CN1257572C - Method for preparing nano-cobalt oxide from waste lithium-ion batteries - Google Patents
Method for preparing nano-cobalt oxide from waste lithium-ion batteries Download PDFInfo
- Publication number
- CN1257572C CN1257572C CNB2004100199581A CN200410019958A CN1257572C CN 1257572 C CN1257572 C CN 1257572C CN B2004100199581 A CNB2004100199581 A CN B2004100199581A CN 200410019958 A CN200410019958 A CN 200410019958A CN 1257572 C CN1257572 C CN 1257572C
- Authority
- CN
- China
- Prior art keywords
- cobalt oxide
- filter
- room temperature
- battery
- nitrate solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title claims abstract description 15
- 229910000428 cobalt oxide Inorganic materials 0.000 title claims abstract description 13
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 13
- 239000002699 waste material Substances 0.000 title claims abstract description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 38
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 10
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims abstract description 10
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims abstract description 9
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 150000002500 ions Chemical class 0.000 claims abstract description 5
- 239000012634 fragment Substances 0.000 claims abstract description 3
- 239000007788 liquid Substances 0.000 claims abstract description 3
- 229910020599 Co 3 O 4 Inorganic materials 0.000 claims description 11
- 239000000706 filtrate Substances 0.000 claims description 10
- 239000007774 positive electrode material Substances 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 10
- 229910018920 CoO(OH) Inorganic materials 0.000 claims description 8
- 239000002244 precipitate Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000011084 recovery Methods 0.000 claims description 7
- 229910012851 LiCoO 2 Inorganic materials 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 229910013553 LiNO Inorganic materials 0.000 claims description 2
- 239000003513 alkali Substances 0.000 claims description 2
- 239000011858 nanopowder Substances 0.000 abstract description 8
- 238000002360 preparation method Methods 0.000 abstract description 4
- 229910032387 LiCoO2 Inorganic materials 0.000 abstract description 3
- 239000011888 foil Substances 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 238000000926 separation method Methods 0.000 abstract description 2
- 239000010405 anode material Substances 0.000 abstract 2
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 abstract 2
- 238000001914 filtration Methods 0.000 abstract 2
- 230000036571 hydration Effects 0.000 abstract 2
- 238000006703 hydration reaction Methods 0.000 abstract 2
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000047 product Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- LBFUKZWYPLNNJC-UHFFFAOYSA-N cobalt(ii,iii) oxide Chemical compound [Co]=O.O=[Co]O[Co]=O LBFUKZWYPLNNJC-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Secondary Cells (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域
本发明涉及一种从报废的锂离子电池中回收制备纳米氧化钴的方法,属于化学分离和无机纳米粉体的制备技术。The invention relates to a method for recovering and preparing nano-cobalt oxide from discarded lithium-ion batteries, which belongs to the technology of chemical separation and preparation of inorganic nano-powder.
背景技术 Background technique
锂离子电池正极材料是由活性材料LiCoO2、碳黑和乙炔黑、粘结剂按一定的比例粘附在铝箔上的,正极材料各部分的含量如表1所示:The positive electrode material of lithium ion battery is made of active material LiCoO 2 , carbon black, acetylene black, and binder adhered to the aluminum foil in a certain proportion. The content of each part of the positive electrode material is shown in Table 1:
表1锂离子电池正极材料的成分
报废的锂离子电池的处理通常面临以下问题:一是在报废的锂离子电池的正负极的表面通常会含有少量的单质锂,由于单质状态的金属锂具有很强的易燃易爆性,这是电池处理中需要特别注意的安全问题;另外,钴是重金属,如果处理不当就会对环境造成危害。因此报废的锂离子电池的合理处置,对于保护环境具有重要的意义。The disposal of scrapped lithium-ion batteries usually faces the following problems: First, the surfaces of the positive and negative electrodes of scrapped lithium-ion batteries usually contain a small amount of elemental lithium. Since metallic lithium in the elemental state is highly flammable and explosive, This is a safety issue that requires special attention in battery disposal; in addition, cobalt is a heavy metal that can be harmful to the environment if not handled properly. Therefore, the reasonable disposal of scrap lithium-ion batteries is of great significance to protect the environment.
