CN1249270A - Process for synthesizing beta-zeolite - Google Patents

Process for synthesizing beta-zeolite Download PDF

Info

Publication number
CN1249270A
CN1249270A CN 98119974 CN98119974A CN1249270A CN 1249270 A CN1249270 A CN 1249270A CN 98119974 CN98119974 CN 98119974 CN 98119974 A CN98119974 A CN 98119974A CN 1249270 A CN1249270 A CN 1249270A
Authority
CN
China
Prior art keywords
sio
zeolite
accordance
tea
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 98119974
Other languages
Chinese (zh)
Other versions
CN1093510C (en
Inventor
祁晓岚
刘希尧
陈钢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Research Institute of Beijing Yanshan Petrochemical Corp
Original Assignee
Beijing Research Institute of Beijing Yanshan Petrochemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Research Institute of Beijing Yanshan Petrochemical Corp filed Critical Beijing Research Institute of Beijing Yanshan Petrochemical Corp
Priority to CN98119974A priority Critical patent/CN1093510C/en
Publication of CN1249270A publication Critical patent/CN1249270A/en
Application granted granted Critical
Publication of CN1093510C publication Critical patent/CN1093510C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

A process for synthesizing beta-zeolite includes the reaction of tetraethyl ammonium halides and/or tetraethyl ammonium hydroxide with fluoride in alkaline condition to form compound templat agent, reaction of silica sol as silicon source with aluminium source which is one of aluminium sulfate, aluminium chloride, aluminium nitride and pseudo-boehmite, and crystallization. The mole ratio is 10-200 for SiO2/Al2O3, 0.03-0.2 for (TEA)2O/SiO2, 0.005-0.6 for Na2O/SiO2, 10-30 for H2O/SiO2, 0-1.0 for (NH4)2O/SiO2 and 0.25-4 for TEA/F. Its advantages are less consumption of template agent, low cost and high relative crystallizing degree.

Description

A kind of synthetic method of β zeolite
The invention relates to the novel method that adopts the synthetic beta-zeolite molecular sieve of composite mould plate agent system.Technical field belongs to C01B 39/00 by International Classification of Patents.
The β zeolite synthesized (US 3,308,069) first by U.S. Mobil company in 1967, it is up to the present unique supersiliceous zeolite with three-dimensional staggered twelve-ring pore passage structure.Very big using value is arranged at aspects such as catalysis and absorption.But in the described method of this patent, the consumption of template tetraethyl ammonium hydroxide is very big, so cost is higher, and crystallization time is long, is unfavorable for large-scale commercial production.
Existing β zeolite synthesis technology, (US 3,308 to adopt expensive tetraethyl ammonium hydroxide (TEAOH) to make template mostly, 069, EP 164,939), in order to reduce synthetic cost, the lower slightly tetraethyl-ammonium halide replacement of employing price is also arranged, and (EP 164,939, US 4,847,055), or with other organic amine replace, (EP 159 as dimethyl benzylamine-benzyl halide, 846), dibenzyl-1,4-diazabicyclo [2,2,2] (EP 159 for octane, 847), dibenzyl dimethylamine (US4,642,226) and 4,4-cyclopropyl two piperidines.Also there are some technology to use the TEAOH and second reagent to constitute compound system, as TEAOH-TEABr-trolamine (US5,164,170), TEAOH-diethanolamine (US 5,139,759) etc.Caullet etc. (US 5,171,556) introduce fluorion and synthesize the β zeolite in synthetic system, but it adopts diaza-1,4-dicyclo [2,2,2] octanes (DABCO) are structural agent, other adds methylamine, and synthetic in (PH<9) of specific alkalescence medium, the system complexity.Above-mentioned these existing technology all do not overcome synthetic β zeolite because of a large amount of organic formwork agent cost of need problem of higher.The used silicon of prior art source is generally silicon ester, white carbon black or silica gel; The then sodium aluminates that adopt in aluminium source, scope is narrow more.
We are in application number is 97 1117455 Chinese patent, the composite mould plate agent system of tetraethylammonium cation and fluorochemical is adopted in proposition in alkaline medium, with the industry silicasol is the silicon source, sodium aluminate is the aluminium source, synthetic β zeolite, can obviously reduce the organic amine consumption, increase β zeolite productive rate, and enlarge the one-tenth phase region of β zeolite.But, have the deficiency of using a kind of sodium aluminate to do the aluminium source equally with aforementioned prior art, the present invention is on the 97 1117455 patent of invention prior art bases at application number promptly, has widened the kind in aluminium source, use Tai-Ace S 150, aluminum chloride, aluminum nitrate, especially pseudo-boehmite is at SiO widely 2/ Al 2O 3Synthesize the β zeolite than scope, products obtained therefrom has the high characteristics of degree of crystallinity.
The method of the synthetic β zeolite of the present invention is:
Under stirring fluorochemical is joined in the organic amine solution, add or do not add mineral alkali, add aluminium source or its solution, silicon sol successively, after continuously stirring 30-60 minute, change in the stainless steel cauldron, in 90-200 ℃ of following crystallization.The PH of reaction mixture>10.Crystallization finishes and carries out suction filtration, washing, and is dry under 140 ℃, obtains the β zeolite product, with X-ray diffraction its degree of crystallinity of technical Analysis and phase structure, analyzes its chemical constitution with chemical analysis method.
When synthetic β zeolite, used material should reach following molar ratio range:
SiO 2/Al 2O 3=10~200
(TEA) 2O/SiO 2=0.03~0.20
Na 2O/SiO 2=0.005~0.6
H 2O/SiO 2=10~30
(NH 4) 2O/SiO 2=0~1.0
TEA +/F -=0.25~4
The crystallization time of synthetic zeolite is 30 hours~10 days.
β zeolite with the method for the invention provides makes can become Hydrogen through roasting after also can exchanging with ammonium salt solution again at the roasting removed template method after pickling transformation is a Hydrogen.Can be by ion-exchange, dipping or other method with various metals or its compound, as basic metal, alkaline-earth metal, rare earth element, Pt, Pd, Re, Sn, Ni, W, Co, etc. element or its compound introduce and wherein make it to become the zeolite that contains different metal; Also the different compounds that can introduce as elements such as P, Ga, Ti, B make it to become the zeolite with special purpose; Can also be by method dealuminzations such as pickling, chemical extractings to improve silica alumina ratio.Can be used as multiple catalyzer, catalyst adjuvant and sorbent material with present method synthetic β zeolite and modified version thereof.
The following examples will be further specified the present invention.
The preparation of β zeolite standard substance:
According to the synthetic β zeolite of the disclosed method of US 3308069 embodiment.In the 25%TEAOH of 26.2g (commercially available), add the 1.05g sodium aluminate and (contain Al 2O 343%, Na 2O39%), adding the 38.8g silicon sol again (contains SiO down in stirring 226%, industrial goods), continue to stir 1 hour, change in the stainless steel autoclave, 150 ℃ of following crystallization were taken out in 3 days, and after filtration, washing promptly gets the β zeolite after 140 ℃ of dryings after the cooling.The mol ratio of each component that feeds intake is: 1Al 2O 338SiO 25 (TEA) 2O1.5Na 2O532H 2O.With this sample is the benchmark sample, and its XRD measures degree of crystallinity as 100%, the degree of crystallinity of the embodiment of the invention and comparative example all with its feature diffraction therewith the benchmark sample contrast, represent with relative crystallinity.
Comparative Examples
According to our disclosed application number is the disclosed method of embodiment in 791114545 patents.Take by weighing tetraethylammonium bromide (commercially available product) 9.55g and Sodium Fluoride (commercially available product, content 98%) 1.29g, be dissolved in the 25g deionized water, add the ammoniacal liquor of 15ml25% under stirring and (contain Al by the 1.78g sodium aluminate 2O 343%, Na 2O39%) solution that forms with the 20g deionized water adds the 34.6g silicon sol again and (contains SiO 225%, industrial goods) and the crystal seed of 0.45g, continue to stir 60min, change in the stainless steel autoclave, in 140 ℃ of crystallization 9 days, after the cooling after filtration, after the washing, drying, obtain the β zeolite product, relative crystallinity 98%, the constitutive molar ratio that feeds intake of this sample is: 1Al 2O 320SiO 23.5 (TEA) 2O4Na 2O13 (NH 4) 2O4F -595H 2O
