮溶液中,磁力搅拌待聚合物完全溶解后超声波或是机械乳化机作用10~30分钟,再浇铸成膜或加入大量的乙醇或是甲醇沉淀出磷酸钙/可降解聚合物复合粉末。再将粉末或是薄膜在40~60℃下干燥24小时,再在40~60℃下真空干燥48小时,直到干燥物的质量不在减少为止,取出磷酸钙/可降解聚合物薄膜或粉末放入干燥器中5℃冷藏备用。Porous degradable biomedical nanocomposites can be prepared by adopting Scheme 2. First, calcium phosphate and pore-forming agent (sodium chloride or sugar) are added to an organic solvent to form a uniform suspension solution under the action of ultrasonic waves or mechanical emulsifiers. , and then add the polymer to the calcium phosphate suspension solution, magnetic stirring until the polymer is completely dissolved, ultrasonic or mechanical emulsifier for 10 to 30 minutes, then cast into a film or add a large amount of ethanol or methanol to precipitate calcium phosphate/ Degradable polymer composite powder. Then dry the powder or film at 40-60°C for 24 hours, and then vacuum-dry at 40-60°C for 48 hours until the quality of the dried product is no longer reduced, take out the calcium phosphate/degradable polymer film or powder and put it in Refrigerate at 5°C in a desiccator for later use.
将上述的薄膜或粉末放入特制的模具里,填加量为模具的70%,先在室温下以0.5~40MPa的压力预压,然后在温度为80~190℃、压力为0.5~100MPa的条件下,保压5~30分钟,冷却取出制品,然后浸泡在37℃的恒温水槽中,在100次/h的振荡频率下溶出造孔剂,浸泡时间为72小时,前12小时每小时换一次水,后36小时6小时换一次水,以后每8小时换一次。滤除造孔剂后获得的孔径为10μm~200μm的磷酸钙/可降解聚合物多孔纳米复合材料。Put the above-mentioned film or powder into a special mold, the filling amount is 70% of the mold, first pre-press at room temperature with a pressure of 0.5-40MPa, and then pre-press at a temperature of 80-190°C and a pressure of 0.5-100MPa Under certain conditions, hold the pressure for 5-30 minutes, cool and take out the product, then soak it in a constant temperature water tank at 37°C, and dissolve the pore-forming agent at an oscillation frequency of 100 times/h. The soaking time is 72 hours. Water once, change the water every 6 hours in the last 36 hours, and change it every 8 hours thereafter. The calcium phosphate/degradable polymer porous nanocomposite material with a pore size of 10 μm to 200 μm obtained after filtering out the pore-forming agent.
以下结合实施例进一步说明本发明Further illustrate the present invention below in conjunction with embodiment
实施例1Example 1
将0.4g的磷灰石/β相磷酸三钙复合粉末加入200ml的四氢呋喃中,超声波振荡15分钟后,加入3.6g聚乳酸,在50℃下磁力搅拌溶解后超声波处理后浇铸在直径为38mm的模子里成膜,在40℃下干燥24小时后,在放入真空干燥箱里真空干燥直到薄膜的质量恒定为止,将获得的磷灰石/β相磷酸三钙复合粉末含量为10wt%的磷酸钙/聚乳酸复合材料放入干燥器中冷藏。Add 0.4g of apatite/β-phase tricalcium phosphate composite powder into 200ml of tetrahydrofuran, ultrasonically oscillate for 15 minutes, add 3.6g of polylactic acid, dissolve it under magnetic stirring at 50°C, ultrasonicate it, and cast it on a 38mm-diameter Form a film in the mold, after drying at 40°C for 24 hours, put it into a vacuum drying oven and dry it under vacuum until the quality of the film is constant. The calcium/PLA composite was refrigerated in a desiccator.
