CN1261821C - 3D mask - Google Patents
3D mask Download PDFInfo
- Publication number
- CN1261821C CN1261821C CN 200410080758 CN200410080758A CN1261821C CN 1261821 C CN1261821 C CN 1261821C CN 200410080758 CN200410080758 CN 200410080758 CN 200410080758 A CN200410080758 A CN 200410080758A CN 1261821 C CN1261821 C CN 1261821C
- Authority
- CN
- China
- Prior art keywords
- pattern
- mask
- layer
- edge
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 claims description 17
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 11
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 9
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- 239000010453 quartz Substances 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 abstract description 20
- 230000000694 effects Effects 0.000 abstract description 10
- 229920002120 photoresistant polymer Polymers 0.000 description 12
- 238000000034 method Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
本发明公开了一种三维立体掩膜,通过增加掩膜上边界图案周缘的不透光层的厚度,增加入射光通过边界图案的路径长度,改善通过边界图案的入射光的光相干性,借此降低因为光干涉所造成的光学邻近效应,减少曝出的边界图案发生变形或是聚焦深度不足的问题,使三维立体掩膜能够曝出良好的图形。
The present invention discloses a three-dimensional stereoscopic mask. By increasing the thickness of the opaque layer around the boundary pattern on the mask, the path length of the incident light passing through the boundary pattern is increased, and the optical coherence of the incident light passing through the boundary pattern is improved, thereby reducing the optical proximity effect caused by light interference, reducing the deformation of the exposed boundary pattern or the problem of insufficient focusing depth, so that the three-dimensional stereoscopic mask can expose good graphics.
Description
本申请是申请号为01123723.6、申请日为2001年7月26日、名称为“三维立体掩膜”的发明专利申请的分案申请。This application is a divisional application of the invention patent application with the application number 01123723.6, the application date being July 26, 2001, and the name "three-dimensional mask".
技术领域technical field
本发明涉及一种半导体装置,且特别涉及一种三维立体掩膜,其可获得良好的边界图案,增进光刻曝光的效果。The invention relates to a semiconductor device, and in particular to a three-dimensional mask, which can obtain a good boundary pattern and improve the effect of photolithography exposure.
背景技术Background technique
在半导体工业中,光阻图案的制作是利用光刻曝光工具如步进机或是扫描机,在感光材料上曝光以定义出所需的图案。其步骤首先在半导体基底上涂布一层光阻层之后,利用曝光工具将掩膜上的图案投影至光阻层,然后将光阻层曝光的部分使用显影剂进行显影,使光阻层显现出掩膜上的图案。之后利用此图案化的光阻层为罩幕,进行后续的蚀刻或是离子注入工艺。In the semiconductor industry, photoresist patterns are made by using photolithography exposure tools such as steppers or scanners to expose on photosensitive materials to define the desired pattern. The steps are first to coat a layer of photoresist layer on the semiconductor substrate, use an exposure tool to project the pattern on the mask onto the photoresist layer, and then use a developer to develop the exposed part of the photoresist layer to make the photoresist layer appear. pattern on the mask. Afterwards, the patterned photoresist layer is used as a mask for subsequent etching or ion implantation processes.
掩膜一般以透明平板为基底,在平板上形成不透明的线路来定义所需的图案。透明平板一般由石英构成,不透明线路则通过蚀刻铬(Chrome)层定义出所需的电路图案。以辐射光源发出的入射光照射掩膜,经过掩膜的图案遮蔽以及光绕射形成图像,并且经过投影系统将虚拟图像投射在光阻层上。关于曝光技术其更进一步说明可参考pages274-276 of VLSI Technology edited by S.M.Sze(1983)。The mask is generally based on a transparent plate, on which opaque lines are formed to define the desired pattern. The transparent plate is generally made of quartz, and the opaque circuit defines the required circuit pattern by etching the chrome (Chrome) layer. The mask is irradiated with the incident light emitted by the radiation source, and an image is formed through pattern shielding of the mask and light diffraction, and a virtual image is projected on the photoresist layer through a projection system. For further explanation on exposure technology, please refer to pages274-276 of VLSI Technology edited by S.M.Sze(1983).
