CN1268779C - Method for preparing nano rare earth hydrogen storage alloy and equipment - Google Patents
Method for preparing nano rare earth hydrogen storage alloy and equipment Download PDFInfo
- Publication number
- CN1268779C CN1268779C CNB2004100269048A CN200410026904A CN1268779C CN 1268779 C CN1268779 C CN 1268779C CN B2004100269048 A CNB2004100269048 A CN B2004100269048A CN 200410026904 A CN200410026904 A CN 200410026904A CN 1268779 C CN1268779 C CN 1268779C
- Authority
- CN
- China
- Prior art keywords
- alloy
- tundish
- hydrogen storage
- cooling roller
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 74
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 74
- 238000000034 method Methods 0.000 title claims abstract description 21
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 19
- 239000001257 hydrogen Substances 0.000 title claims abstract description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 238000003860 storage Methods 0.000 title claims abstract description 15
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 9
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 6
- 238000001816 cooling Methods 0.000 claims abstract description 20
- 239000007788 liquid Substances 0.000 claims abstract description 17
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 3
- 150000002602 lanthanoids Chemical class 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 238000003723 Smelting Methods 0.000 claims description 2
- 238000009833 condensation Methods 0.000 claims description 2
- 230000005494 condensation Effects 0.000 claims description 2
- 230000006698 induction Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 abstract description 3
- 238000010298 pulverizing process Methods 0.000 abstract description 3
- 150000002431 hydrogen Chemical class 0.000 abstract 1
- 238000007599 discharging Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000002159 nanocrystal Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 229910004247 CaCu Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010902 jet-milling Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Continuous Casting (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种贮氢合金的制备方法及装置,特别涉及一种AB5 ±x合金(其中A为一种或几种稀土元素,包括镧系元素和钇;B=Ni、Co、Mn、Ti、Al、Zn、Cu、Sn、W、Mo、Fe、Zr、Cr以及非金属元素Si、B、C、N中的一种或多种,0≤x≤0.75)的纳米晶稀土贮氢合金的制备方法及装置。The present invention relates to a method and device for preparing a hydrogen storage alloy, in particular to an AB 5 ±x alloy (wherein A is one or more rare earth elements, including lanthanides and yttrium; B=Ni, Co, Mn, One or more of Ti, Al, Zn, Cu, Sn, W, Mo, Fe, Zr, Cr and non-metallic elements Si, B, C, N, 0≤x≤0.75) nanocrystalline rare earth hydrogen storage Alloy preparation method and device.
背景技术Background technique
传统制备稀土贮氢合金工艺是采用普通的中频感应炉熔炼,制成合金锭,合金锭通过高温热处理,然后通过粗破碎、中破碎、最后球磨或气流磨制成粉末。该方法合金锭由于冷却效果差,成份偏析严重,造成合金的充放电循环稳定性很差。为了提高合金的循环寿命,日本专利特许公开说明书N0.89066/1985提出对合金进行热处理。尽管经热处理后的合金因其成份偏析比例低而使电池的循环寿命较未热处理的合金要长,但由于晶粒尺寸太大(大于20μm),造成合金的电化学性能差。The traditional process of preparing rare earth hydrogen storage alloys is to melt in an ordinary medium-frequency induction furnace to make alloy ingots. The alloy ingots are heat-treated at high temperature, and then coarsely crushed, medium crushed, and finally ball milled or jet milled to make powder. Due to poor cooling effect and serious component segregation of the alloy ingot in this method, the charge-discharge cycle stability of the alloy is very poor. In order to improve the cycle life of the alloy, Japanese Patent Laid-Open Specification No. 89066/1985 proposes heat treatment of the alloy. Although the cycle life of the heat-treated alloy is longer than that of the unheated alloy due to its low composition segregation ratio, the electrochemical performance of the alloy is poor due to the large grain size (greater than 20 μm).
