CN1243824A - Process for preparing monomer of sodium allylsulfonate - Google Patents

Process for preparing monomer of sodium allylsulfonate Download PDF

Info

Publication number
CN1243824A
CN1243824A CN 99114744 CN99114744A CN1243824A CN 1243824 A CN1243824 A CN 1243824A CN 99114744 CN99114744 CN 99114744 CN 99114744 A CN99114744 A CN 99114744A CN 1243824 A CN1243824 A CN 1243824A
Authority
CN
China
Prior art keywords
sodium
product
reaction
allyl chloride
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 99114744
Other languages
Chinese (zh)
Other versions
CN1085660C (en
Inventor
梁发书
李建波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN99114744A priority Critical patent/CN1085660C/en
Publication of CN1243824A publication Critical patent/CN1243824A/en
Application granted granted Critical
Publication of CN1085660C publication Critical patent/CN1085660C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for preparing the monomer of sodium allylsulfonate from allylchlorine and sodium pyrosulfite as raw materials includes such steps as adding less OP emulsifier to aqueous solution of sodium pyrosulfite, dropping allylchlorine while controlling pH value and temp in reactor with stirrer and reflux unit, reaction until no reflux of allylchlorine, separation and purifying to obtain high-purity (over 98%) sodium allylsulfonate. Its advantages are less investment in equipment, short reaction time, low energy consumption, easy drying of product and low cost. Said monomer is used as additive for petroleum industry, water treatment and electroplating.