请参照图1,其是传统掩膜的结构剖面示意图。利用蚀刻、印刷等技术,在透明基板102上形成具有开口图案106的不透明的铬层104,借此形成掩膜100。一般,掩膜100上的开口图案106为周期性的密集图案,因此在决定光源条件时,数值孔径(NumericalAperture,NA)以及光相干性(coherence)σ都是针对无穷周期来仿真计算。然而,当实际应用在有限周期的掩膜图案时,对于边缘图案则会发生光学邻近效应(OPE),使得曝出的边缘图案发生变形,或是聚焦深度(DOF)不足的问题。如图2所示,其表示使用传统掩膜100在光阻层上曝出的图案200,其在中央部分202获得跟掩膜100上相同的图案,但是边缘部分204则发生变形现象,使得边缘部分204的图案的线宽d不正常地放大或是缩小。这样容易导致产品发生短路或是断路的现象,因而缩小边界图形的工艺范围(processwindow)。Please refer to FIG. 1 , which is a schematic cross-sectional view of a traditional mask structure. An
造成光学邻近效应(OPE)的主要因素之一是相邻图案的光干涉。传统上,通过对掩膜图案适当地变形以获得正确的曝光图案的方式称为光学邻近修正(OPC)。但是,光学邻近修正(OPC)必须配合其光源条件,对于不同的光源,即必须对OPC作适当修改,才能获得理想的曝光图案,这造成OPC掩膜的应用受到限制。One of the main factors causing the optical proximity effect (OPE) is light interference of adjacent patterns. Traditionally, the method of properly deforming the mask pattern to obtain the correct exposure pattern is called optical proximity correction (OPC). However, the optical proximity correction (OPC) must match the light source conditions. For different light sources, OPC must be modified appropriately to obtain an ideal exposure pattern, which limits the application of OPC masks.
发明内容Contents of the invention
为了克服现有技术的不足,本发明提供一种三维立体掩膜,其可以改善边界图案发生变形现象,而且可适用于各种不同的光源。In order to overcome the deficiencies of the prior art, the present invention provides a three-dimensional mask, which can improve the phenomenon of boundary pattern deformation and is applicable to various light sources.
本发明提供一种三维立体掩膜,适用于一光刻曝光系统。此三维立体掩膜至少包括一基底透光层与一不透光层。不透光层位于基底透光层上,不透光层中具有一开口图案,且开口图案中具有一边缘开口。并且设置一准直突起,位于边缘开口周缘的不透光层上。由于该准直突起的设置,改善了相邻图案的光干涉,而得使光阻层的曝光更精确。The invention provides a three-dimensional mask, which is suitable for a photolithography exposure system. The three-dimensional mask at least includes a base transparent layer and an opaque layer. The opaque layer is located on the base transparent layer, the opaque layer has an opening pattern, and the opening pattern has an edge opening. And a collimating protrusion is arranged on the opaque layer at the periphery of the edge opening. Due to the arrangement of the collimating protrusions, the light interference of adjacent patterns is improved, so that the exposure of the photoresist layer is more accurate.
本发明还提供一种三维立体掩膜,适用于一光刻曝光系统。此三维立体掩膜包括一基底透光层;一不透光层,位于该基底透光层上,该不透光层中具有一开口图案,在该开口图案的该不透光层具有一曲面表面轮廓,且在开口图案边缘的该曲面不透光层的厚度大于在开口图案中央的曲面不透光层的厚度。The invention also provides a three-dimensional mask, which is suitable for a photolithography exposure system. The three-dimensional mask includes a base transparent layer; an opaque layer located on the base transparent layer, the opaque layer has an opening pattern, and the opaque layer in the opening pattern has a curved surface The surface profile, and the thickness of the curved light-proof layer at the edge of the opening pattern is greater than the thickness of the curved light-proof layer at the center of the opening pattern.