Be recited in down according to embodiments of the invention, used public raw material is:
A: silicon sol, industrial goods contain SiO 226%
B: tetraethyl ammonium hydroxide solution, commercially available product
C: tetraethylammonium bromide, commercially available product, purity 99%
D: Sodium Fluoride, purity 98%, commercially available product
E: Neutral ammonium fluoride, purity 96%, commercially available product
Embodiment 1
Take by weighing (B) 34.0g that contains 22.3%TEAOH, after wherein adding 2.1g (D) dissolving, add 2.66g commercial sulfuric acid aluminium successively and (contain Al 2(SO 4) 318H 2O 99%) and 45.5g (A), continue to stir 60min, change in the stainless steel autoclave, in 140 ℃ of crystallization 7 days, the XRD diffractive features that obtains product saw Table 1, is typical β zeolite, relative crystallinity 109%.The original constitutive molar ratio that feeds intake is:
1Al 2O 3·50SiO 2·6.5(TEA) 2O·6.2Na 2O·12F -·845H 2O
Table 1
????2θ ????d() ????I/I 0
????7.78 ????11.36 ????13
????13.35 ????6.63 ????2
????16.49 ????5.37 ????4
????21.42 ????4.14 ????17
????22.44 ????3.96 ????100
????25.34 ????3.51 ????8
????26.82 ????3.32 ????17
????28.91 ????3.09 ????6
????29.50 ????3.03 ????16
????30.44 ????2.93 ????6
????33.42 ????2.68 ????7
????34.61 ????2.59 ????3
????43.70 ????2.07 ????7
Embodiment 2
Take by weighing and contain TEAOH amount (B) 29.6g with precedent, put into beaker, add 1.9g (D), add 0.5gNaOH under stirring again successively, 1g Tai-Ace S 150 (content is with embodiment 1) is dissolved in solution and the 35.0g (A) that 6.5g water forms, and continues to stir 60min, change in the stainless steel cauldron, in 140 ℃ of crystallization 6 days, obtained product β zeolite, relative crystallinity 110%.The constitutive molar ratio that feeds intake is:
1Al 2O 3·101SiO 2·15(TEA) 2O·6.6Na 2O·30.4F -·1811H 2O
Embodiment 3
29.5g contain 30%TEAOH (B) middle 2.57g (D) of adding and 0.5gNaOH, after the dissolving, under agitation add the 0.81g pseudo-boehmite successively and (contain Al 2O 375%, commercially available industrial goods) and 48.5g (A), continue to stir 60min, change in the stainless steel cauldron, in 140 ℃ of crystallization 75 hours, the same embodiment of following steps, the XRD feature diffraction of products obtained therefrom β zeolite sees Table 2, relative crystallinity 110%, and constitutive molar ratio feeds intake:
1Al 2O 3·35SiO 2·5.0(TEA) 2O·5Na 2O·10F -·523H 2O
Embodiment 4
Experimental raw and step add 1.3g (D) all with embodiment 3, and the corresponding adjustment of other each material add-on makes the constitutive molar ratio that feeds intake be:
1Al 2O 3·20SiO 2·2.5(TEAOH) 2O·2.5Na 2O·3F -·368H 2O
Products obtained therefrom β zeolite, relative crystallinity 114%.
Table 2
????2θ ????D() ????I/I 0
????7.69 ????11.49 ????13
????11.56 ????7.65 ????3
????16.45 ????5.38 ????3
????21.30 ????4.17 ????17
????22.32 ????3.98 ????100
????25.21 ????3.53 ????8
????26.78 ????3.33 ????15
????28.70 ????3.11 ????8
????29.42 ????3.03 ????16
????30.27 ????2.95 ????6
????33.29 ????2.69 ????5
????43.45 ????2.08 ????6
Embodiment 5
Removing the aluminium source uses aluminum chloride (to contain AlCl 35H 2O98%, commercially available product) outside, all the other raw materials
(A), (B), (D) be all with embodiment 1, adjust molar ratio to be: SiO 2/ Al 2O 3=50, TEAOH/SiO 2=0.13, TEAOH/F-=2, H 2O/SiO 2=16.5 in 140 ℃ of crystallization 6 days, obtained the pure β zeolite of crystallization.
Embodiment 6
Removing the aluminium source uses aluminum nitrate (to contain Al (NO 3) 39H 2O) outside, all the other raw materials, experimental procedure and molar ratio are all identical with embodiment 5, obtain product β zeolite, no stray crystal.
Embodiment 7 and 8
Remove to use (C) to replace (B), and add outside 25% the ammoniacal liquor 19ml and 0.75g crystal seed, all the other each experimental raw are identical with embodiment 5 and 6 respectively with step, and molar ratio is:
TEABr/SiO 2=0.3, TEABr/F -=2, NH 3/ SiO 2=1, H 2O/SiO 26 days products obtained therefrom β of=17140 ℃ of crystallization zeolite, no stray crystal.
The technical characterictic of embodiment 1~8 gathers lists in table 3, shows that the present invention has synthetic β zeolite relative crystallinity height, and template/SiO feeds intake 2Than low advantage.
Table 3 embodiment of the invention and Comparative Examples technical characterictic are relatively
Comparative Examples Embodiment 12345678
The composite mould plate agent system ????TEABr/NH 4F TEABr 9.55g NaF 1.29g adds 25g water 25% ammoniacal liquor 15ml ?TEAOH/NaF?????TEAOH/NaF?????TEAOH/NaF???TEAOH/NaF???TEAOH/NaF????TEAOH/NaF????TEABr/NH 4F??TEABr/NH 4F TEAOH (22.3%) TEAOH (22.3%) TEAOH (30%) TEAOH (30%) TEAOH (14.6%) TEAOH (14.6%) TEABr, 15.8g TEABr, 15.8g it is water-soluble in 21g water NaF that 34.0g 29.6g 29.5g 29.5g 39.3g 39.3g is dissolved in 22g, 2.1g NaF, 1.9g NaF, 2.57g NaF, 1.3g NaF, 0.95g NaF, 0.95g NaF, 1.57g NaF, 1.57g NaOH, 0.5g NaOH, 0.5g NaOH, 0.5g 25% ammoniacal liquor 19ml 25% ammoniacal liquor 19ml
The silicon source Silicon sol *????34.6g Silicon sol **Silicon sol **Silicon sol **Silicon sol **Silicon sol **Silicon sol **Silicon sol **Silicon sol **??45.5g??????????35.0g????????48.5g???????48.5g???????34.0g????????34.0g???????56.8g??????????56.8g
The aluminium source 1.78g sodium aluminate adds 20g water Tai-Ace S 150 Tai-Ace S 150 1g pseudo-boehmite pseudo-boehmite aluminum chloride aluminum nitrate aluminum chloride aluminum nitrate 2.66g adds 6.5g water 0.81g 1.41g 0.8g 2.5g 1.33g 3.75g
Constitutive molar ratio SiO feeds intake 2/Al 2O 3????(TEA) 2O/SiO 2 ????20 ????0.155 ??50??????????????101?????????35??????????20??????????50????????????50???????????50????????????50 ??0.13????????????0.15????????0.14????????0.14????????0.13??????????0.13????????0.15???????????0.15
Crystallization temperature, ℃ ????140 ??140?????????????140?????????140?????????140?????????140???????????140?????????140????????????140
β zeolite product crystallization situation, relative crystallinity % ????98 109 110 110 114 no stray crystals do not have stray crystal and do not have stray crystal and do not have stray crystal
* contain SiO 225%** contains SiO 226%