目前,在国外关于锂离子二次电池回收的研究工作已经有了重要的进展,日本索尼公司已和住友金属矿山公司合作研究开发了从废旧锂离子二次电池中回收钴等的技术,其工艺为先将电池焚烧以除去有机物,再筛选,去铁和铜后,将残余粉加热并溶于酸中,用有机溶剂萃取便可提出氧化钴,该产品可作为原料用于颜料、涂料工业中。然而以上方法还存在一定不足:首先,采用焚烧除去有机物的方法、需配套烟气净化设备,否则易引起大气环境污染;另外,在加热的条件下,以盐酸溶解“残余粉”,对设备防腐要求很高、操作环境恶劣。At present, important progress has been made in the research work on the recovery of lithium-ion secondary batteries abroad. Sony Corporation of Japan has cooperated with Sumitomo Metal Mining Co., Ltd. to research and develop the technology of recovering cobalt from waste lithium-ion secondary batteries. Incinerate the battery first to remove organic matter, then screen, remove iron and copper, heat the residual powder and dissolve it in acid, and extract it with an organic solvent to extract cobalt oxide. This product can be used as a raw material for pigments and coatings industries. . However, the above methods still have certain deficiencies: first, the method of incineration to remove organic matter needs to be equipped with flue gas purification equipment, otherwise it is easy to cause air pollution; in addition, under heating conditions, the "residual powder" is dissolved with hydrochloric acid to prevent corrosion of the equipment The requirements are high and the operating environment is harsh.
发明内容Contents of Invention
本发明的目的是从报废的锂离子电池中回收制备纳米氧化钴。该方法工艺过程简单,所制备的氧化钴粉体纯度高、平均粒度小于100纳米、比表面积大。The purpose of the invention is to reclaim and prepare nano cobalt oxide from discarded lithium ion batteries. The process of the method is simple, and the prepared cobalt oxide powder has high purity, an average particle size of less than 100 nanometers and a large specific surface area.
本发明是通过下述技术方案加以实现的,:一种从废旧的锂离子电池回收制备纳米氧化钴的方法,其特征包括以下步骤:The present invention is achieved through the following technical solutions: a method for reclaiming and preparing nano-cobalt oxide from waste lithium-ion batteries, which is characterized in comprising the following steps:
(1)电池的切割(1) Cutting of battery
将电池在水中切割,使正极材料和其它部件分离,并将正极材料剪成小碎片;Cut the battery in water to separate the positive electrode material from other components, and cut the positive electrode material into small pieces;
(2)室温下,采用质量浓度为20%~60%的过量NaOH碱浸泡所述的小碎片,反应直至看不到产生气泡为止,过滤,将滤液收集起来留作它用,将滤渣在红外灯下干燥,然后研磨成粉,过80目筛,再用同样浓度和比例的碱液溶解一遍,过滤,得到的滤渣为含有LiCoO2的混合物;(2) Under room temperature, adopt the excess NaOH alkali that mass concentration is 20%~60% to soak described small fragment, react until not seeing to produce bubble till, filter, and filtrate is collected and stays for other usefulness, filter residue is infrared Dry it under the lamp, then grind it into powder, pass through an 80-mesh sieve, dissolve it again with lye of the same concentration and ratio, and filter it. The obtained filter residue is a mixture containing LiCoO 2 ;
(3)在室温下,采用质量浓度为10%~50%的HNO3去溶解该混合物,过滤,得到的溶液为含有Co2+、Li+的硝酸盐溶液,硝酸的加入量多于按照Co(NO3)2+LiNO3的化学剂量比计算的HNO3的量;(3) At room temperature, use HNO3 with a mass concentration of 10% to 50% to dissolve the mixture, filter, and the solution obtained is a nitrate solution containing Co 2+ , Li + , and the addition of nitric acid is more than that according to Co (NO 3 ) 2 +LiNO 3 The amount of HNO 3 calculated from the stoichiometric dose ratio;
(4)将上述硝酸盐溶液滴加到质量浓度为10%~60%的NaOH溶液中,pH调节到9~11,得到蓝色的细小的Co(OH)2沉淀,Co(OH)2沉淀在空气中不稳定,立即转化为棕黑色的水合氧化钴CoO(OH),过滤,用去离子水多次清洗过滤物,以消除其中的杂质离子,将过滤液和清洗液保存,留作回收其中的锂元素之用;(4) Add the above-mentioned nitrate solution dropwise to a NaOH solution with a mass concentration of 10% to 60%, adjust the pH to 9 to 11, and obtain blue fine Co(OH) 2 precipitates, Co(OH) 2 precipitates Unstable in the air, immediately transform into brown-black hydrated cobalt oxide CoO(OH), filter, wash the filtrate with deionized water several times to eliminate impurity ions, save the filtrate and cleaning liquid for recovery The use of lithium element;
(5)将CoO(OH)在红外灯下烘干,然后在400~600℃下热处理2h,得到平均粒径小于100nm的Co3O4超细粉。(5) CoO(OH) is dried under an infrared lamp, and then heat-treated at 400-600° C. for 2 hours to obtain an ultrafine Co 3 O 4 powder with an average particle size of less than 100 nm.