本发明的三维立体掩膜通过改变边界图案的光相干性的曝光条件,可以解决边界图形因为光学邻近效应造成的变形或是聚焦深度不足的问题。The three-dimensional mask of the present invention can solve the problem of deformation of the boundary pattern or insufficient depth of focus caused by the optical proximity effect by changing the exposure condition of the light coherence of the boundary pattern.
本发明的优点是:通过增加掩膜上边界图案周缘的不透光层的厚度,增加入射光通过边界图案的路径长度,改善通过边界图案的入射光的光相干性,借此降低因为光干涉所造成的光学邻近效应,减少曝出的边界图案发生变形或是聚焦深度不足的问题,使三维立体掩膜能够曝出良好的图形,而且可适用于各种不同的光源。The advantages of the present invention are: by increasing the thickness of the opaque layer on the periphery of the border pattern on the mask, the path length of the incident light passing through the border pattern is increased, and the optical coherence of the incident light passing through the border pattern is improved, thereby reducing the optical interference caused by light interference. The resulting optical proximity effect reduces the deformation of the exposed boundary pattern or the problem of insufficient depth of focus, so that the three-dimensional mask can expose good graphics, and can be applied to various light sources.
附图说明Description of drawings
下面结合附图及实施例对本发明进行详细说明:Below in conjunction with accompanying drawing and embodiment the present invention is described in detail:
图1是传统掩膜的结构剖面示意图;FIG. 1 is a schematic cross-sectional view of a conventional mask structure;
图2是使用传统掩膜在光阻层上所曝出的图案,在密集图案边界部分会产生变形或是聚焦深度不足的问题;Figure 2 is the pattern exposed on the photoresist layer using a traditional mask, and the problem of deformation or insufficient depth of focus will occur at the boundary of the dense pattern;
图3是本发明第一较佳实施例三维立体掩膜结构的剖面示意图;3 is a schematic cross-sectional view of a three-dimensional mask structure in a first preferred embodiment of the present invention;
图4是使用本发明三维立体掩膜在光阻层上所曝出的图案,与掩膜上的图案相同;Fig. 4 is the pattern exposed on the photoresist layer using the three-dimensional mask of the present invention, which is the same as the pattern on the mask;
图5是本发明第二较佳实施例三维立体掩膜结构的剖面示意图。FIG. 5 is a schematic cross-sectional view of a three-dimensional mask structure according to a second preferred embodiment of the present invention.
图中符号一览表
具体实施方式Detailed ways
本发明提供一种三维立体掩膜,通过在掩膜上形成三维立体的掩膜图案,可以改变边缘图案的入射光的相干性,借此可以改善边缘图案的光学邻近效应,减少边缘图案发生图案变形或是聚焦不足的情况,而且可以应用于各种不同的光源。The invention provides a three-dimensional mask. By forming a three-dimensional mask pattern on the mask, the coherence of the incident light of the edge pattern can be changed, so that the optical proximity effect of the edge pattern can be improved, and the pattern generation of the edge pattern can be reduced. Distortion or lack of focus, and can be applied to a variety of different light sources.