Description

Preparation method of sodium allylsulfonate monomer
The invention relates to a method for preparing an allyl sodium sulfonate monomer by using allyl chloride and sodium metabisulfite as main raw materials, belonging to a preparation method of an alkene monomer.
In chemical production, the sulfonation of aromatic hydrocarbon is easier to introduce sulfonic acid groups on aromatic rings, but the introduction of sulfonic acid groups in non-aromatic hydrocarbons and high molecular compounds without aromatic rings is more difficult. Due to the introduction of sulfonic acid groups, many properties of the compound are obviously changed, such as greatly increased water solubility, enhanced thermal stability and increased electrolyte resistance, so that the compound has wider application. Chemical additives are commonly used in the petroleum industry and are required to be highly water soluble, not decomposed at high temperatures and have little effect on formation water salinity. Practice proves that a proper amount of sulfonic acid groups are introduced into some additive molecules, so that the requirements of the petroleum engineering technology can be met. In addition, a proper amount of sulfonic acid groups are often required to be introduced into the molecules of the water treatment additive and the electroplating solution additive so as to meet certain performance requirements. The sulfonic group can be conveniently introduced into the macromolecular compound by copolymerizing the sodium allylsulfonate monomer and other monomers such as acrylic acid, acrylamide, acrylonitrile and the like.
At present, from the relevant data at home and abroad, the method for preparing sodium allylsulfonate discloses a method for directly synthesizing sodium allylchloride and sodium sulfite in journal of 5 th period of natural industry in 93 years (the author is the inventor of the patent). This method has been found to have serious drawbacks when it is industrially produced, and thus, the industrial applicability thereof is lost. The main performance is as follows: (1) the raw material allyl chloride and the solvent water are not mutually soluble, and the reaction system is an inhomogeneous system, so that the reaction must be vigorously stirred during the reaction. Even in this case, the reaction time is long, the energy consumption is high, and the raw material loss is large, because the reaction time is 20 hours or more when the reaction is completed. (2) The solubility of the sodium sulfite as the raw material in water is low, the sodium sulfite is easy to agglomerate, and if the operation is wrong, the sodium sulfite is easy to form large blocks, thereby bringing great difficulty to production operation. When the product is prepared, a large amount of water is added to dissolve the product, and finally the product is low in content and high in moisture content. In order to dry the product, the liquid product needs to be concentrated for a long time to obtain a solid product, and the liquid product is usually self-polymerized due to high temperature in the concentration process, so that the product quality is affected, and the cost is increased.
The invention aims to overcome the defects of the prior art and provides a novel method for preparing sodium allylsulfonate. So as to accelerate the reaction speed, shorten the reaction time and achieve the purpose of reducing the product cost and realizing industrial production.
The invention is mainly characterized in that: sodium pyrosulfite and allyl chloride are used as raw materials, OP (polyoxyethylene octyl phenol ether) emulsifier (or phase transfer agent) is adopted for emulsification (or phase transfer), and reaction is carried out in an oil-in-water type emulsification system, so that the reaction speed is greatly improved. The preparation method of the sodium allylsulfonate comprises the following steps: in the aqueous solution of sodium pyrosulfite with a certain concentration, a little OP emulsifier is firstly added, and allyl chloride is added according to a certain proportion and a certain dropping speed. The reaction is carried out in a reaction kettle with a stirring and refluxing device, a constant-temperature heater is arranged in the reaction kettle, the temperature is controlled to be 40-70 ℃, the PH of a reaction solution is regulated and controlled to be within the range of 8-11 by using a NaOH solution, and no allyl chloride is refluxed and reactsWhen the reaction is completed, the reaction is terminated. The whole reaction time can be smoothly finished within 4-6 hours, and the used raw materials are in the following proportion (molar ratio): sodium metabisulfite and allyl chloride are 0.5-0.7: 1. After the reaction is finished, the product is a liquid product, and the concentration of the product is about 50%. Besides the sodium allylsulfonate, a large amount of sodium chloride and sodium sulfite which is not completely reacted are contained in the reaction mixture. Concentrating the liquid mixture, filtering to remove salt (NaCl, Na)2SO3) And drying the filtrate to obtain the sodium allylsulfonate product with the purity of more than 98 percent.
Sodium metabisulfite is used instead of sodium sulfite because sodium metabisulfite has a solubility two times greater than sodium sulfite and its hydrolysis is carried out gradually, so that the amount of water used in the preparation of the aqueous sodium metabisulfite solution can be reduced by about half. Because it is not easy to be dissolved and agglomerated, the content of the prepared liquid product is increased by about one time, and in addition, the sodium metabisulfite is much cheaper than sodium sulfite, so that the production cost can be reduced. The OP emulsifier (or phase transfer agent) is adopted for emulsification (or phase transfer) to form an oil-in-water type emulsification system, so that the reaction time can be shortened. The whole production process is easy to operate, the product quality can be improved, and the industrial production of the sodium allylsulfonate becomes possible.
The preparation method of the sodium allylsulfonate monomer comprises the following main chemical reaction equation:
1.
2.
3.
the sodium allylsulfonate product of the invention has wide application, and is mainly used as a raw material in the production and preparation of chemical additives, water treatment additives, electroplating liquid additives and the like in the petroleum industry.
Compared with the prior art, the preparation method of the product has the following advantages:
(1) the sodium metabisulfite is used to replace sodium sulfite, the whole production process is easy to operate, the equipment investment is low, the product is easy to dry, and the production cost is low.
(2) The emulsifier (or phase transfer agent) is adopted, the reaction time is greatly shortened, the energy consumption is reduced, and the industrial production of the catalyst becomes possible.
Two examples are given to illustrate the preparation of sodium allylsulfonate and to compare the effect of emulsifiers on the reaction rate.
Example 1 sodium metabisulfite 60.0 g was weighed, dissolved in 200 ml of water, and 30 g of allyl chloride was added dropwise under stirring and refluxing. After the addition, the temperature was raised to 60 ℃ and maintained at a constant temperature. The pH was adjusted to 10 with sodium hydroxide. When the reaction was carried out to reflux without allyl chloride, the end point of the reaction was reached, which took about 24 hours. Cooling the liquid product to room temperature, filtering to remove salt, concentrating the filtrate, and drying to obtain white powder product.
Example 2 sodium metabisulfite 60.0 g was weighed, dissolved in 110 ml of water, followed by the addition of 0.3 g of OP emulsifier and the dropwise addition of 50 g of allyl chloride under stirring and reflux. After the addition, the temperature was raised to 60 ℃ and maintained at a constant temperature. The pH was adjustedto 10 with sodium hydroxide. When the reaction was carried out to reflux without allyl chloride, the end point of the reaction was reached, which took about 5 hours. And cooling the liquid product to room temperature, filtering to remove insoluble substances and salt, concentrating the filtrate, and drying to obtain the sodium allylsulfonate product.
Characterization of the product synthesized above: the infrared spectrum of the product was determined on a Bruker-120 FI-IR spectrometer by KBr pellet: at 1043.4cm-1And 1158cm-1All have strong absorption peaks, which indicates that the molecules have sulfonic acid groups. At 1642.6cm-1The stretching vibration peak of C-C bond appears at 3087.3cm-1A symmetric stretching vibration peak of C-H appears at 1844cm-1、995.4cm-1And 947.3cm-1Is ═ CH2Is provided with an out-of-plane rocking bending shock absorbing peak.
With FX-90Q nuclear magnetic resonance apparatus (internal standards TMS, D)2O as solvent) was determined by' HN-MR: δ H is 5.00 to 6.00(2H, m, CH)2=C);4.39(H.S.C=C-H);3.42(2H,d,-CH2-)。
Warp of the aboveTwo analysis methods prove that the synthesized product has the structure as follows: CH (CH)2=CHCH2SO3Na。

Claims (3)

1. A preparation method of sodium allylsulfonate monomer is characterized by comprising the following steps: using sodium pyrosulfite and allyl chloride as raw materials, emulsifying by using OP emulsifier, firstly adding a little OP emulsifier (polyoxyethylene octyl phenol ether) into sodium pyrosulfite aqueous solution with certain concentration, adding allyl chloride according to a certain dropping speed, reactingin a stirring and refluxing device until no allyl chloride is refluxed, filtering the reaction mixture to remove salt, concentrating the filtrate, and drying to obtain the product.
2. The method of claim 1, wherein: the reaction temperature is controlled to be between 40 and 70 ℃, and the PH is regulated to be within the range of 8 to 11.
3. The method of claim 1, wherein: the raw material ratio (molar ratio) is 0.5-0.7: 1.
CN99114744A 1999-03-26 1999-03-26 Process for preparing monomer of sodium allylsulfonate Expired - Fee Related CN1085660C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN99114744A CN1085660C (en) 1999-03-26 1999-03-26 Process for preparing monomer of sodium allylsulfonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN99114744A CN1085660C (en) 1999-03-26 1999-03-26 Process for preparing monomer of sodium allylsulfonate

Publications (2)

Publication Number Publication Date
CN1243824A true CN1243824A (en) 2000-02-09
CN1085660C CN1085660C (en) 2002-05-29

Family

ID=5277792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99114744A Expired - Fee Related CN1085660C (en) 1999-03-26 1999-03-26 Process for preparing monomer of sodium allylsulfonate

Country Status (1)

Country Link
CN (1) CN1085660C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204785A (en) * 2012-01-13 2013-07-17 湖北和昌新材料科技有限公司 Dehydration method of sodium allylsulfonate
CN108675947A (en) * 2018-07-02 2018-10-19 周海军 A kind of synthetic method of Sodium Allyl Sulfonate
CN109232329A (en) * 2018-10-19 2019-01-18 湖北吉和昌化工科技有限公司 A kind of synthetic method of Sodium Allyl Sulfonate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD151747A1 (en) * 1980-06-27 1981-11-04 Ruediger Buennig PROCESS FOR THE PRODUCTION OF SODIUM ALLYL SULPHONATE IN THE DISPERSEN SYSTEM
DD282819A7 (en) * 1988-04-19 1990-09-26 Berlin Chemie Veb PROCESS FOR PREPARING ISOMERIC AND OLIGOMER-FREE SODIUM ALLYL SULPHONATE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204785A (en) * 2012-01-13 2013-07-17 湖北和昌新材料科技有限公司 Dehydration method of sodium allylsulfonate
CN108675947A (en) * 2018-07-02 2018-10-19 周海军 A kind of synthetic method of Sodium Allyl Sulfonate
CN108675947B (en) * 2018-07-02 2021-01-05 周海军 Synthesis method of sodium allylsulfonate
CN109232329A (en) * 2018-10-19 2019-01-18 湖北吉和昌化工科技有限公司 A kind of synthetic method of Sodium Allyl Sulfonate

Also Published As

Publication number Publication date
CN1085660C (en) 2002-05-29

Similar Documents

Publication Publication Date Title
US7501025B2 (en) Process and apparatus for the conversion of biomass
CN101260174B (en) Cation-type hydrophobic association polymer and its preparation method and application
CN108529659B (en) Synthesis method of micron-sized barium sulfate microspheres
CN1085660C (en) Process for preparing monomer of sodium allylsulfonate
CN108395643B (en) Modified hydrocalumite for PVC heat stabilizer and clean preparation method thereof
CN1648199A (en) Foaming agent for improving conventional oil reservoir raw oil recovery rate and its preparing method
CN104291725A (en) Method for preparing modified aliphatic series water reducing agent
CN114085343A (en) Modified sulfonated phenolic resin filtrate reducer for drilling fluid and preparation method thereof
CN109053936B (en) Preparation method of polyvinyl butyral resin
GB2076791A (en) Alpha calcium sulfate hemihydrate production
CN105254515A (en) Preparation method of succinylcholine chloride
JP2010229250A (en) Method for producing 2-acrylamido-2-methylpropanesulfonic acid
CN105541561B (en) A kind of synthesis of 1,1,1 3 (4 hydroxy phenyl) ethane and purification process
US4026932A (en) Method for converting alkenoic acid copolymer latexes into water solutions
JP5304205B2 (en) 2-acrylamido-2-methylpropanesulfonic acid and method for producing the same
SU1237673A1 (en) Method of producing polyacrylamide
CN1089087C (en) Process for preparing monomer of cathionic polymer
CN1037838C (en) Method for preparing foaming agent 4,4'-para-sulfonyl hydrazine diphenyl ether
CN114075310B (en) Two-phase viscosity regulator and preparation method thereof
CN110857279B (en) Preparation method of 2-acrylamide-2-methylpropanesulfonic acid
US4744882A (en) Polycondensates of sulfonated coal tar fractions
CN113201100B (en) In-situ demulsification functional associated polymer oil-displacing agent and preparation method thereof
CN116285932B (en) Viscous oil viscosity reducer for polymer flooding and preparation method and application thereof
CN1244523C (en) Sulfonation process for producing dye dispersant and concrete water reducing agent
CN116656335B (en) Drag reducer for fracturing fluid and preparation process thereof

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee