CN1252500C - Manufacture of erbium dosed phosphate two step ion exchange optical waveguide - Google Patents

Manufacture of erbium dosed phosphate two step ion exchange optical waveguide Download PDF

Info

Publication number
CN1252500C
CN1252500C CN 200310122736 CN200310122736A CN1252500C CN 1252500 C CN1252500 C CN 1252500C CN 200310122736 CN200310122736 CN 200310122736 CN 200310122736 A CN200310122736 A CN 200310122736A CN 1252500 C CN1252500 C CN 1252500C
Authority
CN
China
Prior art keywords
exchange
sample
ion exchange
nitrate
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200310122736
Other languages
Chinese (zh)
Other versions
CN1553236A (en
Inventor
慕桓
王洁红
向端燕
金国良
戴蓓兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN 200310122736 priority Critical patent/CN1252500C/en
Publication of CN1553236A publication Critical patent/CN1553236A/en
Application granted granted Critical
Publication of CN1252500C publication Critical patent/CN1252500C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

The present invention relates to a preparing method for erbium dosed phosphate two-step ion exchange optical waveguide, which belongs to the field of optical communication. The present invention comprises the following steps: 1. ion exchange fused salt is prepared; 2. mask drawings of a backing sample are prepared; 3 twice of ion exchange is carried out; 4 anneal operation is carried out; 5 a mask layer is removed; 6 the end surface is polished, wherein the ion exchange fused salt is the mixture of silver nitrate, sodium nitrate and potassium nitrate, and the silver nitrate, the sodium nitrate and the potassium nitrate have the following composition range of the weight percentage: No. 1 salt bath for first exchange comprises 5 to 10% of silver nitrate and 90 to 95% of potassium nitrate, No. 2 salt bath for second exchange comprises 0 to 10% of potassium nitrate and 90 to 100% of sodium nitrate. The method of the present invention has two steps of ion exchange and annealing technique, which makes the optical waveguide refractivity have good distribution symmetry, polarization dependent loss is less than 0.2 to 0.3dB, and the transmission loss of optical waveguide is less than 0.7 to 1.2 dB/cm; the two steps of ion exchange and the annealing technique are continuously carried out, the technique period is short, and the stability is good. The present invention is suitable for erbium dosed phosphate glass and other similar glass material.