本发明优点在于,制备过程简便可行,制得的Co3O4粉体的比表面积为90~110m2/g,粉体的平均粒径小于100nm,纯度达到99.5%以上,回收率为85%以上。The invention has the advantages that the preparation process is simple and feasible, the specific surface area of the prepared Co 3 O 4 powder is 90-110m 2 /g, the average particle diameter of the powder is less than 100nm, the purity reaches more than 99.5%, and the recovery rate is 85% above.
具体实施方案Specific implementation plan
例1.example 1.
取10只单重为28g的电池,在水中把电池切开,使正极材料和其它部件分离,将正极材料剪为小于2cm×2cm大小的碎片,在室温下,把这些碎片放入500ml,质量浓度为40%的NaOH溶液中,反应直至看不到产生气泡为止,过滤,将滤液收集起来留作它用,将滤渣在红外灯下干燥,然后研磨成粉,过80目筛,再用同样浓度和比例的碱液溶解一遍,过滤,得到的滤渣为含有LiCoO2的混合物;在室温下,用400ml,质量浓度为30%的HNO3溶液去溶解该混合物,过滤,得到的溶液为Co2+、Li+的硝酸盐溶液;将上述硝酸盐溶液滴加到400ml,质量浓度为30%的NaOH溶液中,pH调节到9~11,得到蓝色的细小的Co(OH)2沉淀,Co(OH)2沉淀在空气中不稳定,立即转化为棕黑色的水合氧化钴CoO(OH),过滤,用去离子水多次清洗过滤物(需要清洗三次以上),以消除其中的杂质离子;将CoO(OH)在红外灯下烘干,然后在500℃下热处理2h,得到Co3O4纳米粉,将产物称重,所得的Co3O4纳米粉的重量为41g,根据电池中各种成分的理论含量计算可知,在10只单重为28g的电池中,可供回收的Co3O4的理论重量约为47.8g,由此可知,采用本工艺回收Co3O4的回收率为85.8%。Take 10 batteries with a single weight of 28g, cut the battery in water, separate the positive electrode material from other components, cut the positive electrode material into pieces smaller than 2cm×2cm in size, put these pieces into 500ml at room temperature, mass In NaOH solution with a concentration of 40%, react until no bubbles are seen, filter, collect the filtrate for other purposes, dry the filter residue under infrared light, then grind it into powder, pass through an 80-mesh sieve, and use the same Dissolve the lye with the concentration and ratio once, filter it, and the obtained filter residue is a mixture containing LiCoO 2 ; at room temperature, use 400ml of HNO 3 solution with a mass concentration of 30% to dissolve the mixture, filter it, and the obtained solution is Co 2 + , Li + nitrate solution; the above nitrate solution was added dropwise to 400ml of NaOH solution with a mass concentration of 30%, and the pH was adjusted to 9-11 to obtain blue fine Co(OH) 2 precipitates, Co The (OH) 2 precipitate is unstable in the air, and immediately converts into brown-black hydrated cobalt oxide CoO(OH), filters, and washes the filtrate with deionized water multiple times (more than three times of cleaning is required) to eliminate impurity ions therein; CoO(OH) was dried under an infrared lamp, and then heat-treated at 500°C for 2 hours to obtain Co 3 O 4 nanopowder. The product was weighed, and the weight of the obtained Co 3 O 4 nanopowder was 41g. The calculation of the theoretical content of these components shows that in 10 batteries with a unit weight of 28g, the theoretical weight of Co 3 O 4 that can be recovered is about 47.8g. It can be seen that the recovery rate of Co 3 O 4 recovered by this process is was 85.8%.