中国专利公开号1134046,1190677和欧洲专利EP0588310A2都提供一种制备方法,即先熔炼母合金锭,然后重熔母合金并采用中间包底部或坩埚底部的喷嘴,使合金液通过自重力喷向辊快速凝固制成贮氢合金薄片。中国专利公开号1134046和欧洲专利EP0588310A2,其制备的合金晶粒尺寸最小都在2μm以上,这对合金的大电流充放电稳定性不利。公开号1190677专利,虽可制得晶粒尺寸在2μm以下的合金,但其中绝大部分为非晶,所得合金是非晶、纳米晶和微晶的混合体。以上专利制备的薄片厚度主要取决于辊的转速和喷嘴至转辊的间隙及喷嘴孔径大小。由于合金液受重力的影响不同,在制备过程中,合金液流量不稳定,与辊接触方式不稳定,使制得的合金片厚度均匀性差,晶粒尺寸大小不均,合金中成分偏析、循环稳定性差、生产成本高等,从而无法明显提高材料的综合性能。Chinese patent publication numbers 1134046, 1190677 and European patent EP0588310A2 all provide a preparation method, that is, first melt the master alloy ingot, then remelt the master alloy and use the nozzle at the bottom of the tundish or the bottom of the crucible to spray the alloy liquid to the roller by gravity Rapid solidification made of hydrogen storage alloy flakes. In Chinese Patent Publication No. 1134046 and European Patent EP0588310A2, the minimum grain size of the alloy prepared therein is more than 2 μm, which is unfavorable to the high-current charge-discharge stability of the alloy. Publication No. 1190677 patent, although the alloy with grain size below 2 μm can be obtained, most of them are amorphous, and the obtained alloy is a mixture of amorphous, nanocrystalline and microcrystalline. The thickness of the sheet prepared by the above patents mainly depends on the rotating speed of the roller, the gap from the nozzle to the rotating roller and the aperture size of the nozzle. Because the alloy liquid is affected by gravity differently, during the preparation process, the flow of the alloy liquid is unstable, and the contact mode with the roll is unstable, so that the thickness uniformity of the prepared alloy sheet is poor, the grain size is uneven, and the components in the alloy are segregated and circulated. Poor stability, high production cost, etc., so that the overall performance of the material cannot be significantly improved.
发明内容Contents of the invention
本发明的目的是提出一种制得厚度一致性好、晶粒尺寸单一的纳米晶贮氢合金的方法。The purpose of the present invention is to propose a method for preparing a nanocrystalline hydrogen storage alloy with good thickness consistency and single grain size.
本发明的另一个目的是提出一个保证上述方法实施的装置。Another object of the invention is to propose a device that ensures the implementation of the above-mentioned method.
本发明的目的可具体通过下述措施来实现:将按AB5±x成份配比的原材料置于速凝炉熔炼坩埚1内,该炉的工作频率为800~2000Hz,功率为100~400Kw,在惰性气体或真空环境中熔炼,待熔化后直接精炼5~40min,然后将合金液倒入预热好的中间包2内,中间包2预热温度为800~1300℃。所述中间包2在面对辊5的一侧设有合金液的溢出口3,溢出口下缘4高于中间包2的内底面,溢出口宽度为5~400mm。中间包可以是一个整体,也可以是由几块材料组合而成。中间包溢出口3与冷却辊5截面水平直径之间的夹角θ为90°~180°,冷却辊5的表面线速度为1~6m/s。合金液在漫过溢出口3时,由于合金液固有的张力作用,欲流又未流出时,通过旋转的冷却辊5在该处将合金液刮上,使合金液在冷却辊5上冷却制成贮氢合金片。通过控制中间包2的温度,使合金液的温度保持稳定,从而保证合金液在接触冷却辊5处形成的张力保持一致,这样在张力作用下,合金液不断地、均匀地、不受重力影响地从侧面流向冷却辊5,通过冷却辊5的转动,制得厚度一致性好、晶粒尺寸单一的纳米晶贮氢合金片,材料性能明显提高。该方法制备的贮氢合金片晶粒尺寸为1~1000nm,厚度为0.02~1mm。The purpose of the present invention can be realized by the following measures: the raw material by AB 5 ± x composition ratio is placed in the smelting crucible 1 of the quick-setting furnace, the working frequency of the furnace is 800~2000Hz, and the power is 100~400Kw, Melting in an inert gas or vacuum environment, directly refining for 5-40 minutes after melting, and then pouring the alloy liquid into the preheated tundish 2, the preheating temperature of the tundish 2 is 800-1300°C. The tundish 2 is provided with an
图1是贮氢合金片制备装置的示意图。Figure 1 is a schematic diagram of a hydrogen storage alloy sheet preparation device.
图2是中间包的示意图。Figure 2 is a schematic diagram of a tundish.
图3是中间包的A-A剖面图。Fig. 3 is an A-A sectional view of the tundish.
1.速凝炉熔炼坩锅;2.中间包;3.溢出口;4.溢出口下缘;5.冷却辊。1. The melting crucible of the quick-setting furnace; 2. The tundish; 3. The overflow port; 4. The lower edge of the overflow port; 5. The cooling roller.