实施例2Example 2
将0.2g的α相磷酸三钙粉末加入200ml的二甲基甲酰胺中,超声波振荡15分钟后,加入3.8g聚己内脂,在50℃下磁力搅拌溶解后超声波处理后浇铸在直径为38mm的模子里成膜,在160℃下干燥24小时后,在放入真空干燥箱里真空干燥直到薄膜的质量恒定为止,将获得的α相磷酸三钙含量为5wt%的磷酸钙/聚己内脂复合材料放入干燥器中冷藏。Add 0.2g of α-phase tricalcium phosphate powder into 200ml of dimethylformamide, ultrasonically oscillate for 15 minutes, then add 3.8g of polycaprolactone, dissolve it under magnetic stirring at 50°C, ultrasonicate it, and cast it on a 38mm-diameter Form a film in a mold, dry it at 160°C for 24 hours, then put it into a vacuum drying oven and dry it under vacuum until the quality of the film is constant. The fat composite material was placed in a desiccator and refrigerated.
实施例3Example 3
将0.8g的α相磷酸三钙复合粉末/β相磷酸三钙复合粉末加入200ml的二甲基亚砜中,超声波振荡15分钟后,加入3.2g聚乳酸,在50℃下磁力搅拌溶解后超声波处理后浇铸在直径为38mm的模子里成膜,在160℃下干燥24小时后,在放入真空干燥箱里真空干燥直到薄膜的质量恒定为止,将获得的α相磷酸三钙复合粉末/β相磷酸三钙复合粉末含量为20wt%的磷酸钙/聚乳酸复合材料放入干燥器中冷藏。Add 0.8g of α-phase tricalcium phosphate composite powder/β-phase tricalcium phosphate composite powder into 200ml of dimethyl sulfoxide, ultrasonically oscillate for 15 minutes, then add 3.2g of polylactic acid, magnetically stir and dissolve at 50°C and then ultrasonically After treatment, cast it into a mold with a diameter of 38mm to form a film. After drying at 160°C for 24 hours, put it in a vacuum drying oven and dry it in vacuum until the quality of the film is constant. The obtained α-phase tricalcium phosphate composite powder/β The calcium phosphate/polylactic acid composite material with a tricalcium phosphate composite powder content of 20 wt% is placed in a desiccator for refrigeration.
实施例4Example 4
将0.8g的磷灰石/α相磷酸三钙复合粉末和粒度为200~300μm的氯化钠加入200ml的四氢呋喃中,超声波振荡15分钟后,加入3.2g聚乳酸,在50℃下磁力搅拌溶解后超声波处理后浇铸在直径为38mm的模子里成膜,在40℃下干燥24小时后,在放入真空干燥箱里真空干燥直到薄膜的质量恒定为止,将获得的磷酸钙含量为20wt%的磷酸钙/氯化钠/聚乳酸复合材料。将上述复合材料在室温下以30MPa的压力预压,然后在温度为180℃、压力为40MPa的条件下,保压5分钟,冷却、取出制品。制品放入37℃的恒温水槽在100次/h的振荡频率下浸泡,浸泡时间为72小时,前12小时每小时换一次水,后36小时6小时换一次水,以后每8小时换一次。滤除氯化钠后获得的孔径为200μm左右、孔隙率为90%、压缩强度在2MPa的多孔可降解磷酸钙/可降解聚合物复合材料。Add 0.8g of apatite/α-phase tricalcium phosphate composite powder and sodium chloride with a particle size of 200-300μm into 200ml of tetrahydrofuran, and after ultrasonic vibration for 15 minutes, add 3.2g of polylactic acid and dissolve it under magnetic stirring at 50°C After ultrasonic treatment, cast it into a mold with a diameter of 38mm to form a film. After drying for 24 hours at 40°C, put it into a vacuum drying oven and dry it in vacuum until the quality of the film is constant. The obtained calcium phosphate content is 20wt%. Calcium Phosphate/Sodium Chloride/Polylactic Acid Composite. The above-mentioned composite material was pre-pressed at room temperature with a pressure of 30 MPa, and then held at a temperature of 180°C and a pressure of 40 MPa for 5 minutes, cooled, and the product was taken out. The product is soaked in a constant temperature water tank at 37°C at an oscillation frequency of 100 times/h. The soaking time is 72 hours. The water is changed every hour for the first 12 hours, the water is changed every 6 hours for the next 36 hours, and every 8 hours thereafter. After filtering out sodium chloride, a porous degradable calcium phosphate/degradable polymer composite material with a pore size of about 200 μm, a porosity of 90%, and a compressive strength of 2 MPa was obtained.