请参照图3,其是本发明第一较佳实施例三维立体掩膜结构的剖面示意图。本发明的三维立体掩膜300主要包括一个底层透光层302,其材质如同传统掩膜用的透明基板,例如是高透明的石英。在底层透光层302上为一层具有掩膜开口图案305的不透光层304,其中开口图案305即为一般光刻曝光工艺中所需的电路图案。此不透光层304所使用的材质比如是铬(Cr)、氧化铬(CrOx),或是其它不透光材质。在开口图案305的边缘开口308周缘的不透光层304上具有准直突起306,借此准直突起306可改善边缘图案的曝光效果。准直突起306所使用的材质亦为不透光材质,比如是铬或是氧化铬等,其材质可以跟不透光层304相同,亦可以使用跟不透光层304不同的材质。一般准直突起306的高度h约为不透光层304厚度的2-15倍,其高度h可视图形的光学邻近效应(OPE)的程度作调整。Please refer to FIG. 3 , which is a schematic cross-sectional view of a three-dimensional mask structure according to a first preferred embodiment of the present invention. The three-dimensional mask 300 of the present invention mainly includes a bottom transparent layer 302 whose material is the same as the transparent substrate used in traditional masks, such as highly transparent quartz. On the bottom transparent layer 302 is an opaque layer 304 with a mask opening pattern 305, wherein the opening pattern 305 is a circuit pattern required in a general photolithography exposure process. The material used for the opaque layer 304 is, for example, chromium (Cr), chromium oxide (CrOx), or other opaque materials. Alignment protrusions 306 are provided on the opaque layer 304 around the edge opening 308 of the opening pattern 305 , whereby the alignment protrusions 306 can improve the exposure effect of the edge pattern. The material used for the collimation protrusion 306 is also an opaque material, such as chromium or chromium oxide. Generally, the height h of the collimation protrusion 306 is about 2-15 times the thickness of the opaque layer 304, and the height h can be adjusted according to the optical proximity effect (OPE) of the pattern.
本发明的三维立体掩膜300比如是以蚀刻方式形成。以不透光层304的材质使用铬且准直突起306的材质使用氧化铬为例。首先在底层透光层302上依序形成铬层与氧化铬层,接着利用第一个图案进行蚀刻制作出准直突起306,然后再以第二个图案进行蚀刻制作出具有开口图案305的不透光层304。准直突起306与不透光层304若使用不同材质,可以获得较佳的厚度控制。倘若准直突起306与不透光层304使用相同的材质,可以通过时间控制蚀刻出准直突起306之后,再以第二个图案蚀刻出开口图案305。The three-dimensional mask 300 of the present invention is formed by etching, for example. Taking chrome as the material of the opaque layer 304 and chromium oxide as the material of the alignment protrusion 306 as an example. First, a chromium layer and a chromium oxide layer are sequentially formed on the bottom light-transmitting layer 302, and then the alignment protrusion 306 is made by etching with the first pattern, and then the different opening pattern 305 is made by etching with the second pattern. Light-transmitting layer 304 . If different materials are used for the alignment protrusion 306 and the opaque layer 304 , better thickness control can be obtained. If the alignment protrusion 306 is made of the same material as the opaque layer 304 , the opening pattern 305 can be etched in a second pattern after the alignment protrusion 306 is etched through time control.
本发明的三维立体掩膜300可以直接应用于传统的光源,并且以偏轴照明(Off-axisillumination)较佳,例如是环状(annular)光源、四极(quadrapole)光源或是二极(dipole)光源等,所应用的入射光波长包括365nm、248nm或是193nm等。本发明的准直突起306可以改变通过边缘开口308入射光的光相干性(coherence),通过增加入射光通过边缘开口308的路径长度,可以使通过边缘开口308的入射光的光相干性增加,借此提高边缘图案的聚焦深度,并且维持原有的图案,避免边缘图案产生变形。图4是使用本发明的三维立体掩膜300在光阻层上曝出的图案400,中央图案402可维持原有的掩膜图案,且边缘图案404,即半等值线(semi-isoline)部分(其周缘一边为密集图案,另一边为无图案区),因为光相干性变好,使光强度分布(Aerialimage)变好,其可维持原有的掩膜图案,并且获得良好的聚焦深度,因此可以使曝光时的工艺范围(processwindow)扩大,改善工艺条件。The three-dimensional mask 300 of the present invention can be directly applied to traditional light sources, and off-axis illumination is preferred, such as annular (annular) light source, quadrapole (quadrapole) light source or dipole (dipole) ) light source, etc., the applied incident light wavelength includes 365nm, 248nm or 193nm, etc. The collimation protrusion 306 of the present invention can change the optical coherence (coherence) of the incident light passing through the edge opening 308, by increasing the path length of the incident light passing through the edge opening 308, the optical coherence of the incident light passing through the edge opening 308 can be increased, In this way, the depth of focus of the edge pattern is improved, and the original pattern is maintained to avoid deformation of the edge pattern. 4 is a pattern 400 exposed on the photoresist layer using the three-dimensional mask 300 of the present invention. The central pattern 402 can maintain the original mask pattern, and the edge pattern 404, that is, the semi-isoline Part (one side of its periphery is a dense pattern, and the other side is a non-pattern area), because the optical coherence becomes better, the light intensity distribution (Aerial image) becomes better, it can maintain the original mask pattern, and obtain a good depth of focus , so the process window during exposure can be expanded and the process conditions can be improved.