该发明方法及装置得到的是晶粒尺寸均匀的单一纳米晶合金,呈典型的CaCu5型六方结构,无杂质相(包括非晶相),所以合金的容量和大电流放电能力得到提高。同时,由于纳米晶提供丰富的氢原子扩散通道,减少了合金在充放电过程中产生的内应力,使合金片在充放电过程中粉化率得到有效控制,提高了合金充放电循环的稳定性,并提高了合金的使用寿命。而且,由于这种快速冷凝方法制备的合金片成份均匀,所以合金具有良好的放电电压平台特性。另外,该合金片的组织为单一的纳米晶或微米晶,无须热处理,保持了铸态合金活化性能好的优点(只需活化3次,容量达340mAh/g以上),而且工艺简单,产品一致性好。The method and device of the invention obtain a single nanocrystalline alloy with uniform grain size, a typical CaCu 5 -type hexagonal structure, and no impurity phase (including amorphous phase), so the capacity and high-current discharge capacity of the alloy are improved. At the same time, because the nanocrystals provide abundant hydrogen atom diffusion channels, the internal stress generated by the alloy during the charging and discharging process is reduced, the pulverization rate of the alloy sheet is effectively controlled during the charging and discharging process, and the stability of the charging and discharging cycle of the alloy is improved. , and improve the service life of the alloy. Moreover, because the composition of the alloy sheet prepared by this rapid condensation method is uniform, the alloy has good discharge voltage platform characteristics. In addition, the structure of the alloy sheet is a single nano-crystal or micro-crystal, without heat treatment, which maintains the advantages of good activation performance of the cast alloy (only need to activate 3 times, the capacity can reach more than 340mAh/g), and the process is simple and the product is consistent Good sex.
本发明采用的方法和中间包结构较传统工艺减少了合金的粗、中破碎和热处理等步骤,缩短了生产工艺流程,降低了合金的生产成本。另一方面,该法制备的合金为纳米晶,而纳米晶结构给氢原子提供丰富的扩散通道,减少了合金在吸放氢过程中的微裂和粉化,改善了合金吸、放氢的动力学性能,从而大大提高合金的电化学性能,特别是合金的充放电循环的稳定性和大电流充放电性能。The method and tundish structure adopted by the invention reduce the steps of coarse and medium crushing and heat treatment of the alloy compared with the traditional technology, shorten the production process and reduce the production cost of the alloy. On the other hand, the alloy prepared by this method is nanocrystalline, and the nanocrystalline structure provides rich diffusion channels for hydrogen atoms, which reduces the microcracking and pulverization of the alloy during the hydrogen absorption and desorption process, and improves the hydrogen absorption and desorption of the alloy. Kinetic performance, thereby greatly improving the electrochemical performance of the alloy, especially the stability of the alloy's charge-discharge cycle and high-current charge-discharge performance.
具体实施方式Detailed ways
下面结合实施例进一步详述本发明。The present invention is described in further detail below in conjunction with embodiment.
实施例Example
选用成分为AB5±x合金(其中A为一种或几种稀土元素,包括镧系元素和钇;B=Ni、Co、Mn、Ti、Al、Zn、Cu、Sn、W、Mo、Fe、Zr、Cr以及非金属元素Si、B、C、N中的一种或多种,0≤x≤0.75)的原材料置于真空速凝炉内,该炉的工作频率为800~2000Hz,功率为100~400Kw,在惰性气体或真空环境中熔炼,待熔化后直接精炼5~40min,然后将合金倒入预热好的中间包2内,中间包预热温度为800~1300℃,冷却辊5的线速度在1~6m/s范围内,中间包溢出口3与冷却辊5截面水平直径间的夹角θ在90°~180°范围内,中间包溢出口3的宽度为250mm,制成合金片,将合金片制粉并组装成模拟电池测试其性能,结果如下表所示。
注:本表所使用的符号说明如下:Note: The symbols used in this table are explained as follows:
*:在3000mA/g放电的情况下,第68次放电时的容量衰减率就达到100%。 * : In the case of 3000mA/g discharge, the capacity decay rate reaches 100% at the 68th discharge.
#:在3000mA/g放电的情况下,第180次放电时的容量衰减率就达到100%。#: In the case of 3000mA/g discharge, the capacity decay rate reaches 100% at the 180th discharge.