实施例5Example 5
将实施例1获得的复合材料,放入特制的模具里,填加量为模具的70%,先在室温下以30MPa的压力预压,然后在温度为180℃、压力为40MPa的条件下,保压5分钟,冷却、取出制品,然后在车床上加工成所需形状的骨螺钉、骨接板等样品。样品经过环氧乙烯或是γ-射线消毒后封存冷藏备用。Put the composite material obtained in Example 1 into a special mold, and the filling amount is 70% of the mold. First, it is pre-pressed at room temperature with a pressure of 30 MPa, and then at a temperature of 180 ° C and a pressure of 40 MPa. Hold the pressure for 5 minutes, cool down, take out the product, and then process it into samples such as bone screws and bone plates of the desired shape on a lathe. The samples were sterilized by ethylene oxide or gamma-rays and then sealed and refrigerated for later use.
实施例6Example 6
将实施例1获得的复合材料,低温粉碎,添加到注塑机中热注塑成型。成型条件如表1。注塑模具为所需的特制形状的骨螺钉骨接板模具。注塑成型得到的样品经过修剪和环氧乙烯或是γ-射线消毒后即可得到所需的骨螺钉、骨接板等,样品封存冷藏备用。The composite material obtained in Example 1 was pulverized at low temperature and added to an injection molding machine for hot injection molding. The molding conditions are shown in Table 1. The injection mold is a bone screw bone plate mold of the required special shape. The samples obtained by injection molding can be trimmed and sterilized with ethylene oxide or γ-rays to obtain the required bone screws, bone plates, etc., and the samples are sealed and refrigerated for future use.
表1磷酸钙/聚乳酸纳米复合材料的注塑成型工艺条件
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 03142161 CN1270783C (en) | 2003-08-08 | 2003-08-08 | Degradable nanometer composite material for biological and medical use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 03142161 CN1270783C (en) | 2003-08-08 | 2003-08-08 | Degradable nanometer composite material for biological and medical use |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1485098A CN1485098A (en) | 2004-03-31 |
CN1270783C true CN1270783C (en) | 2006-08-23 |
Family
ID=34155628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 03142161 Expired - Fee Related CN1270783C (en) | 2003-08-08 | 2003-08-08 | Degradable nanometer composite material for biological and medical use |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1270783C (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1314462C (en) * | 2005-04-25 | 2007-05-09 | 浙江大学 | Nanostructured degradable biomedical composite material and preparation method thereof |
CN100356991C (en) * | 2005-09-28 | 2007-12-26 | 浙江大学 | Biological medical material with biological responding coating and preparing method |
CN100428963C (en) * | 2005-11-30 | 2008-10-29 | 浙江大学 | Preparation method of non-sizing nano-calcium phosphate powder for medical slow release metal ion |
CN101507841B (en) * | 2009-03-30 | 2012-11-07 | 西南交通大学 | Preparation method of inorganic calcium phosphate salt/biodegradable polymer fiber film composite material |
CN101773690A (en) * | 2010-03-11 | 2010-07-14 | 浙江大学 | Polylactic acid based/20nm calcium phosphate composite stent material and preparation method thereof |
CN102247624A (en) * | 2011-01-21 | 2011-11-23 | 北京中奥汇成生物材料科技有限公司 | Absorbable bone screw and preparation method thereof |
CN104524637A (en) * | 2014-06-03 | 2015-04-22 | 东莞天天向上医疗科技有限公司 | High-molecular biological ceramic composite nanometer particle biodegradable stent and manufacturing method thereof |
CN105013006A (en) * | 2015-06-24 | 2015-11-04 | 东莞天天向上医疗科技有限公司 | A bioabsorbable bone repair material and its application and production method |
CN107126582A (en) * | 2017-06-02 | 2017-09-05 | 北京航空航天大学 | The preparation of amorphous calcium phosphate/PLA electrospun scaffolds |
CN108815579A (en) * | 2018-07-09 | 2018-11-16 | 苏州市贝克生物科技有限公司 | Nanocomposite and preparation method thereof |
CN111744058A (en) * | 2019-03-28 | 2020-10-09 | 施吉生技应材股份有限公司 | Method of making a bone plate |