Description

Two step of er-doped phosphate ion exchange optical waveguide method for making
Technical field
What the present invention relates to is a kind of ion exchange optical waveguide method for making, and particularly a kind of is two step of er-doped phosphate ion exchange optical waveguide method for making.Belong to optical communication field.
Background technology
Image intensifer is an important devices in optical communication and the optical information processing system.The er doped silica glasses orthoron has that volume is little, stable and reliable for performance, efficient is high, low in energy consumption, advantage such as easy to use.But the loss of ion exchange optical waveguide is big, Polarization Dependent Loss (PDL) is big, it is one of key factor of restriction fiber waveguide device tremendous development always, now common ion-exchange is made the method for glass optical waveguide and is mostly only done once exchange, wherein the bar waveguide loss of making of high quality optical BK7 glass is 0.21dB/cm, prepared light guide surface optical quality instability, maximum shortcoming is that the waveguide region xsect is half elliptic, its Polarization Dependent Loss is bigger, influenced the transport property of optical waveguide greatly, to such an extent as to glass light waveguide device press down for a long time foot not before.There are a few peoples to use the auxiliary ion of the electric field technology that distributes again, find JitkaKos by literature search
Figure C20031012273600031
Kova and Josef Schrofel are at " optical communication ", 1998 the 156th volumes, " electric field is assisted K+-Na+ ionic exchange glass light waveguide structure " (the Optics Communications that delivers on the 384-39l page or leaf, " Integrated waveguide structures prepared in very pure glass by electricfield assisted K+-Na+ion exchange " Vol.156 1998 384-391) mentioned in the literary composition electric field auxiliary down ion-exchange process, but its experimental provision complexity, be difficult to realize, be difficult to guarantee the stability of technology.In this field, so far not about the loss of erbium doped phosphate glass secondary ion exchange low transmission, the play-by-play and the relevant patent of low Polarization Dependent Loss optical waveguide.
Summary of the invention
The objective of the invention is to overcome deficiency of the prior art, a kind of erbium doped phosphate glass ion exchange optical waveguide method for making is provided, utilize two step ion-exchange process to make optical waveguide, make it realize the low transmission loss of optical waveguide, the characteristic of low Polarization Dependent Loss by specific exchange and annealing process.
The present invention is achieved by the following technical solutions, and method may further comprise the steps: the 1) preparation of ion-exchange fused salt; 2) preparation of substrate sample mask pattern; 3) twice ion-exchange; 4) annealing; 5) remove mask layer; 6) end face polishing.Wherein:
The preparation of described step 1) ion-exchange fused salt, potpourri for silver nitrate, sodium nitrate, potassium nitrate, its percentage by weight compositing range is: a salt bath: once exchange is used, silver nitrate 5~10%, potassium nitrate 90~95%, once exchanging temperature is 330~340 degrees centigrade, and the reaction time is 90~120 minutes; No. two salt baths: the secondary exchange is used, potassium nitrate 0~10%, and sodium nitrate 90~100%, secondary exchange temperature is 310~330 degrees centigrade, reacts to be 20~30 minutes time;
Twice ion-exchange of described step 3), specific as follows:
Salt and step 2 with step 1) preparation) sample of preparation all puts into constant temperature oven, be preheated to once exchange temperature required after, in salt bath of sample immersion, take out the exchange back, it is temperature required furnace temperature to be adjusted to the secondary exchange rapidly again, sample is immersed in No. two salt baths then and carries out the secondary ion exchange, and take out the exchange back, sample is in the furnace chamber all the time in all above operating process, avoids the sample suddenly cold and hot.
The preparation of described substrate sample mask pattern
The inventive method aluminium is as the mask of ion-exchange, forming thickness with the method for the ion sputtering of routine on surface of erbium doped phosphate glass sheet sample is 1000~2000 dust aluminium masks, open one group of marking shape window with conventional lithography corrosion technology on mask again, width is respectively 5.0,5.5,6.0,6.5,7.0 microns.
Described annealing
After step 3) was finished, sample took out from fused salt and does not leave furnace chamber, then furnace temperature is risen to 340~350 degrees centigrade, with 345 degrees centigrade is good, kept 10~20 minutes, the shut-off circuit power supply takes out sample after making its natural cooling under the situation that fire door is closed then.
Described removal mask layer
To immerse clear a moment in the hot phosphoric acid through the sample of step 4), and see after the aluminium film comes off and take out, clean with deionized water.
Described end face polishing
Method with common mechanical lapping is polished the sample both ends of the surface, obtains optical waveguide.
The inventive method is compared with the method for general ion-exchange making glass optical waveguide following beneficial effect: through two specific step ion-exchange and annealing processs, make being distributed symmetrically property of fiber waveguide refractive index better, Polarization Dependent Loss is lower than 0.2~0.3dB, and transmission loss of optical waveguide is lower than 0.7~1.2dB/cm; Two step ion-exchanges and annealing are carried out continuously, and process cycle is short, good stability; The inventive method not only is applicable to erbium doped phosphate glass, and other similar glass materials are suitable for too.
Description of drawings
Fig. 1 is the inventive method process flow diagram
Embodiment
As shown in Figure 1, the present invention includes following steps: the 1) preparation of ion-exchange fused salt; 2) preparation of substrate sample mask pattern; 3) twice ion-exchange; 4) annealing; 5) remove mask layer; 6) end face polishing.
Provide embodiment below in conjunction with method of the present invention, technical solution of the present invention is done further to understand.
Embodiment 1
Salt bath: 10% silver nitrate, 90% potassium nitrate; No. two salt baths: 10% potassium nitrate, 90% sodium nitrate, mask thicknesses 1200 dusts.Salt and sample inserted to be preheated in the constant temperature oven once exchange 330 degrees centigrade of temperature, sample is immersed a salt bath reaction to be taken out in 120 minutes, furnace temperature is stable at 310 degrees centigrade of secondary exchange temperature after about 5 minutes, sample is immersed No. two salt bath reactions to be taken out in 30 minutes, furnace temperature is adjusted to 340 degrees centigrade then, kept 20 minutes, powered-down takes out sample after making its natural cooling.Sample is cleaned polishing at last dissolve away the aluminium film on surface with hot phosphoric acid after.The gained result, 6.5 microns width waveguide: loss 1.2dB/cm, PDL<0.3dB; 6 microns width waveguide, loss 0.70dB/cm, PDL<0.3dB.The waveguide of all the other width is owing to damage and can't measure in the technological process.
Embodiment 2
Salt bath: 8% silver nitrate, 92% potassium nitrate; No. two salt baths: 100% sodium nitrate.Once exchange 335 degrees centigrade of temperature, the reaction time is 100 minutes; 320 degrees centigrade of secondary exchange temperature, 25 minutes reaction time, 345 degrees centigrade of annealing temperatures, other are with embodiment 1, gained result: 7.0 microns width waveguide: loss 0.57dB/cm, PDL<0.2dB; 6 microns width waveguide, loss 0.72dB/cm, PDL<0.2dB.
Embodiment 3
No. two salt baths: 5% potassium nitrate, 95% sodium nitrate, mask thicknesses 1500 dusts once exchange 340 degrees centigrade of temperature, and the reaction time is 90 minutes; 325 degrees centigrade of secondary exchange temperature, in 20 minutes reaction time, all the other are with embodiment 1, gained result: 7.0 microns width waveguide: loss 1.1dB/cm, PDL<0.2dB; 6 microns width waveguide, loss 0.83dB/cm, PDL<0.2dB.
Embodiment 4
Salt bath: 5% silver nitrate, 95% potassium nitrate; No. two salt baths: 100% sodium nitrate, film thickness 2000 dusts once exchange 333 degrees centigrade of temperature, and the reaction time is 100 minutes; 318 degrees centigrade of secondary exchange temperature, in 25 minutes reaction time, all the other are with embodiment 1, gained result: 7.0 microns width waveguide: loss 0.54dB/cm, PDL<0.2dB; 6.5 the micron width waveguide, loss 0.65dB/cm, PDL<0.2dB; 6 microns width waveguide, loss 0.71dB/cm, PDL<0.3dB.