请参照图5,本发明亦提供另一种三维立体掩膜,接着将以第二较佳实施例进行说明。本发明的三维立体掩膜500主要包括一个底层透光层502,其材质比如是高透明的石英等。在底层透光层502上为一层具有掩膜开口图案505的不透光层504,其中开口图案505即为一般光刻制造过程中的图案。不透光层504所使用的材质比如是铬(Cr)、氧化铬(CrOx),或是其它不透光材质。在开口图案505处之不透光层504具有一曲面表面轮廓506,此曲面表面轮廓为凹入状,中间低而边缘高。因此,在开口图案505边缘部分508不透光层504的厚度大于在开口图案505中央部分510不透光层504的厚度。一般在边缘部分508的不透光层504厚度约为中央部分510的不透光层504厚度的2-15倍。至于不透光层504的曲面表面轮廓506需视开口图案505来进行设计。Please refer to FIG. 5 , the present invention also provides another three-dimensional mask, which will be described with a second preferred embodiment. The three-dimensional mask 500 of the present invention mainly includes a bottom light-transmitting layer 502 made of, for example, highly transparent quartz. On the bottom transparent layer 502 is an opaque layer 504 having a mask opening pattern 505 , wherein the opening pattern 505 is a pattern in a general photolithography manufacturing process. The material used for the opaque layer 504 is, for example, chromium (Cr), chromium oxide (CrOx), or other opaque materials. The opaque layer 504 at the opening pattern 505 has a curved surface profile 506 , the curved surface profile is concave, low in the middle and high at the edge. Therefore, the thickness of the opaque layer 504 at the edge portion 508 of the opening pattern 505 is greater than the thickness of the opaque layer 504 at the central portion 510 of the opening pattern 505 . Generally, the thickness of the opaque layer 504 at the edge portion 508 is about 2-15 times the thickness of the opaque layer 504 at the central portion 510 . The curved surface profile 506 of the opaque layer 504 needs to be designed according to the opening pattern 505 .
本发明的三维立体掩膜500可以直接应用于各种传统光源,例如是环状(annular)光源、四极(quadrapole)光源或是二极(dipole)光源等。所应用的入射光波长包括365nm、248nm或是193nm等。本发明的三维立体掩膜500根据开口图案505的图形计算出曲面表面轮廓506的高度分布,使得通过开口图案505后的入射光的光相干性能够适合各个开口。在开口图案505中,边缘开口512周缘的不透光层504的厚度较厚,因此在边缘开口512的信道较长,借此可以改善其光相干性,使通过掩膜500的入射光可以有较佳的光强度分布。The three-dimensional mask 500 of the present invention can be directly applied to various traditional light sources, such as annular light sources, quadrapole light sources, or dipole light sources. The applied incident light wavelength includes 365nm, 248nm or 193nm and so on. The three-dimensional mask 500 of the present invention calculates the height distribution of the curved surface profile 506 according to the graph of the opening pattern 505, so that the optical coherence of the incident light passing through the opening pattern 505 can be adapted to each opening. In the opening pattern 505, the thickness of the opaque layer 504 around the edge opening 512 is thicker, so the channel at the edge opening 512 is longer, thereby improving its optical coherence, so that the incident light passing through the mask 500 can have Better light intensity distribution.
综上所述,本发明所提供的三维立体掩膜,可以通过改变在边界图案的入射光的光相干性,解决边界图形因为光学邻近效应造成的图形变形或是聚焦深度不足的问题。In summary, the three-dimensional mask provided by the present invention can solve the problem of graphic deformation or insufficient depth of focus of the boundary pattern due to the optical proximity effect by changing the optical coherence of the incident light on the boundary pattern.
如本领域技术人员所了解的,以上所述仅为本发明的较佳实施例而已,并非用以限定本发明的保护范围;凡其它未脱离本发明所揭示的精神下所完成的等效改变或修饰,均应包含在本发明专利的保护范围内。As those skilled in the art understand, the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of protection of the present invention; all other equivalent changes that do not deviate from the spirit disclosed in the present invention Or modification, all should be included in the scope of protection of the patent of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410080758 CN1261821C (en) | 2001-07-26 | 2001-07-26 | 3D mask |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410080758 CN1261821C (en) | 2001-07-26 | 2001-07-26 | 3D mask |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB011237236A Division CN1178275C (en) | 2001-07-26 | 2001-07-26 | 3D mask |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1595294A CN1595294A (en) | 2005-03-16 |
CN1261821C true CN1261821C (en) | 2006-06-28 |
Family
ID=34666978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200410080758 Expired - Fee Related CN1261821C (en) | 2001-07-26 | 2001-07-26 | 3D mask |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1261821C (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6575922B2 (en) * | 2016-01-27 | 2019-09-18 | エルジー・ケム・リミテッド | Film mask, manufacturing method thereof, pattern forming method using the same, and pattern formed using the same |
EP3410213B1 (en) | 2016-01-27 | 2021-05-26 | LG Chem, Ltd. | Film mask, method for manufacturing same, and method for forming pattern using film mask |
CN108351604B (en) | 2016-01-27 | 2020-10-30 | 株式会社Lg化学 | Film mask, method for manufacturing the same, pattern forming method using the film mask, and pattern formed by the film mask |
CN109407461B (en) * | 2018-10-26 | 2022-04-12 | 京东方科技集团股份有限公司 | Photomask, method of manufacturing the same, and method of manufacturing display device |
-
2001
- 2001-07-26 CN CN 200410080758 patent/CN1261821C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1595294A (en) | 2005-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2886522B2 (en) | Phase shift mask correction method and phase shift mask system | |
US6749972B2 (en) | Optical proximity correction common process window maximization over varying feature pitch | |
EP1438633B1 (en) | Method for forming elliptical and rounded features using beam shaping | |
JP3645242B2 (en) | Method and apparatus for generating masks used in connection with dipole illumination technology | |
JP2004511013A (en) | High yield reticle forming method | |
JP2001356466A (en) | Hybrid phase shift mask | |
JPH08179492A (en) | I-line stepper lithographic method for phase-shift mask patterning | |
US5411823A (en) | Exposure method, phase shift mask used in the same, and process of fabricating semiconductor integrated circuit device using the same | |
US7930654B2 (en) | System and method of correcting errors in SEM-measurements | |
CN1261821C (en) | 3D mask | |
US8092958B2 (en) | Mask and method for patterning a semiconductor wafer | |
US6635394B2 (en) | Three dimensional mask | |
JPS63216052A (en) | Exposure method | |
US7669173B2 (en) | Semiconductor mask and method of making same | |
US6560767B2 (en) | Process for making photomask pattern data and photomask | |
JPH11133585A (en) | Mask for exposure and its production | |
US6383689B1 (en) | Attenuated phase-shift mask and method of manufacturing the same | |
CN1400629A (en) | 3D mask | |
JP4580912B2 (en) | Improved mask, method and program for making improved mask | |
WO2006133729A1 (en) | Method and system for photolithography | |
TW472172B (en) | Method to repair the attenuated phase shift mask by optical proximity effect correction technology | |
KR100573469B1 (en) | Multiple Exposure Method of Photomask Using Electron Beam | |
JP2001223155A (en) | Photolithography method | |
KR0146399B1 (en) | Semiconductor pattern forming method | |
JP3417939B2 (en) | Mask and pattern forming method using the mask |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060628 Termination date: 20190726 |