例2Example 2
取10只单重为28g的电池,在水中把电池切开,使正极材料和其它部件分离,将正极材料剪为小于2cm×2cm大小的碎片,在室温下,把这些碎片放入800ml,质量浓度为20%的NaOH溶液中,反应直至看不到产生气泡为止,过滤,将滤液收集起来留作它用,将滤渣在红外灯下干燥,然后研磨成粉,过80目筛,再用同样浓度和比例的碱液溶解一遍,过滤,得到的滤渣为含有LiCoO2的混合物;在室温下,用800ml,质量浓度为20%的HNO3溶液去溶解该混合物,过滤,得到的溶液为Co2+、Li+的硝酸盐溶液;将上述硝酸盐溶液滴加到500ml,质量浓度为20%的NaOH溶液中,pH调节到9~11,得到蓝色的细小的Co(OH)2沉淀,Co(OH)2沉淀在空气中不稳定,立即转化为棕黑色的水合氧化钴CoO(OH),过滤,用去离子水多次清洗过滤物(需要清洗三次以上),以消除其中的杂质离子;将CoO(OH)在红外灯下烘干,然后在600℃下热处理2h,得到Co3O4纳米粉,将产物称重,所得的Co3O4纳米粉的重量为39.5g,根据电池中各种成分的理论含量计算可知,在10只单重为28g的电池中,可供回收的Co3O4的理论重量约为47.8g,由此可知,采用本工艺回收Co3O4的回收率为82.6%。Take 10 batteries with a single weight of 28g, cut the battery in water, separate the positive electrode material from other parts, cut the positive electrode material into pieces smaller than 2cm×2cm in size, put these pieces into 800ml at room temperature, mass Concentration is 20% NaOH solution, react until no bubbles can be seen, filter, collect the filtrate for other use, dry the filter residue under infrared lamp, then grind it into powder, pass through 80 mesh sieve, and use the same Concentration and proportion of lye dissolved once, filtered, the obtained filter residue is a mixture containing LiCoO2 ; at room temperature, use 800ml, HNO3 solution with a mass concentration of 20% to dissolve the mixture, filtered, the obtained solution is Co2 + , Li + nitrate solution; the above nitrate solution was added dropwise to 500ml of NaOH solution with a mass concentration of 20%, and the pH was adjusted to 9-11 to obtain blue fine Co(OH) 2 precipitates, Co The (OH) 2 precipitate is unstable in the air, and immediately converts into brown-black hydrated cobalt oxide CoO(OH), filters, and washes the filtrate with deionized water multiple times (more than three times of cleaning is required) to eliminate impurity ions therein; CoO(OH) was dried under infrared lamps, and then heat-treated at 600°C for 2 hours to obtain Co 3 O 4 nanopowder. The product was weighed, and the weight of the obtained Co 3 O 4 nanopowder was 39.5g. The theoretical content calculation of various components shows that in 10 batteries with a unit weight of 28g, the theoretical weight of Co 3 O 4 available for recovery is about 47.8g. It can be seen that the recovery of Co 3 O 4 by this process The rate is 82.6%.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100199581A CN1257572C (en) | 2004-07-12 | 2004-07-12 | Method for preparing nano-cobalt oxide from waste lithium-ion batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100199581A CN1257572C (en) | 2004-07-12 | 2004-07-12 | Method for preparing nano-cobalt oxide from waste lithium-ion batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1594109A CN1594109A (en) | 2005-03-16 |
CN1257572C true CN1257572C (en) | 2006-05-24 |
Family
ID=34663117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100199581A Expired - Fee Related CN1257572C (en) | 2004-07-12 | 2004-07-12 | Method for preparing nano-cobalt oxide from waste lithium-ion batteries |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1257572C (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1324758C (en) * | 2005-04-25 | 2007-07-04 | 武汉理工大学 | Method for separating and recovering cobalt from waste lithium ion cell |
JP5535200B2 (en) | 2008-05-13 | 2014-07-02 | ビーエーエスエフ ソシエタス・ヨーロピア | Process for producing N, N-substituted-1,3-propanediamine |
ES2590457T3 (en) | 2008-11-05 | 2016-11-22 | Basf Se | Procedure for the production of N, N-substituted 3-aminopropane-1-oles |