Claims (3)

1, a kind of two step of er-doped phosphate ion exchange optical waveguide method for making is characterized in that, comprises the steps:
1) preparation of ion-exchange fused salt, the 2) preparation of substrate sample mask pattern, 3) twice ion-exchange, 4) annealing, 5) remove mask layer, 6) the end face polishing, wherein
The preparation of described step 1) ion-exchange fused salt, potpourri for silver nitrate, sodium nitrate, potassium nitrate, its percentage by weight compositing range is: a salt bath: once exchange is used, silver nitrate 5~10%, potassium nitrate 90~95%, once exchanging temperature is 330~340 degrees centigrade, and the reaction time is 90~120 minutes; No. two salt baths: the secondary exchange is used, potassium nitrate 0~10%, and sodium nitrate 90~100%, secondary exchange temperature is 310~330 degrees centigrade, reacts to be 20~30 minutes time;
Twice ion-exchange of described step 3), specific as follows:
Salt and step 2 with step 1) preparation) sample of preparation all puts into constant temperature oven, be preheated to once exchange temperature required after, in salt bath of sample immersion, take out the exchange back, it is temperature required furnace temperature to be adjusted to the secondary exchange rapidly again, sample is immersed in No. two salt baths then and carries out the secondary ion exchange, and take out the exchange back, sample is in the furnace chamber all the time in all above operating process, avoids the sample suddenly cold and hot.
2, two step of er-doped phosphate ion exchange optical waveguide method for making as claimed in claim 1 is characterized in that, described step 4) annealing is specific as follows:
Annealing process is right after after step 3) carries out, and sample takes out from fused salt, and furnace temperature rises to 340~350 degrees centigrade then, keeps 10~20 minutes, and the shut-off circuit power supply is taking out sample behind the natural cooling under the situation that fire door is closed then.
3, two step of er-doped phosphate ion exchange optical waveguide method for making as claimed in claim 2 is characterized in that described furnace temperature is 345 degrees centigrade.
CN 200310122736 2003-12-19 2003-12-19 Manufacture of erbium dosed phosphate two step ion exchange optical waveguide Expired - Fee Related CN1252500C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200310122736 CN1252500C (en) 2003-12-19 2003-12-19 Manufacture of erbium dosed phosphate two step ion exchange optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200310122736 CN1252500C (en) 2003-12-19 2003-12-19 Manufacture of erbium dosed phosphate two step ion exchange optical waveguide