C60,Max:放电电流为60mA/g的最大放电比容量;C 60, Max : the maximum discharge specific capacity with a discharge current of 60mA/g;
S60,500:第500次循环时放电电流为60mA/g时的容量衰减率;S 60,500 : the capacity decay rate when the discharge current is 60mA/g at the 500th cycle;
C3000,Max:放电电流为3000mA/g的最大放电比容量;C 3000, Max : the maximum discharge specific capacity with a discharge current of 3000mA/g;
S3000,500:第500次循环时放电电流为3000mA/g时的容量衰减率;S 3000, 500 : the capacity decay rate when the discharge current is 3000mA/g at the 500th cycle;
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100269048A CN1268779C (en) | 2004-04-19 | 2004-04-19 | Method for preparing nano rare earth hydrogen storage alloy and equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100269048A CN1268779C (en) | 2004-04-19 | 2004-04-19 | Method for preparing nano rare earth hydrogen storage alloy and equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1563470A CN1563470A (en) | 2005-01-12 |
CN1268779C true CN1268779C (en) | 2006-08-09 |
Family
ID=34480791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100269048A Expired - Fee Related CN1268779C (en) | 2004-04-19 | 2004-04-19 | Method for preparing nano rare earth hydrogen storage alloy and equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1268779C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9234264B2 (en) | 2004-12-07 | 2016-01-12 | Hydrexia Pty Limited | Magnesium alloys for hydrogen storage |
-
2004
- 2004-04-19 CN CNB2004100269048A patent/CN1268779C/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9234264B2 (en) | 2004-12-07 | 2016-01-12 | Hydrexia Pty Limited | Magnesium alloys for hydrogen storage |
Also Published As
Publication number | Publication date |
---|---|
CN1563470A (en) | 2005-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109108273B (en) | Preparation method of NbZrTiTa refractory high-entropy alloy powder and NbZrTiTa refractory high-entropy alloy powder | |
CN108039258A (en) | A kind of high temperature high-coercive force samarium-cobalt permanent-magnetic material and preparation method | |
WO1997003213A1 (en) | Rare earth metal-nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen secondary battery | |
US7264683B2 (en) | Centrifugal casting method, centrifugal casting apparatus, and cast alloy produced by same | |
CN103079724A (en) | Method for producing alloy cast slab for rare earth sintered magnet | |
CN104575903A (en) | Neodymium iron boron magnet added with Dy powder and preparation method thereof | |
CN104575902A (en) | Neodymium iron boron magnet added with cerium and preparation method thereof | |
CN112831733A (en) | A kind of amorphous coated Y2O3 composite material and powder preparation method thereof | |
Yang et al. | Combination strategy for high-performance Sm (CoFeCuZr) z sintered permanent magnet: Synergistic improvement of the preparation process | |
CN115044794B (en) | A Cu-(Y2O3-HfO2) alloy with excellent properties and its preparation method | |
EP0784350B1 (en) | Method for producing hydrogen-absorbing alloy | |
CN1268779C (en) | Method for preparing nano rare earth hydrogen storage alloy and equipment | |
CN101962722A (en) | A preparation method of single-phase SmCo7 nanocrystalline alloy bulk material without doping elements | |
CN113921218A (en) | High-remanence neodymium-iron-boron magnet and preparation method and application thereof | |
CN109087767A (en) | A kind of crystal boundary spreads the neodymium iron boron magnetic body and preparation method thereof of nanoscale diffusate in situ | |
US20220251692A1 (en) | Fine grain rare earth alloy cast strip, preparation method thereof, and a rotary cooling roll device | |
CN102220530B (en) | Preparation method of Sm5Co2 nanocrystalline alloy block material rich in Sm single phase | |
CN108246992B (en) | Method for preparing fine-grain rare earth alloy cast sheet and rotary cooling roller device | |
CN108257752B (en) | Alloy casting sheet for preparing fine-grain rare earth sintered magnet | |
CN2487474Y (en) | Vacuum quick hardening furnace | |
CN115976351B (en) | A method for improving the mechanical properties of kilogram-level AlCoCrFeNi2.1 eutectic high entropy alloy based on remelting process | |
EP4066964B1 (en) | Method for preparing a high-performance nd-fe-b isotropic magnetic powder | |
CN103682288A (en) | Hydrogen storage electrode alloy for Ni-MH battery and preparation method thereof | |
CN115725886B (en) | A G-phase precipitation-strengthened high-entropy alloy and its preparation method | |
CN109909465B (en) | A method for inhibiting high temperature ordering of samarium cobalt alloys with high iron concentration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180104 Address after: 510651 Changxin Road, Guangzhou, Guangdong, No. 363, No. Patentee after: GUANGDONG INSTITUTE OF RARE METALS Address before: Wushan 510651 Guangdong city of Guangzhou Province Patentee before: Guangzhou Research Institute of Non-ferrous Metals |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060809 Termination date: 20190419 |
|
CF01 | Termination of patent right due to non-payment of annual fee |