CN111643736A (en) * | 2020-05-28 | 2020-09-11 | 北京市春立正达医疗器械股份有限公司 | Composite material for interface screw and preparation method thereof |
CN112546294A (en) * | 2020-12-03 | 2021-03-26 | 上海纳米技术及应用国家工程研究中心有限公司 | Preparation method of polyanhydride modified controllable biodegradable calcium phosphate bone cement, product and application thereof |
CN112933300A (en) * | 2021-02-03 | 2021-06-11 | 北京天星博迈迪医疗器械有限公司 | Absorbable fixed graft and preparation method thereof |
-
2003
- 2003-08-08 CN CN 03142161 patent/CN1270783C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1485098A (en) | 2004-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feng et al. | In situ generation of hydroxyapatite on biopolymer particles for fabrication of bone scaffolds owning bioactivity | |
Ignjatović et al. | Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials | |
CN1270783C (en) | Degradable nanometer composite material for biological and medical use | |
Saber-Samandari et al. | In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering | |
KR101626441B1 (en) | Macroporous and highly resorbable apatitic calcium-phosphate cement | |
CN101053673B (en) | High strength and tenacity degradable strontium calcium superphosphate composite bone cement and its preparation method | |
US8552100B2 (en) | Flexible hydrogel-based functional composite materials | |
Li et al. | Preparation and evaluation of osteogenic nano-MgO/PMMA bone cement for bone healing in a rat critical size calvarial defect | |
CN103668940B (en) | A kind of surface modified fibre strengthens composite bone cement and its preparation method and application | |
Nie et al. | Preparation and properties of biphasic calcium phosphate scaffolds multiply coated with HA/PLLA nanocomposites for bone tissue engineering applications | |
Zhu et al. | An injectable hydroxyapatite/poly (lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly (glycolide) fibers for bone repair | |
Lin et al. | Calcium phosphate cement reinforced by polypeptide copolymers | |
Sobczak-Kupiec et al. | Physicochemical and biological properties of hydrogel/gelatin/hydroxyapatite PAA/G/HAp/AgNPs composites modified with silver nanoparticles | |
Zhang et al. | Repair of volumetric bone defects with a high strength BMP-loaded-mineralized hydrogel tubular scaffold | |
Hu et al. | Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects | |
KR101678956B1 (en) | biodegradable composites for bone fixation using polylactide and hydroxyapatite, manufacturing method thereof | |
Elkholy et al. | In vivo evaluation of β‐CS/n‐HA with different physical properties as a new bone graft material | |
Gao et al. | Characteristics of calcium sulfate/gelatin composite biomaterials for bone repair | |
JPH11206871A (en) | In vivo degradable and absorptive bone fixing material and its manufacture | |
Wang et al. | Preparation and properties of three-dimensional hydroxyapatite/chitosan nanocomposite rods | |
Nabipour et al. | Evaluation of Ibuprofen Release from Gelatin/Hydroxyapatite/Polylactic Acid Nanocomposites: Ibuprofen Release from Gelatin/Hydroxyapatite/Polylactic Acid Nanocomposites | |
CN108096629B (en) | Polymethyl methacrylate bone cement and preparation method thereof | |
KR20150112349A (en) | biodegradable composites for bone fixation using polylactic acid and calcium phosphate, manufacturing method thereof | |
KR101686343B1 (en) | Bio-resorbable polymer composites comprising hyaluronic acid-chitosan composite, the manufacturing method thereof and medical implant material comprising the same | |
CN1672740A (en) | Degradable biomedicine composite material in nanometer structure and its prepn process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060823 |