Claims (7)

1. the synthetic method of a β zeolite comprises in the basic solution that contains composite mould plate agent by the following mol ratio scope that feeds intake:
SiO 2/Al 2O 3???10--200
(TEA) 2O/SiO 2??0.03--0.20
Na 2O/SiO 2?????0.005--0.6
H 2O/SiO 2??????10--30
(NH 4) 2O/SiO 2?0--1.0
TEA +/ F -0.25-4 crystallization is carried out in adding aluminium source, silicon source, passes through filtration, washing, drying then, obtains the β zeolite product, it is characterized in that the aluminium source is a Tai-Ace S 150, aluminum chloride, any one in aluminum nitrate and the pseudo-boehmite.
2. in accordance with the method for claim 1, it is characterized in that composite mould plate agent is the halogenide by tetraethyl ammonium, tetraethyl ammonium hydroxide or its mixture and fluorochemical constitute.
3. in accordance with the method for claim 1, it is characterized in that the silicon source is a silicon sol.
4. in accordance with the method for claim 1, it is characterized in that mineral alkali is sodium hydroxide, potassium hydroxide or ammonium hydroxide.
5. in accordance with the method for claim 1, the crystallization temperature that it is characterized in that synthetic β zeolite is 90~200 ℃.
6. according to the described composite mould plate agent of claim 2, it is characterized in that fluorochemical is IA family fluorochemical, Neutral ammonium fluoride, ammonium acid fluoride or its mixture.
7. in accordance with the method for claim 1, it is characterized in that can adding crystal seed in the building-up process, adding weight is the SiO that feeds intake 20~5% of weight.
CN98119974A 1998-09-25 1998-09-25 Process for synthesizing beta-zeolite Expired - Fee Related CN1093510C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN98119974A CN1093510C (en) 1998-09-25 1998-09-25 Process for synthesizing beta-zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN98119974A CN1093510C (en) 1998-09-25 1998-09-25 Process for synthesizing beta-zeolite

Publications (2)

Publication Number Publication Date
CN1249270A true CN1249270A (en) 2000-04-05
CN1093510C CN1093510C (en) 2002-10-30

Family

ID=5226544

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98119974A Expired - Fee Related CN1093510C (en) 1998-09-25 1998-09-25 Process for synthesizing beta-zeolite

Country Status (1)

Country Link
CN (1) CN1093510C (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096417C (en) * 2000-10-19 2002-12-18 北京嘉德凯化工科技发展有限公司 Synthesis method for beta zeolite
WO2003043937A3 (en) * 2001-11-15 2003-07-10 Pq Holding Inc Method for controlling synthesis conditions during molecular sieve synthesis using combinations of quaternary ammonium hydroxides and halides
CN1116227C (en) * 2001-03-12 2003-07-30 复旦大学 Process for synthesizing beta-zeolite from non-alkali-metal ion system
WO2003078323A1 (en) * 2002-03-15 2003-09-25 Exxonmobil Research And Engineering Company Synthesis of porous crystalline materials in fluoride media
CN100384732C (en) * 2005-08-15 2008-04-30 中国石油化工股份有限公司 Method for synthesizing beta zeolite in small crystal grain
CN102452667A (en) * 2010-10-21 2012-05-16 中国石油化工股份有限公司 Method of synthesizing IM-5 molecular sieve by using composite template
CN103101926A (en) * 2011-11-10 2013-05-15 中国石油化工股份有限公司 Hollow ball-like IM-5 molecular sieve and preparation method thereof
CN103101927A (en) * 2011-11-10 2013-05-15 中国石油化工股份有限公司 IM-5 molecular sieve fiber and synthetic method thereof
CZ303889B6 (en) * 2010-10-20 2013-06-12 Výzkumný ústav anorganické chemie, a. s. Process for preparing dried half-finished product for synthesis of zeolites
CN104073293A (en) * 2013-03-28 2014-10-01 中国石油天然气股份有限公司 Heavy hydrocarbon oil hydrogenation cracking method
CN110372003A (en) * 2019-08-22 2019-10-25 正大能源材料(大连)有限公司 A kind of preparation method of big partial size Beta molecular sieve
CN111511685A (en) * 2017-12-14 2020-08-07 东曹株式会社 β type zeolite and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10843181B2 (en) 2018-05-31 2020-11-24 King Fahd University Of Petroleum And Minerals Method of making a fluoride functionalized zeolite catalyst and method of use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA852806B (en) * 1984-05-10 1986-11-26 Mobil Oil Corp Preparation of zeolite beta
NZ212014A (en) * 1984-06-11 1988-05-30 Mobil Oil Corp Preparation of a zeolite and composition thereof
CN1035668C (en) * 1994-03-11 1997-08-20 中国石油化工总公司 Method No.1 for synthesizing beta zealite

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096417C (en) * 2000-10-19 2002-12-18 北京嘉德凯化工科技发展有限公司 Synthesis method for beta zeolite
CN1116227C (en) * 2001-03-12 2003-07-30 复旦大学 Process for synthesizing beta-zeolite from non-alkali-metal ion system
WO2003043937A3 (en) * 2001-11-15 2003-07-10 Pq Holding Inc Method for controlling synthesis conditions during molecular sieve synthesis using combinations of quaternary ammonium hydroxides and halides
WO2003078323A1 (en) * 2002-03-15 2003-09-25 Exxonmobil Research And Engineering Company Synthesis of porous crystalline materials in fluoride media
CN100384732C (en) * 2005-08-15 2008-04-30 中国石油化工股份有限公司 Method for synthesizing beta zeolite in small crystal grain
CZ303889B6 (en) * 2010-10-20 2013-06-12 Výzkumný ústav anorganické chemie, a. s. Process for preparing dried half-finished product for synthesis of zeolites
CN102452667A (en) * 2010-10-21 2012-05-16 中国石油化工股份有限公司 Method of synthesizing IM-5 molecular sieve by using composite template
CN102452667B (en) * 2010-10-21 2014-12-03 中国石油化工股份有限公司 Method of synthesizing IM-5 molecular sieve by using composite template
US9327277B2 (en) 2011-11-10 2016-05-03 China Petroleum & Chemical Corporation Fibrous IM-5 molecular sieve and preparation process thereof
CN103101927A (en) * 2011-11-10 2013-05-15 中国石油化工股份有限公司 IM-5 molecular sieve fiber and synthetic method thereof
CN103101926A (en) * 2011-11-10 2013-05-15 中国石油化工股份有限公司 Hollow ball-like IM-5 molecular sieve and preparation method thereof
CN103101926B (en) * 2011-11-10 2014-10-15 中国石油化工股份有限公司 Hollow ball-like IM-5 molecular sieve and preparation method thereof
CN103101927B (en) * 2011-11-10 2014-12-31 中国石油化工股份有限公司 IM-5 molecular sieve fiber and synthetic method thereof
US9248437B2 (en) 2011-11-10 2016-02-02 China Petroleum & Chemical Corporation Hollow spherical zeolite IM-5 and preparation method therefor
CN104073293A (en) * 2013-03-28 2014-10-01 中国石油天然气股份有限公司 Heavy hydrocarbon oil hydrogenation cracking method
CN104073293B (en) * 2013-03-28 2016-12-28 中国石油天然气股份有限公司 A kind of method that heavy hydrocarbon oil is hydrocracked
CN111511685A (en) * 2017-12-14 2020-08-07 东曹株式会社 β type zeolite and method for producing same
CN111511685B (en) * 2017-12-14 2024-03-26 东曹株式会社 Beta zeolite and method for producing same
CN110372003A (en) * 2019-08-22 2019-10-25 正大能源材料(大连)有限公司 A kind of preparation method of big partial size Beta molecular sieve

Also Published As

Publication number Publication date
CN1093510C (en) 2002-10-30

Similar Documents

Publication Publication Date Title
CN1093510C (en) Process for synthesizing beta-zeolite
CN1096417C (en) Synthesis method for beta zeolite
CN1056818C (en) Process for synthesizing ZSM-5 molecular sieve
CN1281495C (en) Method for preparing Fe-ZSM-5 zeolite microsphere using kieselguhr as raw material
CN1035668C (en) Method No.1 for synthesizing beta zealite
US5338525A (en) MFI-type zeolite and its preparation process
CN1074388C (en) Zeolite synthesizing method
CN1257840C (en) ZSM-5 structure zeolite, preparation and use thereof
CN1621349A (en) Preparation method of NaY molecular sieve
CN1020039C (en) Synthesis of mercerized zeolite with high silicon content
CN103964466B (en) 5 molecular sieves of a kind of ZSM and preparation method thereof
CN1051055C (en) Method for synthesis of beta-zeolite
CN102180478A (en) Method for synthesizing Beta molecular sieve by using silica gel under the condition without organic template
CN1093515C (en) Process for synthesizing beta-zeolite
CN1247457C (en) Synthetic method for ZSM-5 zeolite
CN1235875A (en) Synthetic method for high silicon ZSM-5 zeolite
CN1057066C (en) Process for synthesizing high-silicon ZSM-5 molecular sieve
CN102897790B (en) Synthesis method for ZSM-5 molecular sieve
CN1272246C (en) Synthesis method of NaY molecular sieve
US5215736A (en) Mordenite type zeolite and its preparation process
CN1171791C (en) ZSM-s molecular sieve synthesizing process
CN1041616C (en) Method No.2 for synthesizing beta zeolite
CN1083399C (en) Synthesis of high-silicon mordenite
CN1328961A (en) Synthesis method of high-silicon mordenite
CN1093513C (en) Process for synthesizing zeolite with mordenite structure

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20021030

Termination date: 20170925

CF01 Termination of patent right due to non-payment of annual fee