CN103066343B (en) * | 2012-12-21 | 2015-03-11 | 中南大学 | Method for processing separated active matter and aluminum in lithium ion battery positive plate |
CN111875262A (en) * | 2020-07-29 | 2020-11-03 | 上海第二工业大学 | Method for recycling and preparing cobaltosic oxide nanorod array based on waste lithium ion battery |
-
2004
- 2004-07-12 CN CNB2004100199581A patent/CN1257572C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1594109A (en) | 2005-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102390863B (en) | Method for regenerating lithium titanate serving as anode material of waste lithium ion battery | |
CN109950651B (en) | Comprehensive treatment method for recycling carbon from waste lithium iron phosphate batteries | |
CN107381604A (en) | A kind of method that lithium carbonate is reclaimed from ferric phosphate lithium cell | |
CN111333046A (en) | A method and system for recycling waste lithium iron phosphate cathode based on hydrochloric acid cycle | |
CN104485493A (en) | Repair and regeneration method for lithium cobaltate positive active material in waste lithium ion battery | |
CN103060567A (en) | Method for processing waste lithium ion battery positive plate to extract valuable metal | |
CN114335781A (en) | Method for extracting precious metal from waste lithium battery | |
CN113793994A (en) | A kind of method of recycling waste lithium iron phosphate battery | |
CN105846006B (en) | A kind of method that utilization electric arc furnaces reclaims lithium metal in waste and old Vehicular battery | |
CN101262082A (en) | A processing and recycling method for waste lithium ion battery of a mobile phone | |
CN113415814A (en) | Method for selectively recovering lithium from waste lithium ion batteries by using ultralow-temperature roasting | |
CN115304059B (en) | Recycling treatment method for retired battery carbon residue | |
CN1257572C (en) | Method for preparing nano-cobalt oxide from waste lithium-ion batteries | |
CN116253325A (en) | A method for reusing silicon in scrapped photovoltaic cells | |
CN104466293A (en) | Regeneration method of lithium ion battery anode material lithium cobalt oxide waste | |
CN111268747B (en) | A method and system for recycling cathode material of waste ternary battery based on hydrochloric acid regeneration cycle | |
CN114421044A (en) | Purification treatment method and system for phosphorus-iron slag mixture containing Al and Cu impurities | |
CN113620336A (en) | Method for recovering germanium, aluminum and lithium in LAGP solid electrolyte | |
CN1332475C (en) | Production of LixCoO2 from recovering waste lithium ionic battery | |
CN105742747B (en) | Utilize the method for useless cobalt acid lithium purification relieving haperacidity tail gas and Call Provision lithium | |
CN117477082A (en) | A method for reusing scrapped lithium-ion battery negative electrode materials | |
CN117684009A (en) | A method for recovering metal elements in lithium batteries using wet extraction | |
CN114804049B (en) | Method for recovering high-purity ferric phosphate from lithium iron phosphate waste batteries | |
CN105886777A (en) | Method for synergistically treating acid-making exhaust gas and wasted lithium cobalt oxide and recovering cobalt lithium | |
CN214411309U (en) | Waste lithium ion battery full-component recovery device system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060524 Termination date: 20100712 |