Publications (2)

Publication Number Publication Date
CN1553236A CN1553236A (en) 2004-12-08
CN1252500C true CN1252500C (en) 2006-04-19

Family

ID=34338726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200310122736 Expired - Fee Related CN1252500C (en) 2003-12-19 2003-12-19 Manufacture of erbium dosed phosphate two step ion exchange optical waveguide

Country Status (1)

Country Link
CN (1) CN1252500C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197732B2 (en) 2016-08-26 2019-02-05 Corning Optical Communications LLC Methods for forming ion-exchanged waveguides in glass substrates

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356216C (en) * 2005-12-29 2007-12-19 天津大学 Method of preparing long period bar wave guide optical grating on optical glass surface
CN100359348C (en) * 2006-01-18 2008-01-02 中国科学院上海光学精密机械研究所 Substrate surface protection method for ion exchange process
CN102645701B (en) * 2012-05-04 2013-07-31 上海光芯集成光学股份有限公司 Method for producing optical waveguide on surface of glass substrate by utilizing ion exchange method
CN105683118A (en) * 2013-08-26 2016-06-15 康宁股份有限公司 Methods for localized annealing of chemically strengthened glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197732B2 (en) 2016-08-26 2019-02-05 Corning Optical Communications LLC Methods for forming ion-exchanged waveguides in glass substrates

Also Published As

Publication number Publication date
CN1553236A (en) 2004-12-08

Similar Documents

Publication Publication Date Title
CN100412583C (en) Method for preparing glass waveguide by single-side molten salt electric field assistant ion exchange
CA2007001A1 (en) Method for fabricating buried waveguides
CN1252500C (en) Manufacture of erbium dosed phosphate two step ion exchange optical waveguide
Mwarania et al. Low-threshold monomode ion-exchanged waveguide lasers in neodymium-doped BK-7 glass
CN100392446C (en) Method for preparing glass waveguide by ion mask
CN112130253B (en) Method for manufacturing Y-transmission ridge type optical waveguide on Z-cut lithium niobate thin film
CN100570419C (en) A kind of optical waveguide that contains the Cu ion
CN100489579C (en) Production method of ionic exchange glass light waveguide device
CN113388892A (en) Method for preparing lead magnesium niobate titanate optical waveguide by titanium diffusion
CN103487882A (en) Preparation method for two-dimensional proton exchange MgO:PPLN ridge waveguide
CN1218206C (en) Proton exchange method and equipment for producing lithium niobate light waveguide
Eguchi et al. Fabrication of low-loss waveguides in BK-7 by ion exchange
JP2004102210A (en) Glass, method for manufacturing optical waveguide and optical waveguide
Zhu et al. Guiding properties of proton-implanted Nd3+-doped phosphate glass waveguides
Liu et al. Buried ion-exchanged glass waveguides using field-assisted annealing
CN107643560A (en) A kind of method that magneto-optic glass base ion exchange prepares magneto-optic slab guide
Sakida et al. Optical properties of Er3+-doped tungsten tellurite glass waveguides by Ag+–Na+ ion-exchange
Pantchev et al. Field‐assisted ion exchange in glass: The effect of masking films
CN115180815B (en) Rare earth doped YAG crystal core-glass cladding composite optical fiber and preparation method thereof
Barbosa et al. Er3+-doped germanate glasses for active waveguides prepared by Ag+/K+↔ Na+ ion-exchange
CN100359348C (en) Substrate surface protection method for ion exchange process
Bintari et al. Characterization of soda-lime glass with aluminum doping as a planar wave guide using electric-field-assisted solid-state ion exchange method
SU1826458A1 (en) Method for making planar waveguiding light polarizer
Chuang et al. A dry silver electromigration process to fabricate optical waveguides on glass substrates
Pun et al. Fabrication of periodic waveguides by ion exchange

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee